
Communications in
Commun. math. Phys. 74, 281-295 (1980) Mathematical

Physics
© by Springer-Verlag 1980

On the Possible Temperatures of a Dynamical System

Ola Bratteli1, George A. Elliott2, and Richard H. Herman3*
1 Mathematics Institute, University of Oslo, Norway and Centre de Physique Theorique II, CNRS,
Marseille, France
2 Mathematics Institute, University of Copenhagen, Denmark, and Department of Mathematics,
University of Ottawa, Canada
3 Department of Mathematics, Pennsylvania State University, Pennsylvania, PA 16802, USA

Abstract. A simple C*-algebra and a continuous one-parameter automor-
phism group are constructed such that the set of inverse temperatures at which
there exist equilibrium states (i.e., KMS states, or, for β=±oo, ground or
ceiling states) is an arbitrary closed subset of IRu{± oo}.

1. Introduction

It is well known that the Fermion C*-algebra with the gauge automorphism group
has KMS states at all inverse temperatures, and also that for a general C*-algebra
with unit the set of inverse temperatures at which KMS states for a given one-
parameter automorphism group occur is a closed subset of IRu{ + oo} (see [2, 17].

The C*-algebra On studied by Cuntz in [4] has a one-parameter automor-
phism group of period 2π with a KMS state at the unique inverse temperature
logn, n= 1,2,... oo. (For a proof of this see [2] or [11].)

Here we construct a simple C*-algebra and a one-parameter automorphism
group of period 2π with KMS states at inverse temperatures in any given closed
subset of Ru{±oo}, and only at these inverse temperatures. The construction
used is related to both of the above, and in fact coincides with the first one in that
case. This suggests the question as to whether or not it has a physical
interpretation.

This construction settles a question of Sakai [17], as to whether or not the set
of temperatures need be a convex subset of IR.

2. An Automorphism Scaling Traces

2.1. Theorem. Let F be a closed subset of the unit interval [0,1], and denote by
Έ[x]F the group Έ[x~] of polynomials over TL ordered by the following relation :

p > 0 if p(t) > 0 for all 0 < t < 1 in a neighbourhood of F.

Then Έ[x]F is a dimension group.
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Proof. First note that Έ\x~\F obviously has the property that na>0 for some
n = 2,3,... implies α>0. Hence, by [5], it is sufficient to verify that Z[x]F has the
Riesz interpolation property. Recall that an ordered group has the Riesz
interpolation property if a.b^c,d implies that for some e,a,b^ie^c,d (see [8]).

To show that Z[x]F has the Riesz interpolation property we shall reduce the
problem to the case that F is the whole unit interval [0,1], in which case the
problem has been solved by Renault in [14, Appendix]. We shall show that if
a,b^c,din Έ[x\F, then there exist a! ̂  a and b' ̂  b in Έ[x]F such that, in 2£[x][0 1}

(recall that the underlying group is the same), a', b' ̂  c, d. Then, of course, if a', b'^e
^c,.d in Z[x] [ 0 1]? this inequality holds also in Έ[x]F.

By the theorem of Weierstrass, any continuous function on [0,1] can be
approximated uniformly by polynomials. Moreover, if the function has integral
values at both 0 and 1, the approximating polynomials may be chosen to have
integral coefficients1. To see this we proceed as follows. Since / has integer values
at 0 and 1 we can assume /(0) = /(I) = 0. As we wish only to approximate / we can
further assume / is zero in a neighbourhood of 0 and 1. We then apply the

fix)
ordinary Weierstrass theorem to —— —-, where n is to be chosen later. We

z [x(l-x)]"
obtain a polynomial, Γ̂ ape1 such that

ί = 0
/(*)

Ίn Σ aiχl ^ for all XG[0,1] .
[ x ( l - x ) ] n

 £ s = 0

I

We can then rewrite this polynomial as ^ (l̂ . + c.xXxίl —x))1, so that

/w ύϊ on [0,1].
M i - * ) ] " ;=o

Replacing bi and c; by their integral parts, [bj and [c;], we obtain a polynomial
i

which differs from the original by at most £ 2 • (^)f, so that

/(*) ^ ,M i - * ) ] " J=O L~ J " ' ^

Multiplying through by M l — *)]" w e obtain
i

f(x)-xn(l-x)"Σdix
i on [0,1]

with the d integers. Now as n was arbitrary we are done.

