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A Connection Between v-Dimensional Yang—Mills Theory
and (v — 1)-Dimensional, Non-Linear o-Models

B. Durhuus* and J. Frohlich

Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Y vette, France

Abstract. We study non-linear g-models and Yang-Mills theory. Yang—Mills
theory on the v-dimensional lattice Z* can be obtained as an integral of a
product over all values of one coordinate of non-linear o-models on Z*~! in
random external gauge fields. This exhibits two possible mechanisms for
confinement of static quarks one of which is that clustering of certain two-point
functions of those a-models implies confinement of static quarks in the corres-
ponding Yang—Mills theory. Clustering is proven for all one-dimensional
o-models, for the U(n) x U(n) o-models, n=1,2,3,..., in two dimensions,
and for the SU(2) x SU(2) g-models for a large range of couplings g* > O(v).
Arguments pertinent to the construction of the continuum limit are discussed.
A representation of the expectation of Wilson loops in terms of expectations
of random surfaces bounded by the loops is derived when the gauge group is
SU((2), U(n)or O(n),n = 1,2, 3,...,and connections to the theory of dual strings
are sketched.

1. Connections Between o-Models and Yang—Mills Theory:
Description of the Basic Ideas

In this paper we propose to study v-dimensional (lattice) Yang-Mills theory, in
terms of (v — 1)-dimensional (lattice) o-models in random external gauge fields.
Our main results are the ones described in the abstract. One can also apply our
scheme to the study of Z (2) lattice gauge theories in three and four dimensions and
relate them to a two-dimensional Ising model with random couplings in one
direction, but this is not studied in this paper. Furthermore, we study a weak
_coupling limit of Yang-Mills theory relating this theory to linear o-models in an
external gauge field, in one dimension less. It appears to provide a lower bound
on the confining potential-—i.e. an upper bound on expectations of Wilson loop
observables—with a convergent continuum limit. This bound is rigorous in the
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abelian case. In the non-abelian case, it appears to be related to naive perturbation
theory and, therefore, it should describe the short distance behaviour of the theory
correctly. We show that confinement of static quarks, always assumed to transform
non-trivially under the center of the gauge group, in v-dimensional Yang-Mills
theory is a consequence of two possible mechanisms:

(1) Clustering of certain two-point functions of the (v — 1)-dimensional g-model in
external gauge field (see Sects. 2-5). This leads to permanent confinement in all
two-dimensional and in three-dimensional U(n) Yang—Mills theories and suggests
that, for arbitrary, non-abelian gauge Lie groups, the confining potential in v =3
dimensions is always linear, for arbitrary coupling. For the critical temperature of
two-dimensional, non-linear, non-abelian o-models is expected to be zero, with
exponential clustering at positive temperature.

(2) A cancellation between “random phases”, depending on the external gauge
fields of the long range order in those two-point functions of the (v — 1)-dimensional
g-models. We have arguments suggesting that only this second mechanism can lead
to confinement in four-dimensional, continuum gauge theories. See Sects. 6 and 7.
We propose to study aspects of v-dimensional continuum gauge theories by means
of the Gaussian weak coupling limit of the (v — 1)-dimensional o-models mentioned
before. That limit suggests, e.g. the correct kind of normal ordering of the Wilson
loop observables (traces of holonomy operators associated with closed loops) that
might enable one to construct the continuum limit of expectations of products of
“normal ordered” Wilson loops. This is discussed in Sect. 7, especially for v = 3.

Throughout this paper we systematically adopt the Euclidean description of
quantum field theory. Thereby, Yang-Mills theory and non-linear o-models are
converted into classical statistical mechanics systems. The reconstruction of a
quantum field theory from the latter is accomplished by means of a Feynman-Kac
formula, resp. Osterwalder—Schrader reconstruction [1]. (In the case of lattice
theories, Osterwalder- Schrader reconstruction requires the existence of a positive
semi-definite transfer matrix which follows from reflection positivity. This and
other foundational topics are discussed at length, e.g. in [2, 3,4]). In the following,
“dimension” means the dimension of the Euclidean space-time (lattice). We only
consider compact gauge groups, denoted G.

Various analogies and connections between non-linear g-models and Yang-
Mills theory, have been emphasized in the literature. Apart from the well-known
ones between two-dimensional o-models, in particular the CPY ! models of refs.
[5, 6], and Yang—Mills theory in four dimensions (e.g. conformal invariance at the
classical level, field theories with constraints and non-trivial topological properties,
instantons, asymptotic freedom, etc.) we mention a rather deep analogy that
emerges, at the classical level, from formulating these theories in terms of fields
with values in a Grassmannian. The corresponding o-models are the G, ,(C)-
models of [ 7, 8], the Yang—Mills theories are the pure U(n)-theories. This analogy is
stressed in [ 7, 8]. It is inspired by the work on self-dual Yang—Mills fields in [9-11].
It is potentially useful for further analysis of classical Yang—Mills theory, e.g. the
construction of conserved currents, but does not appear to be promising at the
quantum level [ 7]. Therefore we do not use it in this paper.

Relevant for our purposes are the following very simple connections (not
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analogies) between v-dimensional Yang—Mills theory and (v — 1)-dimensional,
non-linear g-models:

1.1. Two-Dimensional Y ang—Mills Theory and One-Dimensional o-Models

Two-dimensional, pure Yang-Mills theory with gauge group G is equivalent to a
product over all values of one coordinate, e.g. the imaginary time, of independent,
one-dimensional, non-linear o-models with fields taking values in G. (To see this
one is advised to consider a two-dimensional lattice Yang-Mills theory and to
choose the axial gauge, A, = 0). These one-dimensional o-models simply describe
Brownian motion on the group G. Therefore they can be solved explicitly, even in
the continuum limit. (Their transfer matrix is generated by a Casimir operator).
Thus, the calculation of expectations of products of Wilson loop observables in a
two-dimensional, pure Yang-Mills theory is reduced to calculating correlation
functions for Brownian motion on G which, in turn, can be reduced to calculating
Clebsch-Gordan coefficients. See [2, 12].

In this paper we describe a related, albeit more complex, higher dimensional
generalization of the two-dimensional strategy, relating Yang—Mills theory to a
non-linear o-model. It exhibits a promising line of attack that might enable one to
“solve” the three- and four-dimensional Z(2)-theories and to construct the conti-
nuum limit of the three-dimensional, pure U(n) theories in the n — cc limit.
Sect. 4. These theories ought to be the simplest ones.

1.2. Classical Y ang—Mills Theory and Classical a-Models

Let U be some irreducible, unitary representation of a compact Lie group G.
Consider a (v — 1)-dimensional, non-linear o-model with fields, g(x), taking values
in U(G). The Euclidean action of the model is given by

v—1

BAS_ | ﬁz [ 'xtr(]g*(x)(0,9)(x)]?) (1.1)

The action Af_ | is clearly invariant under the transformation g(x) — bg(x)t, with
b,t in U(G), i.e. the symmetry group is G x G. Coupling the field g(x) to an external
gauge field means converting the global action of the symmetry group, G x G,
into a local one; i.e. one must specify a G x G connection, (A4, B), with Ajeg,
Bje?, j=1,...,v—1, ¥ the representation U of the Lie algebra of G, in order
to be able to parallel transport g(x).

The coupling of the field g(x) to the external gauge field (4, B) is now accomp-
lished by the standard minimal substitution, i.. one replaces 0; by a covariant
derivative, Dj, defined by

g*Dyg=g*0,g +g*A,g — B;. (1.2)
The action is replaced by

pAT (AB=F T [d xir(|g"x)Dg))]) (13
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Next, we want to study a weak coupling (low temperature) limit described by:
B=pe)=fe ', AT . = 0(e),e = 0. On the classical level, this limit is obtained
as follows: One chooses

g(x) = @, (1.4)
where X(x) is a C7’ function on R*~ ! with values in 9. Then, to first order in &,
g*Dyg=A;— B, + ¢{0,X + [4,, X]} + O(?)

In order for the action f&¢~'47_, to be O(¢) we must require that

B(x)= A(x) + ¢C(x) + O@?), (1.5)
where Aj and C,;are Cy functions with values in %. We then have
g*ng = e{ﬁjX + [AJ., X]- Cj} + O(?), (1.6)

so that fe~'47_ (A4, B) = O(e),
Next, choose
AJ(-ZC) = A,QC, t)v CJ(E) =& I(Aj(z.cvt + 8) - Aj()_C,t))
= 0\™ A(x,1)
= 5‘,Aj(x, t) + Ofe), (L.7)

where ¢ is a parameter in Z, = {¢n:neZ}, and A fx,1) is a Cy function on R
with values in 4. We also change our notation: X(x) = A4 (x,t). Then

@*D ) (x, 1) = {0 A, + 0" A, + [A4;, 4,1} (x, 1) + O(?)
= 6F™(x, 1) + O(e?) (1.8)

The action is then given by
v—1
Ble)47_ (A, B(t)) = fe ), Jd" 'xtr(|Fi(x.1)]%) + O(?) (1.9)
j=1

Next, we assign to the external gauge field A(¢) = (4 1) on R*~! an action equal
to the (v — 1)-dimensional Yang-Mills action,

A, (A0 =efAM (A0 =of Y JdT xr([Fx ).

The total action for fixed ¢ is then given by

A (e,1) = BE)AT_ (A1), At + ) + ef A7 (A1), (1.10)
and the total action by
A (&)= 2 A (e0) (1.11)
tele
If A(x,1) and A|x, 1), j=1,...,v—1, are the restrictions of a C{ connection

of = (AA)over R" to R~ 1><Z we have
AM =11m A, (e)

_hm}:{ﬂ T (AW, Alt + &) + ef AT™ (4(1)) ) (1.12)

e—~0 t€Z,
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which by (1.9)-(1.11) is the standard, v-dimensional Yang—Mills action of .o7.

Let x = (x,,...,x,_,,x,,x, =t€Z_, and let x, be the time coordinate. More-
over, return to Minkowski space, i.e. a hyperbolic metric. Then the Euler-Lagrange
(field) equations corresponding to the action 4, , (¢),& > 0, are a system of infinitely
many coupled p.d.e’s, labelled by reZ_ . They describe infinitely many, (v — 1)-
dimensional non-linear g-models coupled through (v — 1)-dimensional, external
Yang-Mills fields.

This observation may be useful to construct weak solutions to the Cauchy
problem for v-dimensional, classical Yang-Mills, v = 3,4, using a compactness
argument to construct an ¢ =0 limit, given the solutions for arbitrary ¢ > 0'.

Quantum mechanically, equations (1.10) and (1.11) appear to tell us that
v-dimensional Yang—Mills theory is, for ¢ > 0, a product of infinitely many, non-
linear g-models coupled through external gauge fields which are distributed
according to (v — 1)-dimensional Yang-Mills measures. This is substantiated in
the remainder of this section; see 1.3 below. Equation (1.9) suggests that, in the
limit ¢— 0, the o-models approach linear theories (ie. lime™'f(e)A7_ L(A(),

£

A(t + ¢)) is quadratic in X), corresponding to Gaussian functional integrals.
This is obviously true classically and is the basic, implicit assumption in the
standard, perturbative treatment of the theory. In Sect. 7 we prove that it is true
quantum mechanically as long as the lattice spacing in the spatial directions
(L t-direction) is positive and independent of &.

In low (v £3) dimensions and for non-abelian gauge group, G. the limiting
theory, as ¢ — 0, is approached by a family of products of g-models which are
expected to have positive mass gaps, [13]. This would imply permanent confine-
ment of static quarks by a linear potential in three-dimensional, non-abelian
continuum Yang—-Mills theory. See Theorem 1.2, Sect. 1.3.

Some aspects of the continuum limit are discussed in Sect. 7 (normal-ordering
of Wilson loops, implicit renormalization).

1.3. v-Dimensional Y ang—Mills Theory as a Product of (v — 1)-Dimensional
o-Models with Random Couplings

In this section we develop the theme of Sect. 1.1 and 1.2 in the context of lattice
gauge theories and lattice a-models. The gauge group, G, is chosen to be a compact
group, not necessarily a Lie group. Let y be some irreducible character of G, and
U-—or U*—the corresponding unitary representation of G. We study models on a
simple, cubic lattice Z", resp. Z*~ ! . In this section, the lattice spacing is unity, but
this is unimportant. The “Euclidean” action of pure Yang—Mills theory on Z" is
given by

AM = —ZRGX(QE,,), (1.13)
p
where p denotes a plaquette (unit square) of Z*, dp is the loop formed by the four

1 A less speculative application of our scheme says that time-independent instanton solutions of

four-dim. Yang-Mills theory are three-dim. Prasad-Summerfield monopoles (We learnt this from
M.F. Atiyah).
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sides of p,g. = 1o g, 1s the ordered product of elements g, €G, (xy a link
xycC
in Z”) along a closed loop C = Z".

In order to give (1.13) a rigorous meaning one must restrict the sum, ) , to

extend only over those plaquettes that belong to some bounded, connected sﬁbset
A of Z¥. In an unambiguous context, reference to the region A is suppressed in
our notation. The a priori distribution of the random group elements, g, the
gauge fields assigned to the links xy, is the Haar measure, dg,, on G. Given a
subset X = Z', we define g(X) = {g,, :xy = X}.

