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Abstract. An important problem in the axiomatic approach to statistical
physical systems is to characterize ordered vector spaces that are isomorphic.to
the predual of a W*-algebra. Recent work of Werner has shown that the set of
interactive neutral hereditary projection on a matrix ordered complete base
norm space V is order isomorphic to the lattice of projections of a FF*-algebra,
called the matrix multiplier algebra. If there are sufficiently many of these
projections, then V is the predual of its matrix multiplier algebra. This
mathematical conception is motivated by physics. The result shows that matrix
order instead of merely partially order provides a setting in which an axiomatic
approach to statistical physical systems may be studied. In this paper the
discussion on the physical relevance of the conception of matrix order and
interactive neutral hereditary projections is started.

Introduction

An important problem in the axiomatic approach to statistical physical system
especially to axiomatic quantum mechanics is to characterize partially ordered
vector spaces that are isomorphic to the predual of a FΓ*-algebra. Recent work of
Werner [13] has shown that the set of interactive neutral hereditary projections
(inh-projections) on a matrix ordered complete base norm space V is isomorphic
to the lattice of projections of a FF*-algebra, called the matrix multiplier algebra of
V. If there are sufficiently many inh-projections on 7, then V is the predual of its
matrix multiplier algebra. Werners mathematical conception is motivated by
physics.

In this paper we want to explain the physical meaning of matrix order and
interactive neutral hereditary projections. We use the formulation of the oper-
ational approach to the theory of statistical physical systems in terms of partially
ordered vector spaces due to Davis and Lewis [5], Matrix ordered spaces were
introduced by Powers [10] and Choi and Effros [2] as the objects to which
complete positive morphisms apply. We show that matrix order is physically
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motivated by a coupling process of a general statistical physical system I with a
second special quantum system II. System II is described by the ordered space of
trace class operators on a separable Hubert space as usual in classical algebraic
quantum mechanics. Interactive operations on system I are compatible under the
coupling process with the pure state projections of system II. Neutral and
hereditary projections describe the operation of ideal filters. The simple observable
measuring the transition probability for a state under an interactive neutral
hereditary projection is called an inh-projective unit. The assumption, that the inh-
projective units separate the states implies that system I is described by a von
Neumann algebra model.

Matrix order provides an intermediate stage between merely ordered spaces
and C*-algebras. The axioms are physically motivated. The author, being a
mathematician, suggests to analyze the introduction of matrix order in the
operational approach to statistical physical systems more carefully. Especially it is
desirable to explain the matrix order of system I without assuming the con-
ventional description on Hubert space of the second system II. In an Appendix we
give an alternative equivalent system of axioms for matrix order, suggesting an
approach using several coupling processes. There is notion of a matrix convex set
dual to the notion of a matrix ordered order unit space. There are other
characterisations of C*- and PF*-algebras in terms of matrix order respectively n-
order (n = 2,3,4,...): Choi and Effros [2] show that injective matrix ordered order
unit spaces are injective C*-algebras. In [16] injective VF*-algebras are character-
ized as dual matrix ordered order unit spaces which fulfill a matricial analogue of
the Riesz separation property. In his thesis [12] Werner characterizes C*-algebras
in terms of 2-respectively 3-ordered order unit spaces. Along the lines of Connes
work [4] Schmitt shows that 2-ordered homogeneous selfdual cones are standard
representations of W*-algebras [11].

1. The Ordered Vector Space Approach

Briefly, the operational approach of Davies and Lewis [5], Edwards [6] and
others may be described as follows. The set of states of a statistical physical sys-
tem is represented by a generating cone F+ of a real vector space V+ — V+.
For mathematical reasons we introduce the complexification V = (V+ — V+)
+ i(V+ — V+) and an involution (v1 + iv2)*: = v1 — iv2 for vί,v2eV+ — V+.
Vh:=V+ — V+ is the hermitian part of V. Henceforth we call such a structure a *-
ordered vector space. V+ has a base K, which represents the normalized states. Vh

is complete with respect to the base norm. We do not require that Vh has the
minimal decomposition property. The dual space Ah = V^ is a complete order unit
space with order unit e defined for φί,φ2εV+ by (φ1 — φ2,ey = Hφj i — \\φ2\\ For
<peF+, (φ,ey = \\φ\\ is the strength of the state φ. A = Ah + iAh is the com-
plexification of Ah. A is a ^-ordered vector space. The order interval [0,e] = LdA +

is called the set of simple observables. An operation on the system is represented
by a positive norm non increasing linear operator T:Vh-+Vh.