Consequently, for any ε>0 and meIR there exists peΈ\x] such that:

p(t)<ε for all ίe[0,l];

p(ή<m for all t in a specified compact subset of [0,1]\F

pit) < 0 for all 0 < t < 1 in a neighbourhood of F.

1 Results of this type are well known. For a survey see a forthcoming A.M.S. memoir by LeBaron O.
Ferguson
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To see this, choose a continuous function / on [0,1] such that for some
r,s = 0,l,2,... :

/(ί) = l for ί = 0 if OeF, and for ί = l if l e F ;

f(ήf(l - t)s < 2εβ for all te [0,1]

f(t)f(ί — t)s<m — εβ for all t in the specified compact subset of [0,1]\JF

f(t) > ε/3 for all 0 < t < 1 in a neighbourhood of F.

Approximate / within ε/3 on [0,1] by p'e7L[x~]\ then p'xr(ί — x)s satisfies the
requirements for p.

It follows that if α > î . in Z[x]F, z j =1,2, there exists ge Z[x] such that g > 0 in
Z[x]F and ai — q>bj in Z[x] [ 0 1 ] ; zj = l,2. To see this, consider the continuous
function # defined on [0,1] by

gf(ί)=max(αi-fe,)(ί)/ίr(l-ί)s,
ij J

where r and 5( = 0,1,2,...) are chosen so that g(0) and g(ί) are finite and not zero.
Then for some ε>0 and some neighbourhood N of F in [0,1],

g{ή>ε for all teN.

By the previous paragraph, choose peZ[x] such that, with m= inf gf(ί):
fe[0,l]

p(ί)<ε for all ίe[0,1] ;

p(t)<m for all ίe[0,l]\iV;

p(ί) > 0 for all 0 < t < 1 in a neighbourhood of F.

Then p(t)<g(t) for all fe[0,1], and hence pxr(l — x)s satisfies the requirements
for q.

Hence by [14, Appendix] there exists eeTL\x\ with at — p^e^bj in Z[x] [ 0 > 1 ],
and then a^e^b. in Z[x]F. This shows that Z[x]F has the Riesz interpolation
property.

2.2. Corollary. Let F be a closed subset of the unit interval [0,1]. Denote by G the
group Έ\_x, x " 1 , ^ — x)" 1 ] of polynomials in x, x " 1 and (1 —x)" 1 over Z, and by GF

the ordered group defined by the order relation in G:

p>0 if p(t)>0 for all 0 < £ < l in a neighbourhood of F.

Then GF is a dimension group.

Proof. GF is the inductive limit of the sequence

where each map consists of multiplication by x(l —x).
It can be shown, from Shen's local criterion [16], and also follows easily from

the characterization given in [5], that the class of dimension groups is closed
under inductive limits.
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2.3. Problem. Renault showed in [14] that Pascal's triangle is a Bratteli diagram
for Z[x] [ 0 1]. This shows that this dimension group has a diagram with injective
embedding matrices. Is this also true for Έ[x~\FΊ

2.4. Theorem. Let F be a closed subset of the unit interval [0,1], and consider the
dimension group GF of 2.2. Consider the automorphism a of the underlying group G
consisting of multiplication by x(l — x)~x. Then oc is an order automorphism of GF,
and for each teF, if et: GF ->R+ u{ + oo} denotes the positive-additive map a\->a(t),
then

e μ = e t .

Conversely, if φ : GF —>IR+ u{ + oo} is a positive, additive map such that φ(l) = 1 and
for some s e R + u { + oo}, φa = sφ, then, with t = s(l + s)~\ t belongs to F and φ = et.