The finite volume (Euclidean vacuum) expectation of the lattice gauge theory
described here is given by the measure

duglg(A) = Z e 4" p g(a), (1.14)
where
Dyg(A) = Dg(A) = Bg(eA)) [] dg,,. (1.15)

and A"™(A) is given by (1.13), with ) replaced by Y . Moreover, B(g(dA)) is an

arbitrary, bounded function of g(&/l),p ie. of all thoséJ gguge fields g, with xy < 4.
The significance of B is to specify boundary conditions. Especially in v = 2 dimen-
sions, the physics of the theory may depend crucially on the choice of B; see e.g.
[14,15] and Sect. 2. We warn the reader that, in contrast to what one does in
classical statistical mechanics, it is sometimes necessary to choose boundary
conditions, B, which are non-positive; (construction of “O-vacua”). Then dpu,
is a “signed” measure. The factor Z, is so chosen that the integral of duy(g(4))
is unity. In accordance with the announced notation we will write

dulg)=Z" e "4 Dg (1.16)

if reference to A and B(g(0A)) is superfluous. The limit in which A tends to Z".
in (1.14), is the thermodynamic limit. A thermodynamic limit of duy(g(A4)), (in the
sense of w*-convergence of subsequences), can always be constructed by a standard
compactness argument, at least when B > 0.

We now proceed to a heuristic description of the main ideas of our approach.
The coordinates of a lattice site x are denoted (x!,...,x" "%, x") = (i,x"), with
i=i(x',...,x*" ez’ ' Let A4,=An{x:x"=t} and A? be the projection of
A, onto {x:x"=0} =Z"" ' Let ¢"(t) denote the collection of all gauge fields in
A assigned to links xy in 4, ie. x" = y" =1.

These gauge fields are called horizontal gauge fields localized at x” =t. Let
9: =90 =g pais 1) With (i, )i, t + 1) = A. The gauge fields g,(t) are called vertical
gauge fields localized in the slice [¢,¢ + 1]. The Yang—Mills action can now be
rewritten as

AMAM) = =21 Y Rexld"0);,)+ X Rexgg(i i 1ygis g0

teZ pcd, ijeA90 A%,
.g:lj,l)(i,t)}' (1.17)
The first term on the r.s. of (1.17) can be recognized to be a sum of Yang-Mills
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actions, A™ (g"(1)), dependmg only on horizontal gauge fields in the (v—1)
dimensional hyperplane at x* =¢. Next, we interpret the second term on the r.s.
of (1.17). We note that the vertical gauge fields in different slices are, a priori,
independent from each other. Therefore, reference to ¢ is superfluous, and we
abreviate g(t) by g,. Moreover, we set

_ 1
L= tu(t) ((J(, t+ 1)+ 1)) )

by =bi(0) = {000 (1.18)

-1
i)

Fig. 1

The second term on the r.s. of (1.17) can now be rewritten as

Y AT (g g+ 1)),

teZ
with
b= — Y Rexlg 'byg i) (1.19)
ij’:A?ﬁA‘f«H

This expression is to be compared with the action of a (v — 1)-dimensional lattice
o-model with fields taking values in G:

A, =—Y Reyxlg 'g). (1.20)
ij
The global symmetry group of the action AJ_, is the group G x G, acting on
the field g as follows:

G x G3(b,t):g,~> bg;t ™!

(Clearly x((bg;t™")"'bg;t™") = xlg; 'g,). by the cyclic invariance of y).

The parallel transport used in definition (1.20) of A7_, is flat. A non-flat
parallel transport is obtained by letting the symmetry group G x G act locally,
i.e. by converting it into a gauge group. Given a curve (i, j) = Z"~ ' of neighboring
links joining a site i to a site j, the parallel transport of g, G, localized at i, to
the site j along y(i, ) is defined by

9; = by it iy
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with

bru,n(tv(i,j)) = HD b, (t,) (1.21)

uv < (i, )

Thus (1.19) is the action of the non-linear g-model in an external gauge field
obtained from (1.20) by minimal substitution; (y(i,j) = ij in (1.21)). The partition
function of those g-models is given by

Z°(b,1) = Zg(b,t) = fe7#4%bt)y ] dg,

ieA9n A0,
z2=7°( Y= fe M- ] dg,
€A N A0,

We set
bty = 2°(b, 1)/ Z°. (1.22)
We recall the following result of [4, 14].

Theorem 1.1. For a class of boundary conditions, B, (including periodic and fiee)
specified in [4]
) 0<%, =1, 1) =1;
(diamagnetic inequality)
2) {°(b,t) is gauge-invariant, i.e.
(b, t) = (°(b", £™), with
b"J =hpbh; ' —mltumj ', where h and m are functions of compact support
onZ’" ! with Ualues inG.
We denote by { — >7_ (b, t) the normalized expectation

Z°(b, )"t [ — e -1 (b, )] dy, (1.23)

of the o-model in the external gauge field (b, ). We let { — > denote the
v-dimensional, pure Yang- Mills expectation defined by the measure du introduced
in (1.14)-(1.16). Furthermore, we let d,u‘,ﬁl(gh(t)) be given by (1.14)-(1.16), but
with A" replaced by A™ (A7) = A™ (4"(¢)). For simplicity, we choose a bound-
ary condition, B(g(éA)), which factorizes into functions only depending on ¢"(04,),

resp. g’i’(t),iea(/lom/ltoﬂ) teZ. Tt can then be absorbed in the definition of

du, ,(g"(1)) and of (= >7_,(g"(1), g"(t + 1)) and is suppressed in our notation.
It now follows from (1. 17)-(1 20) that

(=HM = ‘IH< Y7 (g"e) gt +1))

((&90+UWMAWWDL (1.24)
with = [[]C7(g"0), ¢"(c + 1)), (g"(0)).
Under tthe conditions of Theorem 1.1 (1),
0<(<1. (1.25)

Equation (1.24) is the basic identity exploited in this paper. We apply it to discuss
confinement of static quarks. For this purpose we define the Wilson loop observables
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which we regard as the basic observables of a Yang-Mills theory: Let U“ be
an irreducible representation of G, and y? its character. Let C be a closed curve
of links in Z". The Wilson loop observable (the trace of the “holonomy operator”
corresponding to C) is defined by

WAC) = x'ge) = tr (U(g,)).- (1.26)

This defines a random field on the space of closed loops in Z*. We now rewrite
it in terms of horizontal and vertical gauge fields.

Let V(t, C) be all those oriented, vertical links in C that belong to the slice
[t,t+ 1],and let H(t, C)= Cn A4,. Then

we(C) = Y. TThS, g O, [V e, )], (1.27)

where h? [g(H(t, C))] is a product of matrix elements of U"(giy), xy < H(t, C).
and vfn(,)fg(V(t, ())] is a product of matrix elements of Ud(g},), xy = V(t, C),
and ) is that sum over products of matrix elements—i.e. that contraction scheme —

that ’Lyllields the trace, tr(U%g,)). From (1.24) and (1.27) we derive

n YM n
<n wq(cj)> 1y fﬂ{ﬂhﬁ;m[g(H(t, el
v Jj=1

j=1 mn 1

< [T, LoV, C,))]> (@"(0), g"t + 1))
1=1 v—1

L7(g"(0), g + D)y, l(g"(t))} (1.28)

The n = 1 expectation provides information about confinement of static quarks,
the n =2 expectation about the low-lying excitations of the theory. In a quark
confining phase and for a representation UY that is non-trivial on the center,
%, of the gauge group G one would expect e.g. that

n YM
(fiwo)

j=1

SO(exp[ — A(C,,....,C)]), (1.29)

where A(C,,...,C,) is the total area of the smallest two-dimensional surface
bounded by the loops C, ..., C,. We assert that such an estimate can, in principle,
be obtained from (1.28) and a detailed analysis of the cluster properties of the
k-point functions of the (v — 1)-dimensional, non-linear s-model in an arbitrary
external gauge field. For this purpose, we note that

|he J[g(H(t C )| <1, (1.30)

for all m (t) and all ¢, since hfnj(t) is a product of matrix elements of unitary matrices.

Moreover, ), extends overd!“!!* !l terms, where |C| is the number of

links contained in C, and d_ is the dimension of the representation U“.
We now assume that the number of vertical links in C is >a|C ;|- for some
>0 and all j=1,...,n Then, by (1.28), (1.30) and the above arguments, an
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estimate like (1.29) will follow from decay estimates for

< [To,,lo0vi, C,))]> (b, 1) (1.31)
=1 v—1

These are ordinary N(t)-point functions of the (v — 1)-dimensional, non-linear
o-model in the external gauge field (b,t), with N(1)= ) card(V(t, C))). Note

=1
that N(¢) is even, and (1.31) is invariant under g, - ei“’gj,JforjeZ”'l,
Inequality (1.29) will now generally follow from
a) < Uq(gj)kl i_ 1(ba t) =0,
for all j,k,I and all (b,t); and e.g.
b) the expectation { — »7_,(b,1) clusters exponentially, uniformly in b,t. See
also Sects. 2, 3, 5.
In order to clarify this discussion we now consider a special case: We choose
a single, rectangular loop C with vertices at (0, 0), (j, 0), (j, T), (0, T). Then,

T-1
Wq(c): ZBmono n Uq(g;(t))"l"1+1

w1 =0

T-1

Ty L UG s (1.32)
t

=0

where

j—1
Bmono = [ H Uq(g?i,O)(hL 1,0))]
i=0

mono

T,m -
e [l—[ U1y 1,7))]
i=j

(1.33)

npmop

x,= vertical

!
(0,7T)

t+1

g;(t)ﬁt'

(0,0)

Fig. 2
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From our basic identity (1.24) and (1.32), (1.33) it follows that

WHOHM =1 YT THdw, - @' @)@ (0. 6"C + D) 1B, T

ma

T-1
T UG UG D1 20— 1 (g 00), g + 1)), (1.34)
u=0

We now proceed to estimate the r.s. of (1.34). As shown above, see (1.30), | Bmonol <1,
| TnNmNI < 1.(In fact, if the horizontal pieces of C have the direction of a coordinate

axis and for a suitable choice of boundary conditions, one can choose an axial
gauge such that B =T = 1). Moreover, the number of terms in ), = @2+ 1.

We now imagine taking the thermodynamic limit, ATZ". msﬁuppose that, in
that limit, there is a function V4(j) diverging to + %0, as |j| — oo, such that

[<UAG) UNG ) Y5 (D1 S €770, (1.35)
uniformly in (b, t). Then, by (1.34), (Theorem 1.1.1) and the above estimates,
[<WHC)M| S dgtT ™ Hem TV, (1.36)

The Wilson criterion [16] then says that, in this theory, static quarks are confined
by a potential V%(j) bounded below by V9(j). Roughly

_ 1
Ve = lim ——log {WHCy) o, (1.37)
T— oo
where C, = C is the loop depicted in Fig. 2. The correct definition of the potential
V% between (infinitely heavy) static quarks may be found in [ 14]. A slight extension
of the above arguments gives

Theorem 1.2. Let V%)) be defined as in [14] (egs. (12), (12'), or as in (1.37)).
Assume that (1.35) holds uniformly in (b, t) and choose boundary conditions for
which (°(b, t) 20, for all (b, t). Then

V() = V), for all j. a

Inequality (1.35) is a cluster property of the U‘-two-point function in the (v — 1)-
dimensional, non-linear s-model in an arbitrary external gauge field. In particular,
if Vq(j)%m[jl, as |j| > o, for some m> 0, then (1.35) expresses exponential
clustering of that two-point function. By Theorem 1.2 this implies confinement
of static quarks by a linearly rising potential.

We have now completed the proof of our contention that pure Yang-Mills
theory in v-dimensions is equivalent to an integral of a product of (v — 1)-dimen-
sional, non-linear o-models in external gauge fields, and we have related clustering
in those o-models to confinement in the Yang-Mills theory.

In the remainder of this paper we are primarly concerned with discussing
the cluster properties of (v — 1)-dimensional, non-linear s-models in an arbitrary
external gauge field. Another mechanism for confinement of static quarks (cancel-
lation of “random phases”) is discussed in Sect. 6.
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1.4. Summary of Contents of Remaining Sections

In Sect. 2 we discuss general conditions for the clustering of the two-point function
of a non-linear o-model in an external gauge field, i.e. we study the estimate

[<UNGo)n UGy e (b )] S €770, (1.38)
see (1.35). A necessary condition for V%(j) — oo, as |j| — o, uniformly in (b, 1), is
CUNG) 25— (b, 1) =0, (1.39)

for all m, n, all external gauge fields (b, t).
The following result is established in Sect. 2.

Theorem 1.3. Suppose that the character y used in the definition (1.19), (1.20) of
the action AS_ | is the character of a faithful representation of G.

T hen equation (1.39), for arbitrary (b, t) is equivalent to UY being a representation
of G that is non-trivial on the center & of the group G. O

In Yang-Mills theory, the interpretation of this result is that confining repre-
sentations should be non-trivial on Z. This is in accordance with a high tempera-
ture (strong coupling) result of [2] and with general wisdom. We note that in
zero external gauge field, i.e. for (b, )= (1,1),

UG, 25— (1, =0, (1.40)

for every representation U? of G not containing the trivial one. (This is seen by
substituting g9, ! for g, for all j I, which leaves dg;, j # |, invariant).

For non-trivial (b, t), (1.40) is in general false. Using (1.39) we then recall
standard implications of a high-temperature expansion for clustering, as expressed
by (1.38).

We conclude Sect. 2 with some comments on the structure of 0-vacua in
general, two-dimensional lattice Higgs theories. We show that the -vacua of
these theories are labelled by the elements of the center 2 of the gauge group G.
(In three dimensions, in the Higgs phase, the characters of 2 generally label
topological charge-vortex-super-selection sectors of the theory; see also
[18, 14,19]).

In Sect. 3 we present results specifically concerning the cluster properties
of two-dimensional, non-linear o-models. Our method is based on a slight genera-
lization of the McBryan—Spencer upper bound [20] (for the two-point function of
the rotator model) and correlation inequalities of the Ginibre type [21, 22].

Our conclusion is that three-dimensional Yang-Mills theories with gauge
group given by an arbitrary Lie group can be expected to have at least logarithmic
confinement of static quarks. This is proven for G = U(n),n= 1,2, 3, ..., recovering
a result of [23]; see also [19]. If G is a non-abelian Lie group (e.g. G =SU(2))
we expect linear confinement of static quarks, since renormalization group
arguments suggest that the two-point function of the two-dimensional, non-linear
g-model in zero external gauge field clusters exponentially, for arbitrary ff < co.