Special examples are the von Neuman algebra model: A is a W*-algebra, V its
predual. In the conventional Hubert space approach for irreducible quantum
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systems V= T(J f), the trace class on some separable Hubert space Jίf, A =
the set of all bounded operators on Jf, with duality <φ,x> = Tr(x*φ). Our
description of the operational approach is somewhat simplified. To include
classical probability theory or the algebraic approach of Haag and Kastler one
uses a more general framework.

2. Matrix Order

Spaces with an admissible cone as an abstract setting in which completely positive
mapping and the extension property of Arveson may be studied were considered
by Powers [10]. Choi and Effros [2] made substantial progress in the theory. They
introduced the attractive name "matrix order". The theory is represented in [2]
and the survey article [7]. We use the terminology and notation of the appendix to

[7].
Given a *-vectorspace V we denote by Mn(V)=^V®Mn the *-vector space of

nx n matrices v = [vt^] with entries vtjeV and we let Mw = Mn((C). If Φ : V-*W is
complex linear we define the linear map Φπ = Φ®idπ:Mn(F)->Mn(WO by

Φ,,[Wy] = [Φ(«y)].

Definition. A ^-ordered vector space is matrix ordered, if each Mn(V), neN, is
ordered by a cone Mn(V)+ with the following property:

(m) if yeMm n is any m x n matrix of complex numbers,

A linear map Φ : V-+ W9 V, W matrix ordered, is said to be completely positive if Φn

is positive for all neN If Φ is bijective, and both Φ and Φ"1 are completely
positive, we say that Φ is a matricial order isomorphism.

C*- and PF*-algebras, their duals or preduals and other related spaces as the
selfdual cones of standard representations, their * -in variant subspaces, have a
natural matrix order. Mn itself is matrix ordered [one has Mk(Mn)^Mkn].

A map Φ : Mm->Mn is completely positive iff there is a finite set y l 5 ...,yzeMm n

of mxn matrices such that Φ(α)= £7*0^ (Choi [3]). Hence condition (m) is
equivalent to

(m') if Φ :Mm->Mn is completely positive, then

(idv®Φ)(Mm(V)+)cMn(V)+.

V is said to be a base norm matrix ordered space if Vh is a base norm ordered vector
space which is matrix ordered by closed cones Mn(V)+ [in the natural product
topology of MΠ(F)]. The dual space A — Vδ is matrix ordered by the dual cones,
e®in is an order unit in Mn(A)+ and Kn = {φeMn(V)+\(φ, e®lw> = l} is the base
forMn(F)+.

3. Physical Motivation of Matrix Order

We consider a general statistical physical system I represented by a base norm
space Vl and a irreducible quantum system II, represented by Vu. Vu is isomorphic
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to the space T(jf ) oί trace class operators on a separabel Hubert space Jf . The
coupled system IxII is represented by a base norm space Flxll.