Proof. Let φ :G F -»IR + u{ + co} be a positive, additive map with <p(l)=l, such
that φa = sφ (where + oo 0 is indeterminate), and consider first the restriction of φ
to 7L\x~\F C Gp denote this restriction by ψ. Then ψ is finite valued, positive and
ψ(ΐ)=l; hence ψ extends to a functional on Z[x] F continuous with respect to the
supremum norm. By the proof of 2.1, the closure of ΊL[_x~]F in this norm consists of
the continuous functions on F with integral values at 0,1 (if either of these points
belongs to F). This shows that ψ is determined by a measure on F it is clear that
this measure must be concentrated at a point.

We must now show that φ is uniquely determined on all of GF we shall use
that its restriction to 7L[x]p~ is determined. We note that any element of Gp~ may be
written as px~r(l — x)~r where peΈ[x~]p and r = 0,1,2,... (cf. 2.2). In view of the
expansion

v Γί Ί Y
 Γ— V

k=l

we see by induction on r that, in order to show that φ is determined on all of Gp~, it
is enough to show that it is determined on elements of the form qx~k or q(l — x)~k

where qeΈ[x]p~ and k= 1,2,.... Since

and φa±1=s±ιφ, this last holds by induction on k.

3. KMS States for the Dual Automorphism Group

3.1. Let F be a non-empty closed subset of the unit interval [0,1], and denote by
A = AF the separable approximatively finite-dimensional C*~algebra, unique up to
isomorphism (see [6]), whose dimension range is the positive part of the dimension
group GF of 2.2. By [6] the automorphism α of GF defined in 2.2 is induced by an
automorphism of A we shall choose one and denote it also by α.

Furthermore, we will choose α in the following way. Let eeAF be a fixed
projection in the equivalence class corresponding to l e G F . Since x<l, in the
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ordering on GF, there exists a projection geAF, corresponding to x, such that g^e
(in the usual ordering of self-adjoint operators). One has α~1(x) = l — xrgl in the
ordering on GF, and hence α " 1 ^ ) ^ in the Murray-von Neumann ordering,
whatever the choice of α is. Thus by modifying α " 1 by an automorphism
implemented by a unitary operator in the multiplier algebra of AF, we may assume
ot~1(g)^e in the usual ordering of self-adjoint operators. In what follows we will
assume α has been so modified.

We need some comments on the ideal structure of A. Ideals in GF are in one to
one correspondence with ideals of A. If F does not contain 0 or 1 then there are no
ideals in GF and so A is simple. If either or both of 0 or 1 are in F then the only
ideals are those generated by a projection corresponding to an integral power of x
or 1 — x, or a product of such powers. This may be seen as follows. One can map
G[0, i]

 o n t o GF via the (positive) identity map for the underlying group. An ideal of
GF then comes from an ideal in G [ 0 X] and these ideals are exactly what we claim
they are, since the diagram for G [ 0 1 ] is

\ x A A-χ/(i-χ)2

2

ί-x, v (1-x)2
wl-xj V xj x

This is seen by combining the result of Renault [ibid] and Bratteli [1].
Note that no ideal is invariant under the automorphism α and its inverse.
Alternately we can see that the possible ideals in AF are of the form In m where

n,m run through Zu{ + oo}. If peGF, then peln m (remember that ideals in GF

correspond to ideals in AF) if and only if the following conditions are fulfilled.
a) If l e F a n d n<+oo then |p(x) |=0( | l -x | " n ) as x-+l.
b) I f O e F a n d m < + oo then \p(x)\ = 0(\x\~m) as x^O.
All ideals except {0} are of this form, in particular 1^ O0=AF. If iφF then

/ π m ( = /00 m) is independent of n. A similar remark holds if OφF. Since
In,m = Ioo,m^n,^ t h e P r i m e ideals are {0}, / n o o , I^m where rc,meZu{ + oo}. Again
we see that AF is simple if neither 0 or le i 7 . Note that α maps lnm onto In+ίtm-v

In general there does not exist a hereditary sub-C*-algebra of A invariant
under a such that the restrictions to this subalgebra of the extreme traces of A are
finite. (Such a subalgebra does exist if F lies entirely in the subinterval [0,^[, but
even then it cannot be chosen to be unital or to be invariant under oΓ1 too.) Thus,
the dual weights of the traces which are scaled by α, although they are KMS
weights for the dual automorphism group, will not be finite.