One might expect that turning on an external gauge field generally enhances
clustering of truncated correlations, so that, by (1.39), (1.38) ought to hold with
V4(j) = O(|j]). Unfortunately, this is in general false. For this reason a complete
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proof of permanent confinement of static quarks by a linear potential in all three-
dimensional, pure Yang-Mills theories with a non-abelian, (simple) gauge Lie
group will be more subtle than anticipated—if true at all. We also give an argu-
ment suggesting that four-dimensional lattice Yang-Mills theories—even
non-abelian ones—may generally have a phase transition, as =g~ ? is varied.

In Sects. 4 and 6 we derive an expansion of the expectation of a product of
Wilson loops in terms of expectations of two-dimensional random surfaces
bounded by the loops, for v-dimensional pure Yang-Mills theories with G = U(n)
or O(n),n=1,2,3,... or G =SU(2). Our method is based on expanding U? — N-
point functions of (v — 1)-dimensional o-models in an external gauge field in
terms of random walks, [24]. Our expansion relates confinement of static quarks
by a linear potential to an exponentially small, statistical weight of random
surfaces. We then briefly comment on relations of Yang—Mills theory to dual
strings: It can be shown that Yang-Mills theory “converges” to a dual string,
as — 0. Hence the low-lying mass spectrum of strongly coupled Yang-Mills
theory (f < 1) is expected to resemble the dual string spectrum; (approximate
Regge trajectories). We expect that the same is true in the large-n-limit of U(n)—or
O(n)—theories for f = B, B,. {B,} suitably chosen and normalized so that f, = 1,
0 < B, arbitrary. (We hope to report more details elsewhere).

The end of Sect. 4 concerns an application of the Brascamp—Lieb inequalities
[17, 30] to proving lower bounds of fuiia for U(n)- and O(n)-theories. The result
1S Beivar (n) = B, for some B, independent of n (which is somewhat disappointing).

In Sect. 5 we specialize the scheme of Sect. 4 (expansion in random surfaces)
to the case of an SU(2) Yang-Mills theory and use it to prove linear confinement
of static quarks for all § < const./v —2. In Sect. 6 we distill out of the scheme
of Sects. 4 and 5 two basic mechanisms that might lead to permanent confinement
of static quarks in Yang-Mills theories; (cluster properties of associated o-models,
resp. cancellation of random phases). The two mechanisms are discussed in some
detail, partly rigorously, partly heuristically. In certain respects, Sect. 6 may
be the most interesting part of the whole paper. See in particular identity (6.6).

In Sect. 7, we consider (v — 1)-dimensional, Gaussian (i.e. linear) o-models
in an external gauge field. They are used to describe a hypothetical phase of
v-dimensional Yang—Mills theory which is qualitatively correctly described by
perturbation theory. Thus, they ought to provide a correct description of the
short distance properties of Yang—Mills theory. The main purposes of that analysis
is to gain some insight into how to construct Wilson loop observables in the
continuum limit and how to define a scheme for implicit renormalization.

2. Necessary Condition for Clustering of Two-Point Functions
in Non-linear 6-Models; #-Vacua in Two-Dimensional Yang-Mills Theories

2.1. Proof of Theorem 1.3.

In this section we argue that confining (or “quark”™) representations, U?, of the
gauge group G are those representations for which

UG, >l (b, 1) =0, 2.1
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for all [, m,n and all external gauge fields (b, t). Representations violating (2.1)
are called particle representations. Theorem 1.3 says that, in the strong coupling
regime (f < 1), these notions coincide with the ones in [2] where a high tempera-
ture expansion for the v-dimensional Yang—Mills theory is used to distinguish
between confining and particle representations; see also [25].

Condition (2.1) is necessary for the clustering of the U%two-point function
of the v-dimensional, non-linear o-model in an arbitrary external gauge field
which, in turn, is a sufficient condition for confinement of static quarks trans-
forming according to U, (in the sense of Wilson’s criterion [16] or its improved
version [14]).

We recall that the action of a (v — 1)-dimensional G x G non-linear g-model
in an external gauge field is given by

T_b,ty=— ) Rexlg; 'bgt;"), 2.2)

ije A
and the equilibrium expectation, < — >{_, y(b,t), by the probability measure
dp, o(9)= Zy(b, )" ' Blg, Je 4710 [ 1dg,, 2.3)
jeA
where B is a boundary condition only depending on {g jedA}.
First we give a sufficient condition for (2.1). Let <, be a minimal sub-

group # {1} contained in or equal to the center 2 of the group G with the
property that

U1Z, does not contain the trivial representation of &, . (2.4)
We assume that the boundary condition B is invariant under Z , i.e

B(g:0) = B((gT),,). (2.5)
where (g~r)j =g, 7, for all j, and 7 is some element of Z,
Theorem 2.1. If one assumes (2.4) and (2.5) then

< Uq(gl)mn >(:— l,B(b’ )=0
for arbitrary (b, t).
Proof. A basic role in the proof is played by the simple identity

[dgF(g)=[dg [ dtF(g), (2.6)

G G 2z,

where FeL'(G,dg); (a consequence of the right invariance of dg and Fubini’s
theorem). By (2.3)

UGt -1 g 0) = Z3(b,t)" " [dg,U4g)),. T1 dg;
i#l

. n ePRexlg= ‘bnyyl:?y‘)B(gaA)

xyc A

= Zd b t)_ jdgl f dTUq(gl T)mnj Hdgj H eﬂRe 29 5 P hxygytyt)

M JjFl xycA
x#l#y
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.neliRe x4z ‘bzzgz.rt;r‘>3(ga/1)

- Z" (b,t)” jdgz J" drU%y mnf Hdgj n ePRe l(gflbxygylfyl)B(geA)’
G Zq j#l xyc A
where g =g 17", for x#1,§,=g,. Here we have used (2.6) and the fact that
7 commutes with all bxy and Lyy- Since dg_ =dg,, for all x, by right invariance,

B(g,,) = B(g, ), by the assumed  -invariance of Band g, = g,, we have

(UG 27— 1 5bs )= Zi(b,0)" " [dg, [ dUg, ), 1(g,:b,1),

G Zq
with

Ig;;b,0)=1(G,:b,t0)= [ [[dg; [] PRer<"vitsDB(g, ).

JjFl xycA

Next, U4(g,7),,, = U%g,),.. x*(z), by the irreducibility of U%. Thus
< Uq(gl)mn >:7,, 1,B(b’ t) Z;(b t jdgl U‘l gl)mn gl ’b t 5 dT Xq(f)

G Zq
By condition (2.4),
j dtyi(t)=0. O
'yfl

We now prove the converse of Theorem 2.1.
Let

oA =exp{— D Rexlg; 'byg;t;")}. (2.7)
ijedo

Theorem 2.2. Suppose that the character y used in the definition of A _ | is faithful
and that, for some thermodynamic limit, { — )7 _ (b, t) of the expectations given by
(2.3) and arbitrary (b, t),

CUAG) 27— 1 (b, 1) =0, (2.8)

and
(ot g7 (b )0, (29)

for arbitrary bounded regions Ay < 2*~'. Then U? does not contain the trivial re-
presentation of the center & of G. (If U? is irreducible this is equivalent to

Uity + {1}).

Remark. We note that (2.9) is trivially satisfied if the boundary condition B(g,,) is
non-negative and %0, for all A c Z¥~ 1,

Proof. By (2.8)
fT1ab, (At UG, >0 (bb',tt") F(b, 1) =0, (2.10)

for arbitrary, bounded F and arbitrary (', t'). This equation is basic for our proof.
We choose some bounded region A, = Z*~ ' containing the site [, and I¢04,,.
By taking a conditional expectation with respect to the field configuration inside
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A,, i.e. by applying the DLR equations [26], we obtain
< Uq(gl)mn >0'7 1 (b t Aol j l—[ dgx Uq(gl mn ].—[ eﬂ Rextos Thrgst )B(gr/lg )

xedAg xyc Ao
where B only depends on those b,, and t  for which xy is outside 4, or on 04,
and Z, is a normalization factor. Since

| Z,,| = exp[Bva®| 4|1 B, < o0,

(2.8) implies
(11 dg.U%g)),, [T & "B(g,, :b.1)=0 (2.11)
xedo xycdo

Using the argument leading to (2.10) we see that we may integrate the Ls. of (2.11)
over all those gauge fields b, with the property that xedA,,yeA,, with
A, = A,\04,, and obtain

1LA)=] ] ab,, | I1dg,U%g),, [1 eReros't=aB(g., :b,t)=0
xedAg xedo xycdo
yedy

By the left and right invariance of db

xy?
jdbxyeﬁke 29 Thxygytit) fdbx,,ep Re 7(bxy) — const. > L.

Thus
0=1(,4,)=Cb.0f |1 dg, Ugy),, [ eteroxoontsh,
xedy xy<Ay
with | C(b, 1) =<2, > _ , (b, t)| which s strictly positive, by hypothesis (2.9).
Thus
EAL A b= [ ] dg, U, [] efRerosbxoish =, (2.12)
xed xycdy

for arbitrary (b, t). The end of the proof is based on

Lemma 2.3. If E/(I, A, :b, 1) = O, for arbitrary (b, t) and some > 0 then E”(I, A, ;
b,t)=0, for all f/'z0 and arbitrary (b, t).

Proof of Lemma 2.3. We claim that, for f > 0 and an arbitrary 6 > 0, there exists a
function F,eL'(G, dg) such that

| e Rex@ — {ghefRerb D ()|, <4, (2.13)
for arbitrary ' = 0. When f =0 this is clear: 6 =0, F; = const. suffice. Thus we
may suppose that ' > 0. We consider the Peter— Weyl expansion

of Rex(9) — Z e B(9); (2.14)

acA
here A is a list of the irreducible representations of G. We may choose A to be
contained in Z. For arbitrary ' > 0, the coefficients ¢ (f’) are rapidly decreasing in
Ia}. Moreover, by using the power series expansion of the exponential, it is easy to
see that ¢ (') 20forallaand f’ 20,andif f > Oand ' > O then

¢, () > 0if and only if ¢ () > 0.
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Choosing
Fib)= Y ((B)/ce,(B)r1,b),
acAd
lal Sas <

with ¢ (f)/c,(f) =0 in case ¢ (f')=c,(B)=0, we obtain (2.13), provided «; is
sufficiently large. From (2.12) and (2.13) we conclude that

EP(L A shooy= [EAU A b)) T Fybl)db, +ell, A, b, 1),

xycdy

where
le(l, A, b.0)] <vd| A, ].
Since EX(I, A, ;b(p')"*, ) =0, for all b, b’ and ¢, the lemma follows by letting J \ 0.
O

Since E* (I, A, ;b, 1) =0, for all B >0,

1
FP(L, A, ;b= (f [] dg. [] & Reros bx}gytxy)> Eﬁ'(l,/ll;b,t)z()

xycd xycdg
(2.15)
for arbitrary (b, t)and ' =0
We now choose
A ={l+nAe‘+n.e.:n,=0,l,n,:O,...,N}, (2.16)

where ¢; and ¢; are two orthogonal unit lattice vectors. We set [ =1+ ¢, + ne;,
I, =1+ ne;, and choose

=1 :’[l’

Il

1

by, =1t,="1

=t

Il + 1

(2.17)

where h is an arbitrary element of G,n =0,..., N — 1. When f’ tends to + < the
measure

Inln + 1 Inlns1 — "2

N-1
(Z[/f]’)‘ Loh' Re 19 g1y) [T e & 1G5 910 +Re x(97, gty 1 ) +Re 2(a0, hng,, i )
n=0

N
-[1 dg, dg,, .

n=0

where Z¥ is the obvious normalization factor, is a probability measure concentra-
ted on the region 2, = G**V* 1 specified by

W9y '9) =19y, 90) =g, 9,) = - =gy, g1,) = x(D) (2.18)
and

gy thg, b=y, foralln=0,...,N—1 (2.19)
Since y(g) = x(1) implies g = 1, by hypothesis on y, we conclude that

9=9,=9, =9, = =9, = 9p>
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and this and (2.19) yield

h,g,=gh,, foralln=0,..,N—1 (2.20)
We conclude that, for g, to belong to Q. for arbitrary h,....h,_, and N < = it
is necessary that

hg, = g,h, for all heG,
iLe. g €. Thus, as f' > + ., N — o, and for a suitable choice of h,....h,_,

mn’

Fl'(lL A bt) = [dtU%)
z
with A, and (b, 1) as specified in (2.16), (2.17). Since F*(I, A, ;b,1)=0, for all
B, A, and (b, 1)

j dtU%x),, =0,
Z

or, equivalently,

U?tZ does not contain the trivial representation of % . U
Theorem 2.2 shows that if U? is trivial on the center 2 of G then it is in general
impossible that

<Uq(g0)ij Uq(gx_l)kz>(b, t)— 0, as |x‘ — 0,
for arbitrary (b, t), because, for a suitable choice of (b, 1)
I< Ugy);; 2 (b, | |<U%g,), > (b, t)] =const.>0

for all x = &e, & large enough.

Thus, because of (1.35) and Theorem 1.2, particles transforming under a re-
presentation of the gauge group that is trivial on the center cannot be expected to be
permanently confined.? Motivated by this observation we henceforth constrain
our attention to the study of cluster properties of

CU(go); UMg, D> (b, 1), (2.21)

when | x| — <o, with U? a representation of the gauge group that does not contain
the trivial representation of the center.

The last issue of Sect. 2 is a brief discussion of 0-vacua in two-dimensional
non-abelian Higgs theories with Higgs scalars in a representation that is trivial on
the center % of the gauge group. By this we want to illustrate the importance
of complex boundary conditions. We show that such a theory has in general as
many physically distinct vacua (6-vacua) as there are elements in the center &,
and that quarks are in general only confined in the standard 6 = 0 vacuum. This is
in analogy to what was previously found for abelian theories [14]; see also [19].
For pedagogical reasons we start with a short discussion of the pure Z (n) models.
The action of these models is

AO)) =~ Y cos(0,), (2.21)

pcAcZ2

2 However, the “colour” of such particles is screened by the “‘colour’ of the gauge field. See e.g. [25].
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where 0, =0, +0_+0_,+0,, ifdp= {xy, yz, zu, ux}, and

0 :ﬂZn

xy n >

m=0,....,n—1,

for all xy = 4.

The vacuum expectation is given by a (generally complex-valued) measure
du, defined by

du(0(A)) = Z ;' BO@A)e "N a0, (2.22)

with d0 the normalized counting measure on {0,...,n — 1}, (= Haar measure on
7 (n)). As boundary condition, B, we choose

B((@A)) = B, (0(04))= [] ™, (2.23)
xy<dA
k=0,...,n—1.
Since the gauge field is abelian,
B (0(0A) =[] *,,. (2.24)
pca

(This is the lattice version of Stokes’ theorem).

The vacuum expectation defined by the measure (2.22) with B= B, is denoted
{=>4(B, k). In two dimensions and for B= B, the “plaquette angles” 6, with
distribution (2.22) are independent random variables. Therefore the existence of the
thermodynamic limit

(=B k)= lim {—>,(B. k)
4172
is trivial and so are the facts that { — > (f, k) is invariant under the symmetries of
Z* and satisfies reflection positivity, for all k;ie. { — > (8, k) is indeed a vacuum
expectation.

We now show that, for k#£k',{—)>(8,k) and {— >(B,k’) are physically
different. (The standard vacuum corresponds to k = 0).

Let
n—1
Z ei(k‘ Iy (m/n) 27 eﬁ cos ((m/n)2m)
=0
rkyl(ﬁ) = ':7 1 (225)
Z eik (m/n)2n e,B cos ((m/n) 2m)
m=0

Let C,,...,Cy be closed loops and A4,,..., A, the subsets of Z* bounded by
C.s.... Cy.
Suppose for simplicity, that

AnA; =, fori#j. (2.26)
Let

qj — —iqjbxy __ —iq,00)
Wi(C)= [] e W= [] e

xyeC; pcd;
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Then

N
< ﬂ W(C,)) (B, k) = [] (2.27)
Jj=1 Jj=
This is easily generalized to the case where (2.26) is violated.
B <1forall pandallg;=1,...n~1.

Thus, in the standard k = 0 vacuum, static quarks transforming under a non-
trivial, irreducible representation of Z(n) are permanently confined by a linear
potential, and inequality (1.29) holds. However, when |k —g| <k, |r, (B)|> 1.
Therefore in a k # 0 vacuum quarks of “n-ality” g, with |k — q| <k, repell each
other with a linear potential, namely equation (2.25) exhibits “anti-confinement”
(liberation) of static quarks of n-ality g, in the most dramatic sense of these words.
Put differently, the system in the vacuum state { — >(f, k), k # 0, is unstable
against coupling to quarks of n-ality ¢, with k — g < k : the state { — >(f, k) decays
into { — >(B, k — q) ; the “charges” at infinity are screened.

We now argue that a two-dimensional Higgs theory with gauge group G = SU(n),
for example, and Higgs scalars in a representation that is trivial on the center
Z(n) of SU(n) also has n= |Z(n)| physically different vacuum expectations,

{—=>(B, k), k=0,...,n— 1. These expectations are given by the thermodynamic
limit of the complex measures

du(g(A)) = Z ' B,(g(0 1)) ZM(g(A)) e~ "> @ D py( 1), (2.28)
where
Bg@M)= [] U4y, (2.29)

and U* is a representation of SU(n) of n-ality k,ie. UXe")= ™, for eeZ(n).
Here, ZM(g(A))is a gauge-invariant (non-negative) functional arising by integrating
out the Higgs scalars with the property

Z(g(A)) = Z(g-1)(A)), (2.30)

for arbitrary 1 €Z(n), xy = 4,(2.30) expresses the fact that the Higgs scalars
transform trlvxally under Z(n), [14 23].

For k = 0, this theory permanently confines static quarks by a linear potential
[27,23].

If the a priori distribution of the Higgs scalars has zero weight at zero field
strength the Higgs theory defined in (2.28)-(2.30) converges to the pure Z(n)
lattice gauge theory (2.22), (2.23), as the strength of the coupling of the Higgs
scalars to the gauge field tends to oo, for all f < co and all A. (The proofis standard;
convergence is uniform in A when k =0). In this limit all boundary conditions
B,, B,, ... of the same n-ality k are equivalent. That is likely to be true in general,
in the thermodynamic limit A = Z2, due to screening.

Thus if the coupling of the Higgs scalars to the gauge field is sufficiently strong,
the vacuum expectations { — > (f, k) of the two-dimensional SU(n) Higgs theory
are physically different for different values of k, and we expect the same phenomena
(anti-confinement and instability of { — > (f, k) under coupling to quarks of n-ality
g with |k — q| < k) as in the pure Z, model.
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We do not wish to go into details of these arguments, as they are hardly very
interesting. (For the modified models of [19] and the abelian models [4, 14]
most assertions can be made precise using duality transformations. Notice that
there is no need for integrating out the Higgs scalars which we did only to econo-

k
mise on notations. We also recall that, for 277:; =, { — >(f, k) may be doubly de-

generate, for suitable coupling constants, and charged super selection sectors
may appear [33]).

It is clear how to extend our analysis to arbitrary gauge groups with non-trivial
center. In general, one will find as many physically distinct vacua as there are
elements in the center, but only the standard vacuum { — > (f3, 0) will permanently
confine arbitrary, static quarks transforming non-trivially under the center. The
measures with expectation < — >(f, k), k + 0, are complex-valued, and they differ
from the standard k =0 measure only by a boundary condition. The explicit,
physical interpretation of those boundary conditions in terms of static (colour)
charges at spatial + oo isasin[33].[In three dimensions, the irreducible characters
of the center of G generally label vortex sectors, in four dimensions monopole
sectors; see [18,19]. The mass gaps on these sectors are given by analogues of
surface tensions, as in the case of the soliton sectors of two-dimensional field
theories with degenerate vacua .

3. Cluster Properties of Non-linear o-Models

Let G be a compact Lie group, and let the action of the nonlinear G x G-g-model
in an external G x G-field (b, t) and enclosed in the region A = Z* be given by
A:(g; b, t) == Z Re X(g,’_ lbijgj[i; 1),
ijeA
where y is a faithful character on G. The expectation in this model at inverse
temperature f§ will be denoted by {->¢ .(f, b, t) (suppressing A in the notation).

It has been proved in [23] that if y? is a character on G which is non-trivial on
the center Z(G), then

[<UUGy); UG s a6, (B b, )] < KUy UL )Y g, (@B 1, 1), (3.1)

where d is the dimension of the irreducible representation U corresponding to
%> and U(1);; = U(7)9,; for 1€ Z(G), and 1 <1i,j <d,. Combining this result with
(1.24), it follows that if the Z(G) x Z(G)-o-model in v — 1 dimensions clusters for
some coupling constant f, then the v-dimensional Yang-Mills theory with gauge
group G and coupling constant f/d confines static quarks.

Thus, we recover here a result of Mack’s [27] (v=2), and results in [23]
(Theorem 1 and 2).
The following result follows by standard high temperature expansions [2, 31, 32].

Theorem 3.1. Let x be the character used in the definition of the action A]_, (b, t);
see (2.2). Assume that

l—e "M <e<1
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Jor some small e >0 (depending on the Haar measure of the gauge group G and

estimated as in [2]). Then the two-point function (2.21) decays exponentially,
as|x| - .

Remarks

1. By Theorems 1.2 and 2.2, Theorem 3.1 establishes linear confinement of static
quarks in an irreducible representation U? of the gauge group G that is non-
trivial on the center & of G.
2. Below we apply the Brascamp-Lieb method [17, 30] to prove that for G = U(n)
or O(n), y the character of the fundamental representation of G, the two-point
function (2.21) clusters (possibly not exponentially) if f < 8, where f3,, is a positive
constant independent of n. In comparison, Theorem 3.1 establishes exponential
clustering of the two-point function of the U(n)- or O(n)-g-models for f < O(1/n).
Recall that in [30] it is proven that the critical inverse temperature,  (N), of the
N-vector models (= O(N) non-linear g-models on the lattice Z”, v = 3) obeys

B.(N) = N/2v. (3.2)

The proof follows from a method due to Brascamp and Lieb [17], which boils
down to the following estimates:

Let oeRY, Se SV, and define the real function ¥ on RY by

D= [ ”5dQ(S)

SN-1
where d€ is the normalized, uniform measure on S¥ ~'. Let M, (¢) denote the norm
0%V
of the matrix with matrix elements W((p), Then, by [17],
iv%

sup M, (¢) = const. f (N)~* (3.3)

It is shown in [30] that
1
sup M, @)=+

from which (3.2) follows; (the constant in (3.3) is also estimated in [17]).

The Brascamp-Lieb method can also be applied to general G x G-g-models
(in external gauge fields), in particular to the O(n) x O(n)- or U(n) x U(n)- models.
As the reader may easily check, a sufficient condition for § < f (O(n) x O(n)) is the
following:

Let V be the function on R” (identified with .#(n)) defined by
eV — j eTr(g*aJ)dg ,
0O(n)
where dg is the normalized Haar measure on O(n), and let M, (¢) be the norm of the

) 5 L . o2V
n* x n*-matrix with matrix elements

(¢). Then

9P

sup M, (¢) = const. f(O(n) x O(n)) ™ (34)
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Le. for < const. (sup M, (¢))~ !, the O(n) x O(n)-o-model (in an arbitrary external
@

gauge field) has a clustering twopoint function, and hence the corresponding Yang-
Mills theory in one dimension more with gauge group O(rn) confines static quarks.

Unfortunately, it turns out that the lefthand side of (3.4) does not increase with
n, so we can only conclude that

pB.(0(n) x O(n)) = const., for all n.

A similar argument applies for G = U(n). Thus the Brasscamp-Lieb method seems
to be insufficient to determine the large-n-asymptotics of (G x G), for G = O(n)
or U(n).

It has been remarked in [23] that (3.1) implies that the McBryan—Spencer
bound [20] can be applied to U(n) x U(n)-o-models, or to any G x G-o-models in
two dimensions such that Z(G) contains a copy of U(1); even in an external
G x G-gauge field. For groups whose center does not contain U(1) the situation
is more involved. However, we can prove the following

Theorem 3.2. Suppose that G contains a U(1) subgroup, and that the character y?
is non-trivial on this subgroup. For free or periodic boundary conditions, the infinite
volume two-point functions of the two-dimensional model.

< Uq(go)ij Uq(g;l)kl >z;,2(ﬁa b31])> (35)
cluster for all > 0 and all b.

Proof. Let us choose representations U? (of dimension d q) and U (of dimension d),
corresponding to y? and y respectively, such that they map the elements of U(1) = G
into diagonal matrices; this can obviously be done, and we conclude that there
exist integers k%, ... ,kgq and k,, ..., k, such that

Uq(h(e))u = 5ij eik‘}e’ =i, j= dqa
and
U(h(e))u = 5,’jeikj07 1 SLjs d,

for all 6€[0, 2n[, where h(f), 0€[0, 2xn[, labels the elements of U(1) = G.
By using the right-invariance of the Haar measure on G, Fubini’s theorem and
the cyclicity of y, we have that

CUNgy),; Ug ;)6 (B b 1)
=Z°(B,b,1)" lqu(gO)ij Uq(g):l)ﬁeﬂ EA Re z(g7 'bijg)) ﬂdgi-
ied
= Z2(Bb. 1) [ [Tah, [ TTdg,Utlgohol, Uthy g, 1)l 3, Rt ar o

ji ijea
U(l) ied G ied

= Z1B:b. )7 [ T1dg, [ [1dhU%go);Ug: ") U hoh, ),
G ied U(1) ied
'eﬁ 2 Z Re Uthjhi nnU(gi 'bijg j)nn
=Z; -t l k300 0x
=Z}(B.b, )71 [ [1dg,U%g,),; U, ﬂj H k9(00— )

G ied 0 ied
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~eﬂ > Z Ree™ (8= 05) U( zjgj)nn (36)

jcA n=1

where Z7(f, b, 1) is a normalisation factor.

At this point we can adopt the method of [23] and apply the correlation
inequalities of [22] to conclude that

[<U%go)y UtMg M08 (B b, D) l_Za(i,zf H )
0 ied
ef X X costkn(®i=6;)) (3.7)

ijcAn=1

since | U(g),;| =1 for all i, j and all g€ G.
Now since x* is non trivial on U(1), there exists a j, such that kI # 0, and it is
clear that the Mc Bryan-Spencer argument can be applied.