Of course one could proceed using the well developed theory of KMS weights
(see [3, 19]), but instead of proceeding in this way, partly since there are technical
difficulties in proving uniqueness of KMS weights on the whole crossed product of
AF by α, and especially because for infinite inverse temperatures they are in fact not
unique (see 3.3), we shall cut down the crossed product by the projection eeAF in
the (convenient) equivalence class corresponding to 1 e GF.

The advantage of considering the C*-algebra B = BF obtained by cutting down
the crossed product by a projection in this particular equivalence class is that one
obtains uniqueness of KMS states even for infinite inverse temperatures (cf. 3.2).
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We have already noted that there are no α-invariant ideals in A, and, as α
transforms each non-zero projection in A into an inequivalent projection, α is
properly outer in the sense of [7]. The C*-crossed product C*(A, α) is simple by 3.2
of [7] as it coincides with the reduced crossed product considered there since the
integers are amenable. The hereditary subalgebra B of C*(A, α) is then simple. The
approximately finite-dimensional C*-algebra BnA has dimension range the order
interval [0,1] in the dimension group GF of 2.2. If u denotes a fixed unitary
multiplier of the crossed product of A by α determining the automorphism α of A,
then B is the closed linear span of those elements aun, aeA, neΈ, with support and
range contained in the unit of B. We shall denote the restriction to B of the dual
automorphism group by γ, so that for each zeΊΓ, yz(aun) = znaun.

3.2. Theorem. Let - oo^βS + oo. Then there exists a KMS state on B for the
automorphism group Q' Ή&t-^yexpit at the inverse temperature β if and only if
e~β{\Λ-e~β)~1eF. In this case such a state is unique.

Proof. By 2.4 there exists a trace φ on A such that φa = e~βφ and φ(e) = l if and
only if e~β(l +e~β)~ιeF. We pick such a β, and normalize the corresponding φ
such that φ(e)~ 1, where eeA is the unit for B. Let ε denote the projection from B

onto AnB given by ε(x)= \yz(x)dz and define a state ψ on B by ψ = φε. We shall
T

show that ψ is a KMS state for the automorphism group ρf = yexp(it) of B at the
inverse temperature β. Assume first that β is finite. It is enough by linearity and
continuity to show that for each x,ye{aun\aeA, auneB, neΈ}, one has that

[2]. If x = au\ y=bum, one has yρίβ(x) = bume~nβaun = e~nβbam(a)um + n and xy
= aocn(b)un + m. Thus \p{yQip{x)) = ψ(xy) = 0 unless m= —n, and then

β -%a)) = φ{a\b)d)

= φ(azn(b))

= ψ(xy).

Assume next that β is infinite, specifically let β= + oo. It is then enough to show
that for each x,ye{aun\aθA, auneB} that the function

z-+ψ{yρz(x))

is bounded in the upper half plane, [2]. But iϊ x = aun, y = bum, then

and hence ψ(yρz(x)) = 0 unless m— —n. When m = —n one has

= einzφ{a-\a)b).

To finish the argument we have to show that φ(oc~n(a)b) = O when n is negative. Let
e be the projection in A which is the identity for B. Then
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i.e.

eaun = aotn(e)un = au\

i.e.

ea = aocn(e) = a,

and correspondingly

Thus

α ~ n(a)b = α " " ( φ " \a)ba ~ \e).

But φ(e)=l is finite and φα = 0φ, and hence

φ(oΓπ(α)b) = 0

when n is negative. The case β = — oo is treated similarly.

Suppose now conversely that ψ is a KMS state at value β. By ρ-invariance ψ
has the form

where φ is a state on BnA.
Assume first that β is finite. Then φ is a trace on ΰ n i . Iϊx = au, y = bu~1 are

elements in B, i.e.

= a,

then the KMS-condition,

implies that

Putting b = e<x~1(e) in this relation gives

e~βφ(eoί~1(ea)) = φ(aoc(e)e),

and using the relations ea = aoc(e) = a, we obtain

e~βψ(eoL~1(a)e) = φ(eae).