It follows that for any > 0 there exists a C(f) > 0, such that in the infinite
volume limit

[<U@o)ij, Ulg: ") 0%, (B. b, 1)| < const.| x| P (3.8)

To conclude the proof we show that (3.8) implies bounds of the same kind on all
the other two-point functions; (in fact some of them are zero).
First, in a finite region A we have

CU%Ng,y);;UNgy 06 o (By b, 1)
= Z7(,b, 1) [ U, ), Ug e | Z, Rerom v [Tdg,
jea
_ Z‘zlr(ﬁ’ b, 1)- Ij Uq(gog)ij Uq(g— 1 gx— l)kleﬁ ‘,-;A Re z(g7 'bijg;) Hdgj

jeA

dg
2. U%Gy),,, Utlg, e (B, b, Y UUg),, U™ "), (3.9)
mun=1
as a consequence of the right-invariance of the Haar measure and the cyclicity of
#- Next, using the orthonormality of the functions g — d;/? U%g),,;, | <m,j <d,,
in L*(G, dg), we get by integrating (3.6) with respect to g that

d,
CUGo) U, 25 1 (B b 1) =~ Z CUGo)in UG D26, (B 1) (3.10)
q m=
Thus (U%g,),; Ulg ! )i 26 (B, b, 1) is independent of j. From this it follows that
(3.8) is fulfllled for all j;sandall i's.
Finally using the left invariance of the Haar measure, and performing the
transformation g, — gg,, g; = g, for i # 0, we get that

dq -
CUNg,); U9, D06 (B b, )= ) UNg),, UG, Uay )i 05 (B b T)

(3.11)

where b, = b,; for i 0 and j # 0, and by, = g~ 'b,; (or b, = b, g). Now since U*
is irreducible, we can find gi-+9a, eG such that the vectors (U%g,);,»---»
U‘l(g,.)mq)eC“Q,r: 1,....d ;o are hnearly independent. Since we know that the
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left hand side of (3.11) fulfills (3.5) when v = 2, for all b, we can conclude that
CUUG,),,;UNgy )i 26 (B, b, 1) also obeys a bound of the form (3.5) for all m, |
and i. This together with (3.8) ends the proof. O

Theorem 3.2 shows that in the G x G-g-model in an external gauge field of the
form (b, 1), where the group G and character y? have the required properties,
there is no long-range order in two dimensions. The same is wellknown for the
N-vector models. In dimensions larger than 2 we have the following

Theorem 3.3. In v =3 dimensions the G x G-a-model with (b, t) = (1,1) has always
a phase transition with the property that for B large enough

(U(go);; Ulg: ;i 2¢ (B, 1,1) = const. >0
uniformly in x, where U has character y, the same as used in the definition of the action.

Proof. Representing U(g) as a vector in a d*-dimensional vectorspace (see Sect. 4),
the proof is essentially identical to the one given for the N-vector models in [287].C]

The proof of Theorem 3.2 does not work for general external gauge fields (b, ¢)
if G 1s non-abelian. One way of surmounting this difficulty would be to prove that

[<x909: )26 B b, D] = {Hge9, )G (B 1)

for all (b, t). This inequality is true if G is abelian in virtue of the inequaliy (3.1).

In Sect. 7 we argue that this is hardly the case for nonabelian G (e.g. G = O(3)),
and we show that, in a Gaussian weak coupling limit of the G x G-g-model,
clustering is definitely diminished for certain choices of (b, t). Thus, we have
reasons to believe, that apart from abelian, also certain non-abelian lattice Yang-
Mills theories in four dimensions may have a phase transition at some f, < .
Whether quarks are still confined for > f_is then a matter of whether there are
strong cancellations of certain “random phases” of the long range order in two-
point functions of three dimensional o-models. See Sect. 6.

4. Expansion of the Expectation of Wilson Loop Observables in Terms of Random
Surfaces for G = O(n) or U(n)

This section is organized as follows: First we use our basic idea, described in Sect. 1,
to write the expectation of a product of Wilson loop observables as the integral of a
product of 2k-point functions of non-linear -models. Then we use an expansion of
these 2k-point functions in terms of random horizontal paths joining the 2k points
pairwise. Such an expansion can be found in [24] for random Gaussian models,
and, more generally, for models whose measure is given by an integral of exponen-
tials of (not necessarily real) quadratic forms in the fields, in [29]. We use this for
the Haar measures on O(n) and U(n). Now it is clear that when we form the product
over all those 2k-point functions, each class of such paths determines a surface
bounded by the loops, since the paths join points on the vertical sides of the loops
pairwise. These surfaces get more complicated as the number of loops gets larger,
and also as the loops become more general than rectangular ones. But in principle
we can write down explicitly the weights of the surfaces for the two groups O(n)and
U(n).
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Our representation resembles the representation of Green’s functions of the
dual string in terms of (expectations over) random surfaces. Indeed, when f is very
small, the expectations of products of Wilson loops satisfy the Schwinger-Dyson
equations for the free dual string Euclidian Green’s functions of the same loops, up
to terms of order f. This suggests that, in the strong coupling regime (f < 1), the
low lying mass spectrum of Yang-Mills theory resembles the mass spectrum
(without the tachyon) of a free dual string. (In particular, we expect that it forms
approximate Regge trajectories). We believe that the same conclusion ought to
hold in the large n limit of U (n)- or O(n) theories. (Our ideas are vaguely related to
recent proposals of Polyakov [34]).

4.1 The Expansion

Let us first consider G = O(n). We will derive an expansion of the two-point
functions for the nonlinear o-models in an external G x G-gauge field by the

method used in [24] and [29].
We will use the identifications of the vector-space .# (n) of n x n-matrices over
R with R” or R"® R" given by
AM()39=(9,p)s =1 G1159120 291 Ga1o G- > G JER™
and
RIQR3XQ@Y =(X,,.... X )®(Y,...Y,) > (X, Y,), ,_ €M (n).
It is then seen that for a, be.# (n) the linear operator on .# (n) given by
g — agb
corresponds to a ® b' on R"® R", where b' is the transpose of b. In particular a ® b’

is orthogonal if ¢ and b are.
Since furthermore,

tr (glh) = zgaﬂbaﬂ = <g’ h> for 9 heﬂ(")
B

where (-,-) is the natural inner product on R"™, we get for g =/(g,). 40
b=(b;;);;. 100 t = (t;));; 10» A° an arbitrary bounded subset of 2~ ', that
Y trlgibygitiy= ) <g,b,;®t,9,> =g, 4,,9) + 200 — 1)(g. 9) (4.1)

ijcA0 ij = A0
where 4 bt is the covariant Laplacean on .# (n)1°! defined by

— (4, 9);= Z (g; — bij®tijgj) = Z (9, — Uijgj) 4.2)

Jjiijc A9 jiije AS
where we have set U;; =b;;®1,;, and we suppose b, = b ., ij = A (+,+)is the inner
product on @ R". Furthermore we can suppose suitable boundary conditions
i€A0

imposed, e.g. periodic or free; (see the discussion in Sect. 1).

Next we note that the Haar measure on O(n) has the representation

dg)= 11 0((g39)up — 0,) I1 d(gy),s
2 o=

lsas=fsn 70=1
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oo n
— n j‘ (27t —i(A)ap ((Gigi)ap — «hmd /,)aﬁ n d
0

1Sas<psn-— 7.0=1

A
A

n
= (@m0 femirtan s d(),, 1 d),s
7,0=1

1Sasf=n

n
— (2n)fn(n+ l”zje_i (gi, 1®4igi> +itrki H d()‘i)aﬂ l‘[ d(gi)«,-a
v,0=1

1Zasp=n

— (2n)—n(n+ 1)/’2j‘e—i<gi,Mx’gi> +i(1/n) lrMidMidgi (43)
where dM . = d(%,),, is a measure on the set of matrices M.=1® 4,
i i’laf i i

1Sasp=n
over R with 4,= (2, ), ,_,and 4, ,, =4, ;.. 1 <o, f <n, and dg, is the Lebesgue

measure on R’
Using these remarks and the fact that the last term in (4.1) is a constant
2(v — 1)n| A°| if the g}s are in O(n), we can write

<(go)ap(gx)«,a >(:_ 1 (b’ t) =

=(Z°6, )" [(9o)p(g,),52m)~ 14 I 12
r@™ 20— Lm0 5(1/2) 0. [B4n = 2iMg) +i(1m) e M g g ng

— (Zcr(b t))—lﬁ(l/Z)nIAOI —1e—2(v—1)n|A0|2n-—n(n+1)/2|A0|f(g ) (g )
> 0/ap\I x/yé
. (1/2)(9,[Ab.:‘2i*'\’1]9)+i(ﬁ/n)lerng

_( o(b t) 1“: Abt 4 le]aﬁ s 0 x)e(llz)(g [Ab,—2rM]g)+t(ﬁ/n)lerng

(4.4)
where we have set dg = [[dg, M= @ M,dM = || dM, and
i€A0 i€eA0 i€A0
Za(b’ [) =(e2(v—— 1)n (2n)n(n+ 1)/2 ﬁ(n/Z))|A0|Za(b’ [)
— j"e(l/Z)(g,[AbJ—2iM]9)+i(/3/n) !erng_

Expandmg (—4,,42iM)"" in a Neumann series and using the definition of
b (4.2) (see also [24] we have that

(—4,,+2iM);,L0,x)= Y (20— 1)+2iM,) 1‘[
w,U;O i=1
wf=x

Ui vy 20 = 1)+ 2iM ) 4.5)

where the sum is over all paths w: {1, ...,|w|} - A° for which w(0)= w, =0 and
o(|w|) = w,=x,and o(i) and w(i + 1) are nearest neighbors for all i=0

LRRRE]

|o| — 1. |w] is the length of the path w. Furthermore let U, o, =1 for all
paths .
Using now the representation
" 1
Z(V— 1)+21M j‘ —z(2(v—1)+2iM,»)dt
o (n—1!
© "o 1 i )
=Qv—1)" (j)d - 1)!e Lo~ M=) M; (4.6)
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we get from (4.5)
(—4, +21M)w ,5(0 X)

lo]

oc
—t; ,—it/(v—1)Mewi
=2 ( v—1)"“"“){HUw<i~1m>§dtie'e He=h } (4.7)
0 af,yd

i “O
(.')f:x

From this we get the desired expansion, namely

<(g0)a,,(gx),5>‘{ (b, 1)
- Z"(b 1)~ B Z (v — 1))—(Iw!+l)jetl/z)(g,[Ab,,—2iM]g)+i(ﬂ/n)trM_

lo]
{ n Uw(! 1)) jdt e o _m/(v‘ UM(D“)} dg dM (48)
i=0 ap,yo

If this equation is inserted into (1.34) the following expression for the expecta-
tion of the rectangular Wilson loop observable depicted in fig. 2, with y? = y = the
character of the fundamental representation of O(n), results:

CW(C) Y™
=YY H{du‘ " OGO, ¢+ 1) By T, (4.9)

mnw

nj‘{ V'-*l) |(’)u|‘IZ'-7( () h(u_+_1)) I‘B 1

j 2@ ) Aghy ghi 4 1)~ 2iM )19V ) gl Bm) tr M)

| oul
{ n le - Do jdu e Mo lui/(\'"l)M(u)wu(i)} dg”(u)dM(u)}
M+ 1 My Auluc+ 1

i=0

(4.10)
where Z denotes the sum over all sets {w, ..., 0, _, } of paths, where , is a path

w
in A, starting at the link ((0, u)(0, u + 1)) and ending at the link ((j, u), (j, u + 1))
forallu=0,...,T —1.

Each such set of paths @, ..., w,. _, determines a surface consisting of vertical
plaquettes and bounded by C, and whose intersection with A is o, for each
u=0,...,T — 1,50(4.10) gives an expression for { W(C) > as a sum over random
surfaces bounded by C. We will comment more on this in Sect. 6.

In the next section we show that the same idea works for G = SU(2), and gives
a rather large range of coupling constants for which the expectation of the Wilson
loop observable has area decay.

We close this section with some remarks.

First (4.10) can be generalized to the case of a product of Wilson loop observables.
The sum is then over a class of surfaces bounded by those loops.

Second, it is clear that for G = U(n) an analogous expansion can be obtained
by identifying U(n) with a submanifold of C’ or C* ® C", which is an intersection of
quadratic submanifolds, and using a representation of the Haar measure on U(n)
analogous to (4.3).
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And finally it seems that the integration over the matrix-variables M(u) in
(4.10) is a difficult task. The reason that we can perform calculations in the SU(2)-
theory is, that the matrices in that case reduce to real numbers.

5. The SU(2) Theory

In this section we choose G = SU(2) and y? = y, the character of the fundamental
representation of SU(2). Note that y is real.

We will make use of the homeomorphism ¢ :S* — SU(2) (S® is the 3-sphere of
radius 1) defined by

@(S% S', §%,8%) =

0, Q3 _Qly Q2
(s +iS Si+iS ) 5.0)

S'+ iS? 50 —is?
to carry out a program analogous to that outlined in Sect. 4. In this case however
we have the advantage that ¢ ~! carries the Haar measure on SU(2) to the uniform
measure on S, which considerably simplifies the calculations. This is due to the
fact that the usual five constraints used to specify a SU(2)-matrix from .# (2)
have been replaced by one single constraint, by a suitable parametrization of
SU(?2).
We first note that

S-S, =tr(@(S,) ' 9(S,)), VS,.S,e8%

Furthermore x(g; 'g,) is invariant under the transformation g, — hg,k~ ' and
g, = hg,k ™', h, keSU(2), so we have

@~ '(hgk™)=O(h, k)~ '(g). VgeSU(2), (5.2)

where O(h, k) is an orthogonal 4 x 4-matrix.

Now let 4° be a rectangular region in Z*~ ', and let b= (b;);;_ 40. t = (t;));;_ 40-
with b, =b;'eSUQ2) and 1, =1;'eSU(2) for ijc A°. Define the covariant
Laplacean 4, , on (R*)° by

- (Ab,tX)i = Z (X; —O(bijrtij)Xj) (5.3)

jrije AO

for X = (X)),_,e(R¥)"1. B
Then for g=(g,),.0€SU2)*°" and S =(S)), o=@ '(9,)),r0 We have by
(5.2)

2 otrlg thyg =X (S.0Mb,;.1,)S,>=(S,4,,5 +2v—1)|4°.

ije A0 ije A0

In this section we choose periodic boundary conditions. We note the representation
N L1 - .
2 _ —izi(1S;12—1) 33
a(|S] —1)de_£§ e A 'dJ.dS,
b ¢]

of the uniform measure on S3.
We can now proceed in complete analogy to Sect. 4, and expand the two-point
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function < SgSf >%_ (b, t)in terms of random paths. By using (4.7) and defining
Z%(b, t) = [P 4 [T 5(|S |2 — B)dS, (5.4)

jeAo

and

Z7(b, 1, ) = [ 126405 [T fdu,

b — 1!
we get

($5887(b)

. Q|,1Z(b[w lol 21
Z (2L 1 _Za—(b-T)“( n O u(z)w(1+1) [w(z)w(x+1)) O(ﬁ

w“O

wr=x (5.6)
where dS = [] d§}., di= [] d7;, and n (o) is the number of times that o hits
jeAo jeAo
the site j. We have used that ) nj(w)=|o|+ 1.
jeAo

The matrix element that enters in (5.6) is bounded in modulus by 1 so from
(5.6) we get the estimate

a a ( -1 —w—lZa(b7t7w)
’<S Sﬁ> 1(b,t)|_§_ﬁ wl“z;o 2Qv—-1)) ol _Z;(b_,—t‘)—. (5.7

Let now C be a rectangular loop inside the rectangular region A4 = Z" as
described in the last part of Sect. 1.3, and let us use the same notations. By (5.1)
the term U "(go),;xfnr LU ‘f(gx)ntnr ., appearing in (1.34) is just a sum of four terms of the
form i" S}, S?(0 <7, o, B < 3). Hence by using (5.7) and (1.34), and remembering the
remarks following (1.34), we find that

[{waC) Y|
< C"4T§|iﬂ{duv_l(g"(t))l"(g"(t), g'(t+ 1))}

t

1 —lo -1 Z (g (t)7 gh(t + 1) )}]
{ﬁ L (- 770, gt + 1)

T

u:

(w,)
(@)g

SCMPTT Y [2(v—1>>‘f?f*'“”“>

jl:l{d,uv { t))C (g(t)g (t+1)) }trlo Zcr(g()’ "(t+1)) ]

=7 14T/3 TZ Z [ (v—1)) =Y ded+1

(U -1
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STTB "M Zo(g" ), gt + 1), &@)dp, l(gh(t))}] (5.8)
where

Z=(T1{B "1 Z°(g"0) g"(t + 1))dp, , (g"(2))}

= [T1{dn, (@) f et et sns) [T (S, = Dd(S),)

ieA,

It is now easily checked that the multilinear form

(f,) = [ T[S Ao oSO T] 1 (§))d(S),die, _ , (6"0)}

JjeA,

is reflection positive with respect to reflections in pairs of planes through (or
between) the sites of A < Z°, so that we can apply chessboard estimates (cf. [4]).

This combined with a thermodynamic estimate shows that, for f <

|
20— 1y

the expectation of the Wilson loop observable has area decay.
Details of these calculations can be found in the appendix to Sect. 5.

6. Basic Mechanisms for Confinement

In this section we distil out of the scheme of Sects. 4 and 5 the basic mecha-
nisms that might lead to permanent confinement of static quarks. The gauge
group G is one of the groups SU(2), U(n), O(n),n=1,2,3,..., U(1)and O(1) = Z(2)
included. Our discussion is based on eqgs. (4.8), resp. (5.4)-(5.6) and (1.34). For
simplicity we choose G =SU(2) (or U(1)) and U?= U to be the fundamental
representation of SU(2). Egs. (4.8), resp. (5.4)-(5.6) then give

CUAG ) U9 Y5 (o)=Y 3, 1L F(b, t]w) Ofb, t| @), (6.1)
=2
with
B B Z°(b, t, )
Y, =2(v—1), F(b,t]w)— Z"(b, D (6.2)
lo| -1
and O(b, t|w) =[] Obosyons + 1) Lotsyors +1))»
s=0
where
O(g, h)= U(g)" U(h~ )" (6.3)

Ulg)" is left multiplication by U(g) on V2, U(h™")® is right multiplication by
U(h™YYon V@?, where V) ? (= U(G)) is the space of all matrices on the vector space
V,, that carries the representation U of G. Here g and h are elements in G, and U is
the representation of G with character y which for simplicity we have chosen to be
the fundamental representation of G and G = SU(2) or U(1). Our methods work in
general, but when G = O(n) or U(n), n > 2, the factors F and O on the r.s. of (6.1)
are tensors which must be contracted. See (4.8).
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Clearly, O(b, t[w) 1s a U(G) x U(G)-valued random phase.

If we now insert (6.1) into (1.34) we obtain the following representation of
{WAC) Y™  (For simplicity we choose C to be a rectangular loop in a coordinate
plane containing the vertical (x'-) axis with sides of length L = |x|,resp. T).
Then

<W‘«C>>{M:z< y <H{ et

mn S:é8=C

YM
‘BT , (6.4)
U)i = u Ll) [( ) =u )munu4 + 1 Rl + 1 } one =ttt > ¥ >

where S belongs to the class of all random surfaces bounded by the loop C(“0S =
C”)formed out of vertical plaquettes, and, given S, «? is the path of nearest neighbor
vertical links obtained by intersecting S with the slice {u < x" <u + 1}, (in other
words, S~ {@w} 10 <u < T —1}), 0} is the trace of f in the {x* = u} hyperplane,
and @F the one in the {x"=u+ 1} hyperplane. We now introduce an a priori
measure, p, on the set of all random surfaces bounded by C, by setting

T-1
pS|C)= [Ty, (6.5)
u=0
(r,=20v—1)).
Let C (S) be the horizontal loop in the {x* = u o } hyperplane obtained by compos-
ing @%_, w1th wSsoastoformaclosedloop; @® | =Cn {x" =0}, 0} =Cn{x'=

T}. If we now combine (6.2)-(6.5) we readily arrlve at the following nice identity.

= YM
(wHe)HM =Y pv(S|C)<{ ﬂ g (w—+1)" 1|a_)f)'x(gcu(s))}x(gcr(s))> (6.6)

S:8S=C

[ Notice that

Z< 1T U(rx,.w)‘i))” ( |

and use (6.3), (6.4). ]

Equation (6.6) is a rather powerful and suggestive identity which we recommend
to the reader’s attention. The previous results of this section (see also the estimates
presented in the appendix) show that in the average (with respect to b, 1).

Ulhy (u+ 1))> = e,

Ji

0<F(b,t|w)§g’(ﬁ)‘x',forG=SU(2) or U(1), (6.7)
so that, by (6.1),
[<U 90w U9 )y 05— 1 (b.1)] £ Oexp [| x| In(B)]), (6.8)

for some &(f) which is strictly less than 1, provided U is a quark representation and 3
is sufficiently small (f <0(v~ 1)) In this case it is enough to bound |x(g, (S))I by
2(M) =dim U4 forallu=0,..., T, because (6.5)-(6.8) already yield confinement of
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static quarks by a linear potential (= — In&(f)|x|). However, we know from
Theorem 3.2 that, for b=t =1, v >4 and f large enough, F(l, 1 |w) cannot satisfy
(6.7) with &(B) < 1, since (6.8) is false, namely

(tr(U%g,)  Udgs 1))>_ (1, 1) — const. > 0, 6.9)

as|x| — o, no matter whether U?is a quark- or a particle representation. We have
reasons to expect that, for a class of external gauge fields (b, t) of positive measure,

Y v N Eb, tlw) > M(b, 1) >0, (6.10)
s
as | x| — oc. (See the discussion in Sect. 7).
If we replace the traces of the random phases by x(1) we obtain the upper bound

[<WO)™] sJc(ﬂ)T“< ﬂ M(b t(u)> ;

for T'> |x| — o0, which does not prove more than perimeter decay, i.e. does not
imply confinment. Therefore, for § large and v > 4, the only mechanism that might
give rise to permanent confinement of static quarks appears to be a cancellation
of the (traces over) random phases when taking their expectations.

Such cancellations of random phases, i.e. sharp upper bounds on their expecta-
tion value in the Yang-Mills measure, are rather subtle and lie beyond our present
methods.

We emphasize however that we can obtain improved upper bounds on
T
[<W(C)>1™] by taking into account the factor [] x(g.s,) in the expectation on

the r.s. of the basic identity (6.6): We first appliy Oa chess board estimate (in the
x'-direction, with reflections in planes between lattice planes) to the r.s. of (6.6) and
then refined “thermodynamic” estimates to bound the expression resulting from
the chessboard estimate. The general ideas of this method are as in [4, 24, 29] and
Sect. 5. The results that emerge are substantially better than the ones of Sect. 5.

We now summarize those results. Detailed statements and (the somewhat
lengthy) proofs will appear elsewhere.

By (6.6),
[<WHC)H M|
T-1 YM
= ) p(80) < [T Flg"w), g"(u + 1)), H gcl(s>> : (6.11)
S:68=C u=0 v

From the chessboard estimate (in the x’-direction, with reflections at x* = const.
hyperplanes between lattice planes) and slightly subtle upper bounds on
F(g,(g') ' |w), viewed as integral kernel of a quadratic form, it follows that

YM

T-1 T
< [T Flg"w). g"u+ 1)~ ") T] X(gcu<8>)>
u=0 v

u=0

T-1

= [] ato
u=0

T
I:[ L(5)), (6.12)
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where
L= DT
a(w) = ah m ) (6.13)
and
N YMJ1/2(N+1)
HC) = lim [< [5G iom) 1Gems 1)) > ] (6.14)
Noo m=0 v.N

where C' = C'(0) is a closed loop in the lattice hyperplane at x" =0, and C'(n)
is the translate of C’ in the x’-direction to the plane at x” = n; { — > is the Yang—
Mills expectation with periodic boundary conditions at x* =0, 2N +2.

In order to get explicit estimates on u(C’) one can apply the Z(2) domination
inequality of refs. [23, 19]. For large § one then applies a duality (Fourier) trans-
formation to the resulting expectation in the Z(2) theory. This reduces the problem
to estimating an expectation in a high temperature Z(2) model which one achieves
by a high temperature expansion; see [40]. As a result one finds

H(C) S e KB K(B)>0, (6.15)

(| C’| = length of C), first for large § < o and consequently for arbitrary f, by the
Griffiths inequality.

More detailed results and proofs of (6.11)-(6.15) will be presented elsewhere.
We summarize our estimates in

Theorem 6.1.

[Kwaen ™M= 3 plslo), (6.16)
S:é685=C
where
T-1 T
pu(S|C)=p,(S|CO) [T (@} [T MC,(S)) (6.17)
u=0 u=0
with o and p given by (6.13), (6.14), resp.
T
Remarks. The convergence factor || w(C,(S))is a manifestation of the mechanism
u=0

of cancellation of random phases.

In the estimates summarized in (6.12)—(6.17) the two mechanisms, the “cluster-
ing mechanism” (6.7), (6.8), resp. the cancellation of random phases (6.14), (6.15),
conspire.

Our estimates are certainly not optimal, but we expect that the way in which the

statistical weight of the product of random phases, H 9c s))s 1s estimated by

(6.15) 1s qualitatively correct for large f, not only for G = U(1), but also for
G =SU(2).
Itis of interest to test the strength of our methods in various situations, assuming
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further hypothetical estimates if necessary. One may, e.g. suppose that
@ KWEOP™M < Y pUS|C), with

§:88=C
T

p’\’,(S[C)§pi(S|C) H e~K|Cu(S)|’
u=0

T-1

where p;(S]C) = pv(S] C) H Elell with ¢ = E(B) </2(v—1) and K = K(¢) large
e.g.

u=0
enough.

(IT) One may study a non-relativistic limit (velocity of light ¢ > 1) of the lattice
SU(2) theory. For ¢ 1 and f small one finds estimates on p”(S|C) which reveal
an intimate connection between the SU(2) theory and a non-relativistic open-string
model.

A systematic study of upper bounds on p’(S | (), including (I) and (II), will be
initiated elsewhere. (The relevant tool from probability theory is the theory of
interacting random walks, resp.—in a formal continuum limit-—interacting
Brownian paths).

We do not want to end this section without pointing out a drawback of the
methods of this section: The difference between the four-dimensional U(1)- and
the four-dimensional SU(2) lattice gauge theory merely appears as a quantitative
one; (€.g. oy, (@) > agyp, (w)). In contrast, the methods outlined in Sect. 7 do point
to a qualitative difference between abelian and non-abelian theories.

Although our present estimates for the four-dimensional SU(2) model are far
from optimal, one may speculate that, indeed, the “clustering mechanism” (6.7),
(6.8) breaks down, in the sense that (6.10) becomes true, at some finite value of ),
and that for f> f, the expectation of the Wilson loop ceases to have area decay,
even in the SU(2) theory. We emphasize that this would not necessarily imply the
appearance of coloured physical states in a SU(2) gauge theory with quarks in the
spin 1/2 representation, because the colour of sufficiently light quarks could be
screened completely.

7. Continuous “Time” Formalism and Gaussian c-Models>

This section is somewhat expository. No detailed estimates are presented. A few
important technical points are treated in an appendix to Sect. 7.

Throughout this section, G is a compact Lie group, in particular G = U(1) or
SU(2). We propose to study the continuous imaginary-time formalism (x*eR,
continuous) for lattice Yang-Mills fields with gauge group G. In the limit of a
continuous imaginary time coordinate, v-dimensional Yang—Mills theory turns out
to be related to Gaussian g-models with fields taking values in the Lie algebra % of
G in an external gauge field (b,t)eG x G, on a (v — 1)-dimensional lattice. For
quantum theory, this is a correct and very useful approach, whereas the somewhat
complementary approach (continuous space, discrete imaginary time) outlined in

3 Some of the result reported here have been obtained in discussions with E. Seiler.
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Sect. 1.2 is problematic. (For v > 3, it appears to impose unsuitable renormalization
conditions, and, moreover, non-perturbative renormalization of (v—1)-
dimensional o-models in the continuum limit has not yet been carried out
for v— 1= 2. Notice that the limits, “lattice spacing in time direction” %0, and
“lattice spacing in space direction” %0, do not appear to commute for v > 3; we
prefer to take the first limit first).