In particular this relation is valid for all ae{Bc\A)r\&(BnA). If geAF is the
projection corresponding to xe GF mentioned in the beginning of this section, then
g^e, oc~1(g)^e and hence ge{BrλA)r\a(Br\A). It follows that,

e~βφ(eoc~ 1(p)e) = φ{epe),

for all projections peA such that p £Ξ g. Since BnA = eAe is a hereditary subalgebra
of A, two projections in BnA are equivalent in BnA if and only if they are
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equivalent in A. It follows from the relation above and the normalization φ(e) = 1
that φ extends uniquely to a densely defined lower semicontinuous trace, φ, on A
with

To see this, observe that it is enough to show that φ has a unique extension
with these properties when considered as a linear functional on the dimension
group of A. As all projections pin A corresponding to elements xn in Έ\_x\p satisfy
the requirements pSθ> ψ is already determined on these. We've shown, in the
proof of Theorem 2.4, that φ admits only one scaled extension to all of G^, once it
is known on TL\jκ]p.

It follows from Theorem 2.4 that

and that φ is the trace defined by ee-β. Since ψ = φε, ψ is unique.
Assume next that β is infinite, for example β = + oo, and let au, bu~1eB. Then

is bounded in the upper halfplane, and hence

φ(aa(b)) = 0.

It follows that

φ(eaoί(e)be) = φ(eaoί(e)(x(ea~ 1(fe)α~ 1(e))) = 0

for all α, be A. The ideal generated by oc(e) in A is I+ x _ l 5 and hence φ vanishes on
^ + i , - i ^ = ̂ o , - i e ' which is an ideal in eAe. If OφF this ideal is all of BnA and
ψ = 0. If OeF this ideal has codimension 1 in BnA, hence φ is unique, and φ is in
fact the trace corresponding to e0. Since ψ = φε,ψ is unique. The case β= — oo is
treated similarly.

3.3. Remark. For finite β one has uniqueness of the KMS weight at inverse
temperature β on the whole crossed product of A by α, and this weight is densely
defined. For infinite β one does have infinitely many ground weights if OeF, and
none of these are densely defined. To substantiate these statements one has to give
a precise definition of what is meant by a KMS weight at value β, and we treat the
cases of finite and infinite β separately.

Consider first finite β. Let D be the crossed product of A by α. If ψ is a weight
on D, we use Dψ to denote its domain and set

Dψ

2 = {xeD, ψ{x*x) < + oo} .

We say that ψ is a ρ-KMS weight at value β if
1. ψ is lower semicontinuous.
2. ψ is ρ-invariant.
3. If XEΌ\ and the function t\->\p(x*ρt{x)) has an extension F to the strip

®«= {z, 0 ̂  sign jS I m z ^ sign jS jg}
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continuous on the boundary, then x*eD^ and

ψ(ρt(x)x*) =

(This definition is stronger than the definition in [3], see below.)

Assume that ψ is a KMS weight at value β on D. We first show that

ψ(ε{x)) = ψ{x)

for x ^ 0, where

is the canonical projection from D into A.
First note that we can find a sequence (xn) of convex combination of translates

of x by ρ converging to ε(x\ and by invariance of ψ we have ψ(xn) = i/)(x) for all n.
Since φ is lower semicontinuous this implies

for a l lx^O.
Let φ be the restriction of ψ to A It follows immediately from the KMS

condition that φ is a trace.
If x e D is a positive element with ψ(ε(x)) < + oo, consider the Fourier expansion

of x1/2. One has

χ — χ 1/2^.1/2*^ Y a IJi

n, m

and hence

It follows that αnα* rg ε(x)

φ(ana*) = ψ(ana*)^ψ(ε

and since φ is a trace

<5ΦX)< + °°

for each n, hence

(x)) < + oo

i.e. aneA\r\Aγ for all n.
Let /„ be a sequence of functions on T=R/2πZ with the following properties
1. Each fn is positive.