We start with a lattice o =¢Z x 62" ',eZ ={u=¢n:neZ}, and 62’ ' =
{x=0y:yeZ""'}.(We follow the notations of Sects. 1.2 and 1.3).

The Yang—Mills action is now given by

AM=— 3 {8 Y. 0" °Rexlg"w),,)

ueeZ \pcozv!
+e !t ) 8 Re g wby;wg; ) ) )}, (7.1)
ijeozy!

where g,(u) = g; 1y us e D1/ = Gy > AN 100 = b+ )= Gy us sy SEE
Sect. 1.3, (1.17). (The spatial cutoff, A, will be suppressed in our notation). We set
AT (b= — )Y & 3Reyl, bugj i) (7.2)
ijcozv-1
The Yang-Mills vacuum expectation corresponding to the action (7.1) is given by

- >§M(ﬂ|8’5)=éf‘1 n {< - >3_1(ﬁ[855|b(u)’l(u

ueeZ
“C7(Be, 0] blw), t(w))dpl?  (bu)}, (7.3)

where ( is the partition function of the v-dimensional Yang—Mills theory, {°( | ...)
the one of the (v — 1)-dimensional o-model in an external gauge field (b, t) with
action ¢ 'A7_,(b,t), normalized such that {°(...|1,1)=1,{—=>7_,(...) the
vacuum expectatlon of that model, and dy” % the normalized, (v — 1)-dimensional
Yang- Mills measure. We propose to study the leading behaviour of (7.2) and (7.3)
for e < 0 < L. For the study of the limit ¢ "0 we set in (7.2)

g =%, Xe9, (7.4)
and
dg, -~ dX,, (7.5)

where dg, is the Haar measure on G, and dX is the Lebesgue measure on %, for
all ied 7'~ *. (See Sect. 1.2). For the action (7.2) we find to first order in ¢

e A7 (bt)=— ~"125V‘3Rex(bijti;1)
—Zév 3{Rex(leUt ) —Rexlt; b, X,)}

+azav-3{Rex(Xb X 1Y) — 1/2Rey(X?b,t; ") — 1/2Rex(t;, 'b,, X))}

[ Y i ¥} royy
ij
(7.6)

The first term on the r.s. of (7.6) is independent of X and can be combined with the
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(v — 1)-dimensional Yang-Mills actions for the horizontal gauge fields, g"(u) =
b(u), to yield

A= z{s Y 85 Rextblu,)
neeZ pcéZ“’l

+e b ) 5V‘3Rex(bi,~(u)ti,~(u)‘1)} (1.7)
ijcéZ‘/‘1

which is the expression for the v-dimensional Yang-Mills action in the radiation
gauge (¢ = 1). (Thus, the remaining terms in (7.6) could be gauged away when
¢\ 0. We do however not choose the radiation gauge).

Next, suppose that {b,()},.,, is the restriction of a smooth gauge field,
b,(u),on 62"~ x R to the lattice 62"~ ! x ¢Z. Then

b i, =b (whu+e ' =1+0(),
and

Eh\rf)ns Hby i (w) ™ =1} =B, () (7.8)
In finite volume, A, (fixed on an e-independent scale), equ. (7.8) holds in the sense of
stochastic differential equations for the paths {b,(u)} in the support of the
imaginary-time vacuum measure determined by the action 4™, | see (7.7), in the
limit & = O (which is the path space measure, du, ., , of the v-dimensional Yang-
Mills theory in the continuous-time Hamiltonian formulation, [35]). We define

(D, X);;= X, —b;X b L (7.9)
Taking into account (7.8), the second term on the r.s. of (7.6) approaches
&
eL, ,(b,B)= -525“‘3)(((DbX)ijBij), (7.10)
ij

and the third term on the r.s. of (7.6)
€
ed,_y(b)= —2.6" (D, X)), (7.11)
ij

as ¢ \ 0, up to O(e?) terms. In (7.10), (7.11) the summation, Z, extends over all

ordered nearest neighbors. In finite volume, A, the treatment o% the ¢ M0 limit can
in principle be made rigorous. This is a somewhat tedious exercise in manipulating
Trotter product formulae and the heat kernel on G. For G = U(1) or SU(2) one
can follow [36], where the ¢ \ O limit in the radiation gauge is studied.

After having taken ¢\ 0, one wants to study the limit 6 \0. This problem is at
the core of the renormalization theory of Yang—Mills fields. A partial aspect of this
problem is the analysis of the 4 M0 limit of the Gaussian g-models in external
gauge field with action 4, , (b) + L,_, (b, B) and a priori distribution [ [d X, see

(7.5), at “inverse temperature” ph,h >0, (h = h(d,v)). In this step thé external
gauge field is kept fixed. For G = U(1) or SU(2) and v — 1 =2, the 6 O limit of
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these models has been constructed in [37], (and the methods of [ 37] suffice to also

analyze the three-dimensional case, of interest in the construction of four-
dimensional Yang—Mills fields).

We now recall the main problems arising in the study of the 6 \ 0 limit and in the
analysis of confinement for ¢ = 0. This requires some more definitions. Let V_ be

X
the finite dimensional Hilbert space carrying the representation U, of G with

character y.
We define

¢=U*b), beG. (7.12)

Let M, = V®2 > U(G) be the space of all matrices on V,. Let Y be an arbitrary
M, -Valued functlon ondZ'~*. We define a (finite dlfference) covariant gradient by

(V;f>y),.js(Vg”Y)U=1( — &Y, 8), (7.13)

ijoj
with ¢, = U*(b,;). Furthermore, the covariant Laplacean is given by
d) __ O \7(0
— 49 = VOO, (7.14)
For 6 = 0, the superscripts are dropped.
For Y, Z M -valued functions on §7°~ !, we define
(Y,2)= Y & 'tr(Y*Z), (7.15)
i€dZv -1

and similarly for M, -valued functions on unordered pairs of nearest neighbors
inéz"" L.

Let ?9 = U (%) be the matrices in M , which represent the Lie algebra ¢ of G.
Such matrlces are henceforth denoted @, lI’ . In our new notations we get from

(7.10), (7.11)

A, (O =~ 4@, 40 ),

L, (& B)=0""Re(V{P, B), (7.16)
and the uniform measure on ¢, is denoted d 9. The Gaussian vacuum expectation

of this model, at “inverse temperature” ph,h >0, is denoted { — >;f)(f B), and
{(Bh|¢&, B) is its partition function, normalized such that (*Y(h|1,0) = 1. When
3

G = SU(2), y the isospin 1/2 character, we set @ =i ). ¢“o,, where o ,0,,0, are

12720
a=1
the Pauli matrices. The adjoint representation used in the definition of V¢, 49
has isospin 1, and we may now set

(V?)(p)g]’ =6 1((10,' - éijqoj)'

1
where ¢ = <£§>ER3 and ¢;; belongs to the isospin 1 representation of SU(2), i.e.
¢

to SO(3). Moreover d® = d*¢, the Lebesgue measure on R*. We now propose to
study the behaviour of

1) C“” =(— 49 +m?)", in particular of its integral kernel, C).(x, y), X,y in
/A for arbltrary 0 =0,m =0, and arbitrary ¢;
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2) (9(Bh|¢&, B) as a function of 6 =0, ¢ and B, (with £, B e.g. of compact support);
3) (@)™, > (& B), xy in 52

as a function of |x — y[ h,d, ¢ and B. This two-point function is related to the
expectation of the Wilson loop, { W4(C)>I™, of the v-dimensional Yang-Mills
theory on §7°~! x R (in the limit ¢ = 0) by the formula

< Wq(C)>\):M = hm{ - Z fdui?ad H g(ﬁ) Bgl g(b B(E))Bmono npmr”

en0 uceZ

[1 <(e”b‘)),,,umm(e"“p‘),,unu+5>“”(5(b) B“’)} (7.17)
uceZ N[0, T —¢}

where dul? , (b) is the v-dimensional Yang-Mills measure in the radiation gauge,
&(bw)),; = U(blu),,), B w) = e~ {&,;(u)&,;(u+e)~' =1}, and xed 2"~ ' (indepen-
dent of u) with |x| L Formula (7.17) involves the hidden assumption that, for
0> 0, we can first pass to the Gaussian limit of the g-models and then take the
&0 limit. (As remarked already above, we are confident that this can be justified
by adapting the techniques of [36]. See also [37, 38]).

Fortunately, problems 1) and 2) have been solved already in [37] for G = SU(2)
and v— 1 =2, and the techniques developed there suffice, in principle, to solve
them for arbitrary compact gauge groups and 2 <v — 1 <3. From that reference
we infer that

| CO 0 2 CP,(x, )|, for all 4, (7.18)
m,&

(Landau dlamagnetxsm [4,37]).
and for & =9 = e# where %g) is the restriction of continuous continuum
gauge field, 4, with values in % and of compact support to the lattice 62"~ ",

N0
CO.x,y) — C, ,(x.p), in LA x A), (7.19)

for arbitrary bounded, open A cR'"! and 1 <p<p(v—1), with p(2)=
p(3) = 3, and for a large class of boundary conditions (e.g. free, periodic, Dirichlet)
at 0A. See [37] for detailed statements and proofs of this and other results. These
results suffice to control the limit of  — >$/(¢, B?), as 6 0, for ¢ as in (7.19) and
B® chosen such that " 'B® — B’ as 6 \ 0 e.g. in the sup norm.

[As an example, we mention that, for 6 =0,

< ¢§1 (D:m >Bh (%, B)=(ph)"* Co.5% Yht, mn
+ (B HCy 4V 5By ()(Cy 4V 5B, ().

For v — 1 = 2, this identity usually has infrared divergences, unless, e.g. O-Dirichlet
data at the boundary of some bounded, open region are introduced in 4, or % is
suitably chosen. For v — 1 > 3 there are no infrared divergences. The two-point
functions in 3) and (7.17) have no infrared divergences, even for v — 1 = 2, but must
be ultraviolet-renormalized when 6 %0, for v — 1 > 2; see below].

Next we study the partition function (@ (Bh|E®, B9), with &9 = = 05 B

the restriction of a smooth 4 -valued field # on R'~' of compact support to

62° ' and 671 B 25 B in CZ(iR{v 1. For v— 1 = 2 we temporarily introduce
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O-Dirichlet data in A?} at the boundary of some d-independent, bounded open set
A, in order to eliminate infrared divergences. (Reference to A is suppressed in our
notation). Let 4 be the usual finite difference Laplacean, and let V‘E’ be the
(v — 1)-dimensional, covariant lattice dipole potential, defined as follows: Let fbe
some M -valued function defined on the links (nearest neighbor pairs) of §2”~*
and h an arbitrary M -valued function on Z" of compact support. We define
V(é)* fby
(VO fih) = (£ VOh) = 25"'2tr h,— &)

Letnow fand g be arbltrary M -valued functlons on the links of 62~ !, of compact
support. Then V¢ is defined by

(fVig)= (V£ CPLVg) (7.20)
By evaluating Gaussian integrals we get
{e( =det(— A“”Cgsfé)”zexp[(,Bh/2)(5‘lB, VioT'B)]; (7.21)

see [37]. (We thank E. Seiler for correcting a mistake in our original formula)
Notice that the r.s. of (7.21) obeys the normalization condition, (' (Bh|1,0

For h=¢ B=B® with BY(u)=¢"'{& W) u+e) ' —1}, the effect of the
second factor on the r.s. of (7.21) is to modify the couplings between £(u) and
E(u + &), ueeZ, in the measure du'® _, () (see (7.17)). We set

v, rad.

dp (&) =ZP " texp[(Be/2)(07 ' B, Vo~ BY) Jdu? . (), (7.22)

v, rad.

where Z!” is a normalization factor chosen such that dp® (&) = 1. (In spite of the
second factor on the r.s. of (7.21), the measure dp' is well-defined, since exp[ (f¢/2)
(67 'B9. V6~ 'B9)] = exp[( ﬁe/z 5'13“’ 67 'B®)], which is compensated by
the factor exp [ — (f/e) Re(&(u), &(u + )] indul? 4 (£)).

Notice that the formal action corresponding to dp? is “non-polynomial”if G is
non-abelian, even in the formal limits ¢ = 0, 0 = 0. Thus, our approach might be
cumbersome for the discussion of ultraviolet renormalizations when one takes
the limit 5 \ 0.

Next, we discuss the first factor on the r.s. of (7.21). Notice that det
(= ADCY,)'"? is independent of fh. From [4, 37] we recall that

0 <det(—49¢CP,) <1 (7.23)

(diamagnetic mequahty see also Theorem 1.1)

For ¢, = = 0% A9 the restriction of a continuum gauge field, %, that is Holder
Contlnuous of order « > 0, v — 1 = 2, and O-Dirichlet data on the boundary of a
bounded, open set in R?,

lim det( — 49 CY,)"? = det(— 4C, ,)'/? (7.24)

INO
exists and is strictly positive; see [ 37]. (The methods of [37] suffice, in principle, to
also handle the case v — 1 = 3, for smooth %).

Thus, the results of [37], in particular (7.18)-(7.24), provide complete control
over the § \ 0 limit of the Gaussian g-model in an external gauge field with action
given by (7.16), at arbitrary “inverse temperature” 0 < fh < oo, and v—1 =2, (3).
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Next, we study the two-point function
G5, Vg, = (€N (7™, D50, B), (7.25)

in particular its cluster properties (related to confinement via (7.17)) and the
existence of the limit 6 0. For || G¥(x, y)| to tend to 0, as |x — y| - oo, it is
necessary that

() D& B) = (7.26)
for all £, B and x (large enough)
Since { — >“’)(£ B) is Gaussian, with covarlance C(oé)g’(’/ 26) requires that

CY(x, x) is infinite, with 2C3),(x, y) — C:(x, x) — C{(y, y) finite. This is possible
for v—1 <2, due to an infrared dwergence For f = 1] L CO(x, y) = CY(x, y) is the

Fourier transform of (6%/2)[(v—1)— Z cos(8k?) ], (kK| <6 'm) which is

linearly (v — 1= 1), resp logarithmically (v — 1 =2)divergent at k = 0. Moreover,
1

CO(x) — C9(0) %—Elog [ for v—1=2. Thus, one might expect (7.26) to be

valid and [ G(x, y)| to behave like
1
exp[(h/2n/3) log-—:l, (7.27)
|x =yl

as |x —y| - oo, for arbitrary &, B, when v—1=2. By (7.17) this would yield
permanent confinement of static quarks in three-dimensional Yang—Mills theory
by a potential > log|x|, as ]x{ — o0. For G = U(1),(7.26) and (7.27) are true, since
CY,=C? and G(‘” L(x, y) = G (x, y) (independent of &), and if the center of G
contams U(l) the same conclus1ons hold, by the estimates of Sect. 3. Moreover,

when v — 1 = 1, £ can be gauged away, for arbitrary G, so that (7.26) holds trivially,
and

G0 | = 167y )| < exp[ = 28] x = y]].

for arbitrary G and all 5 >0.

However, for G =SU(2),v— 1 =2,(5 =0), there are choices of an external
gauge field # such that C,, is a bounded operator with || C,(x, y)|| < const., for
|x — y| large enough. In this case (7.27) is definitely violated. This is the result
alluded to in Sect. 3: For certain choices of 4, the clustering of G, y(x, y) is worse
than that of G, ,(x, y). This is a consequence of non-abelian Landau diamagnetism.
Some more details are given in the appendix to Sect. 7.

For v >4, (7.26) is always violated, and | GPy(x, y)|| 4 0, as |x — y| - o, as
we are now going to demonstrate.

By (7.18),

1C9x. n) | £l COx — )|
S@u) YRR | [v-1) - Zcos Sk td k

kil < n/d j=

=JO(Wv—1)< oo, forall x, y. (7.28)
This shows that (7.26) is impossible.
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Moreover || CY.(x, y) | £ || C?(x — y)| =0(|x — y| """ ¥),as|x — y| - . There-
fore || Gp(x, y)ﬁ +0,as|x—y|— oo which proves our contention.

We conclude that presumably in the three-dimensional SU(2) Yang-Mills
theory and certainly in all four-dimensional Yang-Mills theories confinement of
static quarks can only arise as a consequence of cancellation of the random phase

0
factors in G} (0, x) when integrating over &, (with B= é(a S >> This is the
’ X

the second mechanism emphasized in Sect. 6; see (6.11)-(6.15). A careful study of
this mechanism in the limit ¢ =0, (i.e. for the Gaussian o-models) is beyond the
scope of the present paper, but we recall that it has been shown in [14] that in
all v >4 dimensional non-compact U(1) theories there is no confinement.

In the present formalism, absence of confinement in the four-dimensional U(1)
theory can be understood as follows: For G = U(1),

G40, x) = exp[ — (Bh/2)(CY)(0,0) + CY. (x, x) = 2CP,(0, x))].

‘exp IZBh{V‘é‘”-Cg’fE B®)(0) — (V“” C“” B)(x)}] (7.29)

Now, since the adjoint representation of U(1) is the trivial one,
J — J é
Vg’) =V®=0% and cg’)é =C® (7.30)

are independent of & (i.e. the same as for £ = 1). In particular, they are independent
of the value, u, of x*. Furthermore, one can set

&) = 9@, 40 (w)el0,2m),
for all ij c 62"~ ', ueR. Thus

BO(u) = — i(gA@>(u) (7.31)
ou Y

If we now insert (7.30) and (7.31) into (7.29) and, subsequently, (7.29) into formula
(7.17) for the expectation of the Wilson loop we see that the random phase

w=T 0AY 0A®
. 0@.co 0. )
exp[ i u{(}du[( C " >(O u) — ( C " )(x,u)]

= exp{ —iB[(@9-CP AD) (0,u) — (0 CPAD)(x,u)] g} (7.32)

reduces to a product of two random phase factors localized at u =0, resp. u= T,
i.e. to a pure “surface term”. Thus, using (7.29), (7.32) and (7.17)

(WHC)M = exp[ — BT(C?(0) — C°(x))].
~Cexp{ —iB[(@7-C?AD)(0,u) = (V- CV AD) (x, ) ]§ } >3
(Since the second factor is a surface term, it cannot cause area decay, when 6 \ 0).
The basic difference between abelian and non-abelian theories is that, in the

non-abelian case V¥ and C{), do depend on ¢ in a non-trivial way, so that the total
random phase factor does not reduce to a pure surface term, as can be checked by an
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explicit calculation. For this reason, four-dimensional non-abelian theories may
still confine static quarks.

Finally we discuss the continuum limit (6 \0) of the two-point functions
G0, x) and the related problem of how to “normal-order” the Wilson loops,
Wq(C) S0 as to be able to pass to the continuum himit. We concentrate on the dis-
cussion of G = SU(2) with y¢ = y the isospin 1/2 character; (G = U(1) is very easy).

For SU(2) ¢ =i Z ¢lo,. Let {— > denote the Gaussian expectation with

mean 0 and covarldnce CO=(=a”+ 1)1 ie
(Ll = CP(x — y)o™.
Let ¢@ = C@(0). Then

Cexpliploy), 8 =exp[ —(1/8)c®]é, (7.33)
Moreover, for & = & as in (7.24),

lim (CP25 — ¢?9*)(x, x)  exists, for v — 1 =2,
OO0

(provided O-Dirichlet data are imposed on C‘O"fw, at the boundary of some boun-
ded, open region, in order to eliminate infrared divergences). This is proven in [37].
Thus

lim Cexp(ih @), >0 (€2, B exp [ (h/88)cP]0,,

N0

exists. In general we define

NOE®),, = (@), [ (™) O] ! (7.34)*
Then, for smooth B = lim §~ !B,

INO
lim { NO(&"), NO(e "), Y@, B9)

80

exists, even in the thermodynamic limit; (there are no infrared divergences).
This suggests replacing W4C) (defined on the links of 6 Z”) by

NOwC)=> [] u* (gxy)m\’my[<(e@7)¢7)mxmy SOt

m xy<C

This prescription ought to be appropriate for taking the limit 6 %0, at least in
v =3 dimensions. It suggests to formulate the renormalization conditions in a
scheme of implicit renormalization for three-dimensional Yang~Mills theory in
terms of J-independent upper and lower bounds on

(NOWAO) )™,

for C a square loop with sides of length 1, for example.

4 Another possibility is to choose a “unitary” gauge in which @' = ¢* = 0.
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Appendix to Sect. 5

We show, in this appendix, the details of the calculations leading to the area decay
of the expectation of the Wilson loop observable when G = SU(2). These are
completely analogous to those performed in [29].

With notations as in Sect. 5 we get, by setting

n 1
Z(b,t,n) =[P4 ] fdu, e o <IS}IZ — B+ v‘fl)dﬁj, (A1)

jeAo 1) !

and using a chessboard estimate, that
STT1Z°(6"0), gMe + 1), 0)dp, _ (g"(2)
1

<[1UTIZ°" 0, g'e + 1), n(@,))du, _ (g"(0) ]V (A2)

By a second chessboard estimate we have
BT Z (@0, " (¢ + D mdp, , (6"(0)

us 1

- M'f[“{d”(n i H{dﬂv_1(g"(z))e“m@'Ag’wwer’

'ig5<l(5)|2—ﬂ+ )d(S)ﬂ

u'~ 1
<p " T ]du, o el [f I {duv_ (G(0)e1D S Ao s,
q,l t

1/]4]
3 a(t@,w— pota sy} |

S (e 1| [

1/14]
e L2V (B=ug [ (v= 1)) (81, Aghcry, gh(t+ 1)) n 5(l(§t)i’2 — 1)d(§1)i }J (A.3)

i€eA,

Next we note by Jensen’s inequality
[ e840 T 5(‘§,~|2 - 1)d§‘j

jeAo
= [ @207 1S A0.085) o1/2) (B=u(v=1))(8 40,15 T 5([§,~|2 — 1)d§j
jeA0
> eu/2("—1)<(Sy4b,zs)>3—1(b,t)je(1/2)(ﬁ-u/(vw1))(S,Ab,;S) n 5(|§|2 _ I)dg (A 4)
= i i .
jeAo

. u
where the expectation -7 _, (b, t) is at inverse temperature § — T

Now since

(S, 4,,9)|= Y. (5;— O,

ij < A0

;) S <4 1)] 4°]

ij°
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when lgjl =1,Vje A it follows from (A.3), (A.4) and the definition of Z, that
B TIZ7 @), g + D mdp,_ (6"®)
t

not o U u 2uy, 5 4| 7o
gf{ﬂdu,,(n 0 (1 WL—)) }m{ﬁ Z3(g"0),

n-t 141
.gh(t + 1))d:uv—l(gh(t))} §[jdume—u(l/ﬂ(v~l)41):| A

1 —nlA|
(- ) ")

Formulas (A.2) and (A.5) then give

—|4 . i 1 nj(we) '
g lfﬂZ(g"(tlg(t+1),w,)duv_1(g"(t))§|:ﬂ<m—1) ]z.

t.j

And finally this combined with (5.8) gives

[<WaC) ™|
—Zn.(w)
B _ Aan ) 1 — TR
SOPTEL S ee 1) B (ﬁ(v~1)> 1)
. 1 X —lo|-17]T
{El ) T

1 .
For f < -——~ we have that — 1> 1, and therefore there exists an

1
2v—1) Blv—1)
&> 0, independent of x, T and A, such that

T
I<Wq(C>>v“’|§4TB”T[ ) <2<v_1)+s)"‘”"1]
oiZ0

=477 T(~ 4, +2)710,x)",

where 4 , is the discrete Laplacean in 4 = Z*~ ' with periodic boundary conditions.
Taking the thermodynamic limit and noticing that

(—A+e) 10, x)~e | as|x|— oo,

completes the proof of confinement by a linear potential for f <

(A more

1
20v—=1)
1
refined estimate extends this result to f < — )
Appendix to Sect. 7

In this appendix we show that the clustering of certain two-point functions in a
Gaussian SU(2) x SU(2)-a-model in two dimensions is diminished when a suitable
external gauge field is turned on.
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As argued in Sect. 7 this indicates that for large f only the mechanism of strong
cancellations of random phase factors can be expected to be responsible for confine-
ment of static quarks in a SU(2)-gauge theory in 3 dimensions.

We consider a two-dimensional Gaussian o-model, where the field X takes
values in su(2) (the Lie-algebra of SU(2)), and an external gauge field A €esu2) is
acting. In other words we consider the model whose action <7 is given by

o = zl: tr((D, X)*(D,, X))

n=0

where

Dy, X=0,X+[A,,X]. p=0.1,

and X and A are su(2)-valued functions on R2. The measure of the model is thus
the Gaussian measure with covariance

(— AA)-l = (ZDj“DAM)'l

defined on a suitable space of su(2)-valued functions.
To be able to analyze 4, we set

M

X = 1O

3
¢*c, and A4,= ) Alc
a=1

a=1

where the o/s are the Pauli matrices, and ¢ A‘; are realvalued functions on
R2. Then

(D )y = 8,0, + &, AL (B.1)

ijk* u
(pl
where &, 18 antisymmetric in i, j and k and ¢, ; = 1, acting on gg , which is an

R3-valued function on R?.
Also we have that

tr(X*Y) =2, o"y*
ifX=3¢%,and Y =) y,.

From this we see that, expressed in the fields ¢*, the measure of the model is the
Gaussian measure with covariance C, = (— 4,)" ', where — 4 is given by

—4,= ZDLDA“
u

—A +(A3)2+(A2)2 —{V,A3}—A2~A1 {V,Az}—A3‘A1
= (V.43 — 44" — A+ (AP (A (VA -4 4 ),
—{V, A2} — 43 4" —{V,A4'} — 4% 4* — A4 (A" + (4%
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as a direct calculation shows by using (B.1). Here A4/=} A4l A/ and
(V, 4} = Y (0,44 + 410,).

n

u

To simplify this expression weset A' = 4% = 0and 4> = A # 0. Then (B.2) becomes

— A+ A2 —{V, 4} 0
—A;= |1V, 4} — A+ 42 0
0 0 -4

But this operator is unitary equivalent to the diagonal operator C with
Cpy=—A4+i{V,A} + A>, C,, = —4—i{V, A} + A%, Cy; = — 4,
the equivalence being given by

1 - 0
5o V2
R 0
V22

0 0 1

Next we choose ;1(><0,x1 )= B(x,, — x,). With this choice of A it is well known (see
e.g. [39]) that the operators — 4 +i{V, A} + A have the same spectrum, and it
is bounded below by a strictly positive number if B # 0 (Landau diamagnetism).
Thus C ,, restricted to the subspace {(¢', ¢, 0)} is a bounded operator.

From this we conclude that if { — ) denotes the expectation of the model, then

<eiq71(0)<n e-iw‘(xm > — <ei(¢‘(0)—<ﬂ‘(x))61 >

= {cos(@'(0) — ¢'(x))1 + isin(¢'(0) — @' (x))o' )
={cos(@'(0) — ¢p'(x)) 1

— e--((,“;,'(O, 0) +Cyr(x,x)~2C5(0, "‘))“1} (B3)

does not converge to 0 as | x| — 0 as a consequence of the boundedness of C ;.
Finally, we remark that by fixing the gauge in the lattice theory such that
X =¢'o,, only two-point functions of the form as in (B.3) will enter into the
calculation of the expectation of the Wilson loop observable according to (1.34).
Thus, Landau diamagnetism may destroy clustering of the two-point function
of the two-dimensional, Gaussian g-model. This conclusion is not affected by the
introduction of a two-dimensional, spatial lattice.
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