3. The Fourier transforms /n has finite support in T = Έ.
22 π1

4. lim — j fn(t)g(t)dt = gf(O) for all continuous functions g on T.
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Define

where the last sum is finite. Then x1/2= lim zn in norm, and hence x = lim z2 in

norm. But n^°° "^°°

and hence

Φ π

2 ) =

[One has |/n(fc)|^ 1 because | | /J 1 = 1.] Thus z2

neDψ and

φ(zn

2) = φ(ε(zn

2))^v;(ε(x)).

It follows from the lower semicontinuity of ψ in the limit rc—>oo that

We have proved that ιp(s(x))^ψ(x) for all x^O, and φ(x)^tp(ε(x)) whenever
and ψ(ε(x))< + oo. It follows that

ψ(ε(x)) = ψ(x)

for all x ^ 0. This shows that ψ is uniquely determined by φ.
If aeAφ

2, define x=Ua. Then

φ(x*x) = φ(α* (7* I7α) = ψ(a*a) = φ(a*a) < + oo

and hence xeD\. Since ρt(x) = eitx the function

F{z) = eiz\p{x*x)

is an entire analytic extension of

t-+ψ{x*ρt(x))

and it follows from the KMS condition that x*eD*£ and

e~βψ(x*x) = ψ(xx*)

i.e.

e~βψ{a* 17* ί/α) = ψ{Uaa* 17*)

or

e~βφ(a*a) = φ(oc(aa*)) = φ(a*a))

for all aeA\. It follows that A\ is α-invariant and



Temperatures of a Dynamic System 291

It follows from 2.4 that φ is unique, and hence ψ is unique, up to normalization.
Note that if one replaces condition 3 in the definition of a KMS weight ψ by

the more conventional condition given by

3'. If x,yeD^nD^*, then there exists a function F, analytic in Q)β and continuous
on its boundary, such that

= ψ(yρt(x))

= ψ(ρt(x)y),

then the KMS-weight at value β is no longer unique. If for example ψ is the KMS
weight considered above and C is a ρ-in variant hereditary C*-subalgebra of D, one
can define a new weight ψ' by

ψf{x) = ψ(x),

where x^O and xeD^nC, and

ψ'(x) = + oo

for all other x^O. One verifies easily that ψf is a KMS weight at value β in the
sense of 3'. This lack of uniqueness is generic. That is, if one adopts 3' as the
definition for a KMS weight, the weight must agree with a densely finite one,
where defined. We will not prove this here.

The non-uniqueness of KMS weights on D for infinite inverse temperatures can

be seen as follows: If OeF define additive linear functionals en

0 :GF-»IRu{ ± oo} by

en

oa = lim tna(t), aeGF. These give rise to weights on AF, also denoted by e\, such

that en

ooί(a) = 0'en

o(a) provided en

0(a)φ ±oo. The kernel of the associated repre-
sentation is I^^-i a n d thus the weights for different n are distinct. They all are
KMS weights at + oo, these weights are not finite on a norm dense set of the
crossed product. Note that the restriction of en

0 to the ideal I^^is densely defined
and lower semicontinuous, while en

Q(a) — + oo whenever a is a positive element in
AF\I<x>,n' Thus the restriction of en

0 to ΛF is lower semicontinuous, and en

ov, is lower
semicontinuous on D.

The uniqueness of KMS states on the system {B,ρ) for infinite inverse
temperatures is due to the fact that if 0 or 1 is in F then Br\AF has maximal ideals
of codimension one. This system can be modified so that for β = ± oo one has non-
uniqueness of β-KMS states, as follows. Assume that 0 or 1 is in F, and consider
the tensor product of this system with the trivial one-parameter automorphism
group on a simple unital C*-algebra R which has a unique tracial state. Then if
OeF (resp. leF\ the set of β-KMS states at β= + oo (resp. β= — oo) of the tensor
product system is naturally isometric to the state space of R.

3.4. Up to this point we have illustrated how to obtain C*-algebra with KMS
states at unique values. In fact non-uniqueness can also be specified. The first
result is arrived at by modifying the techniques above.

Theorem3.4.1. Let K12K22 ...2Kn be a decreasing finite sequence of closed
subsets O/IRΛJ{±GO} such that ±ooφK2. Then there exists a unital, separable,
simple, nuclear C*-algebra & and a one-parameter, *-automorphism group, t->ρt, of
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period 2π, acting on &. For this automorphism group there is a ρ-KMS state on & at
value β if and only if βeKv Moreover if βeKk\Kk+1 (Kn+1=φ) then the set of
(ρ,/f)-KMS states is ίsomorphic to the finite simplex with k extreme points,

Proof As in the proof of Theorem 3.2 consider the closed subsets of [0,1],
Fk = {e-β{\ + eβy\βeKk}. With F = {Fί,F2, ...,Fn) define a group GF by

with the order defined by p = φ pk > 0 if and only if pk > 0 as an element in GFk.

The rest of the proof is as in Theorem 3.2.
One can, in fact, deal not only with finite-dimensional simplexes but metrizable

ones. We write Kβ for the set of KMS states at inverse temperature β.

Theorem 3.4.2. Let βvβ2, . . .,βΠeIR be n-distίnct numbers and KVK2, Kn be n9

compact, metrizable simplexes. There exists a C*-dynamical system (β, y,IR) where
M is unital and simple and γ is of period 2π, such that & has β-KMS states if and only
ifβe{βi,...,βn} and K^KJor k=ί,...,n.

Proof Suppose first that n = l . Note that the additive group A(K^) of all real,
affine, continuous functions on K1 is a Riesz group in the usual ordering, since X 1

is a simplex. To get a simple C*-algebra, however, we need a stronger ordering.
Define α > 0 if and only if α(co)>0 for all ωeK1. Because of compactness of Kv

^(Xj) is still a Riesz group. Take as a dimension group G, any countable norm
dense subgroup of A(KX) which contains the constant function 1, which is a Riesz
group in the inherited ordering, and further is invariant under multiplication by
the scalars e±βl. Let A be the y4F-algebra corresponding to G and α the
automorphism of A which arises from the order preserving automorphism of G
given by multiplication by e~βl. Let $ denote the crossed product of A by α cut
down by a projection corresponding to 1 in G (except when βί=0 where we take
& = A cut down by [1] and y = l) and take γ to be the restriction of the dual
automorphism, on C*(A, α), to <M. The rest of the proof proceeds as before, for
n = l.

To treat the case n ^ 2 w e follow the idea in Theorem 3.4.1. Construct groups

G 1 ? . . . , Gn by the recipe in the paragraph above and then form G = (f) Gn with the
n k = l

order a = φ ak > 0 if and only if ak > 0 in Gk for all k. The automorphism α is given

n

by α = φ cck. One then constructs A as Theorem 3.4.1.
fc=l

3.5. Remark. Many of the preceding arguments are valid in a more general
context. For instance, one sees that the dual automorphism group of an
automorphism α of any C*-algebra A has a ground state (resp. ceiling state) on the
crossed product if and only if there is a non-trivial closed two-sided ideal of A
taken into a subset of itself by α (resp. by α" 1 ), as examining the proof of
Theorem 3.2 will show. In particular, one concludes that the fixed point sub-
algebra of any periodic automorphism group with a ground state is not simple.
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(Use the duality of [18] and the result of Rosenberg in [15] that the fixed point
algebra of a compact group is isomorphic to a hereditary sub-C*-algebra of the
crossed product, generating an essential closed two-sided ideal.) This is not true in
general, i.e. without periodicity as can be seen by considering quasi-free automor-
phisms of the CAR algebra. For finite β simplicity of the fixed point algebra is
allowed, of course. Both results could also be proved more directly. In fact we now
give a direct proof of the second statement above.

One sees that the algebra A" = "®A{n) where the A(n) are eigenspaces corre-
sponding to eint. Then ,4(0) is a sub-C*-algebra of A, the fixed point algebra of α r If
A(0) is simple and A( — n) + 0 for some n, then the ideal A( — n)*A( — n) is dense in
A(0). Then / is approximated by elements ΣyfXi, yi9 x^eAi — n). But if xeA(—n),
ω(x*αf(x)) does not extend to a bounded analytic function in the upper half plane
unless ω(x*x) = 0. Thus ω(]ζ yf xf) = 0. But then ω(/) = 0, a contradiction. As n was
arbitrary, this makes the automorphism group trivial.

3.6. Remark. So far only nonempty closed sets of inverse temperatures have been
considered. To get a C*-dynamical system with no KMS states at all, take a system
in which the only inverse temperature is 0, for example that of 3.1 with F={\}
(alternatively, one can take the example of Lance and Niknam in [10], which they
showed has no ground state, and which is easily seen as in 3.2, to have a β-KMS
state only when β = 0), and take the tensor product of this system with the trivial
automorphism group on a simple unital C*-algebra with no trace (for example, a
factor of type III or the algebra O2 of [4]).

4. Remarks on the Powers-Sakai Conjecture

Recall, [12], that the conjecture states that every one-parameter ^-automorphism
group of a UHF C*-algebra is approximately inner.

4.1. If F = [0,1], then B is the Fermion C*-algebra (see [1, 14, Appendix], and y is
the gauge group, an approximately inner group.

4.2. If OφF then, by 3.2, B does not have a ground state for ρ and so by 2.3 of [12], ρ
is not approximately inner. Since 2.3 of [12] is also valid for ceiling states, lφF also
implies that ρ is not approximately inner. (This idea yields a short proof of the fact
proved in [11] that the dual automorphism group in the C*-algebra O^ of Cuntz
is not approximately inner.)

If | E F but FΦ[0,1] then, by 3.2, B has a tracial state but does not have KMS
states for ρ at arbitrary nonzero inverse temperatures. Therefore by Theorem 3.2
of [12], ρ is not approximately inner.

4.3. The case ^EF shows that one can have a simple, finite amenable C*-algebra
where the Powers-Sakai conjecture does not hold. Another example of this is the
irrational rotation algebra where translation on the circle is lifted to this crossed
product. If the automorphism group is approximately inner then a ground state
exists [12, Theorem 2.3] but this must then be a ground state for the automor-
phism restricted to C(T\ an impossibility [17].

The argument used to deal with the irrational rotation algebra leads to the
following
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Proposition 4.3.1. Let ($ί,τ,IR) be a C*-dynamical system, ω a KMS state at value
/?(ΞIR\{0}U{±OO}. Suppose that πω is faithful If&QSΆ is an abelian * subalgebra
left globally invariant by τ, i.e. τt{^)Q^, then τt{B) = B for all

Proof If β is finite then the KMS condition applied only to elements in & yields
the result immediately. If β is ±00 then recall that Borcher's theorem requires the
corresponding dynamics to be inner in the abelian von Neumann algebra πjβ$).

4.4. The "first step" in trying to show that an automorphism group t-+oιt of a
C*-algebra is approximately inner is to show that unitary eigenoperators do not
exist i.e. there is no unitary operator ue 91 such that, ( + )oct(u) = eiλtu, unless λ = 0.
That this cannot occur for UHF C*-algebras was pointed out to us by A.
Kishimoto. In fact he observed that a theorem of Pusz and Woronowicz [13,
Theorem 2.1] gives the result immediately. If we write δ for the generator of αf and
τ for the trace on 9ί, they show that the function u^>τ(u*δ(u)) vanishes on the
connected component of the unitary group. Since for UHF C*-algebras the
unitary group is connected ( + ) cannot occur unless λ = 0. This idea, however,
shows much more.

Proposition 4.4.1. J/9I is a unital AF algebra then it is not the crossed product of any
C*-algebra by the integers.

Proof The unitary group of an AF algebra is connected. The dual automorphism
group and the construction of the crossed product provides a unitary and an
automorphism group satisfying ( + ) with λ=ί, since if the crossed product is a
unital AF there is a finite trace which then may be averaged to yield an invariant
trace for the dual action.

This proposition yields the "known" fact that the irrational rotation algebra is
not AF.
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