System II has a natural matrix order. Kraus [8], Lindblatt [9] and others
discuss complete positivity oϊ operations in the algebraic approach. We require
that there are some special complete positive operations on system II. We consider
a sequence oϊ orthonormal pure states in system II, represented by an orthonor-
mal system (£X=1 in Jtf and denote ̂  = span{^1? . . . 9 ξ n } C J ( f 9 qn'.^^^n

 tne

orthogonal projection. We identify T(J^)^MM (with trace norm). The maps
Qn:T(jj?)Bφ-*qnφq*eMn and Jn:Mn3a^q*<xqneT(3f) are completely positive
norm non increasing. We impose the following coupling condition :

(c) For any norm non increasing completely positive map Φ :Mm-+Mn is JnΦQm

an operation on system II. For these operations there is an induced operation Φl on
the coupled system IxIL The correspondence Φ-+Φτ is affine

and functorial

The subspace (id^F^) is isomorphίc to FΓ

We can interpret the last condition as follows. If we keep the second part of the
coupled system in a fixed pure state the resulting subsystem is canonical
isomorphic to system I. Q1=J1 idx β1? iά1 the identity mapping of M1 = TpfJ, is
the projection on a pure state. By the functorial property the corresponding
induced map (id1)I is a projection. The image (id1)I(FIjcII) is a subsystem, where the
second part is in a fixed pure state.

Now we use simple linear algebra to show that condition (c) equips Vl with a
matrix order. We denote FII = (idw)I(FIJcII). V1 is isomorphic with FΓ The complex
linear span of the set of norm non increasing completely positive linear maps from
Mm into Mn is the set of all linear maps from Mn into Mn. The affine functor Φ^>Φl

has a unique linear extension to the set of all linear maps. We have a linear functor
from the category of finite dimensional vectorspaces Mn to the category of vector
spaces Fw(ne]N). Hence there is a natural isomorphism FII^F1®Mn,
ΦI|FM^id t ; ι(g)Φ. F! is order isomorphic to FΓ Mn(V^=Vl®Mn^Vn is ordered by
the cone MII(FI)+^Fn+ := FIIn(FIJCII) + . Let Φ:Mm-+Mn be completely positive,
then #!(Fm+)cFn+ hence (idKl®Φ)(Mm(FI)+)cMII(FI) + . The condition (m') for a
matrix ordered space is fulfilled.

4. Neutral Hereditary Projections

A fundamental problem in any approach to statistical physical systems is to define
the proper notion of "proposition" peL and the corresponding projection P of
states. In the von Neumann algebra model the propositions are the extreme points
of L= [0, e]. These are the projections (hermitian idempotents) of the algebra A.
P '.φ-^p-φ-p is the corresponding projection of a state φ. The Cauchy-Schwarz
inequality is the source for the rich structure of the projections in a von Neumann
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algebra. In the ordered space approach one needs some additional requirements.
Alfsen and Shultz defined an analogue, called a P-projection. The alternative
definition of a P-projection which is given by Theorem 2.5 of [1] reflects
properties of physical filters used for "yes-no" measurements. We introduce a
weaker notion, the neutral hereditary projections (nh-projections). We do not
assume the existence of a quasi-complement and the requirement of smoothness is
considerably reduced. On the other hand we consider matrix ordered spaces and
interactive projections. Matrix order bears some rudiments of the Cauchy-
Schwarz inequality. Hence interactive nh-projections on a 2-ordered space are
already P-projections ([13], Appendix).

Definition. A neutral hereditary projection (nh-projection) on a base norm space V
is a norm non increasing positive idempotent operator P : F-> V with the following
properties:
(n) i fφeF + and \\Pφ\\ = \\φ\\ then Pφ = φ,
(h) if x £ A + and x ̂  Pδe then Pδx = x.
p : = Pδe is called the corresponding nh-projective unit.

P represents the operation of an ideal filter. The filtered states are invariant
under the filter: P2 = P. If the strength of a state φ is undiminished \\Pφ\\ = \\φ\\
then the filter is neutral to the state: Pφ = φ. If the expected values of a simple
observable x are less than the strength of the filtered states: <φ,x>^ \\Pφ\\ for all
states φ then x measures only the filtered states: <Pφ,x> = <φ,.x> for all φ.

By condition (h) im+Pδ = {Pδx\xeA + } is a hereditary cone. The image of Pδ is
the order ideal generated by p. By condition (n) im+P = {φ\φεV+,Pφ = φ}
= keγ+(e~p) = {φ\φeF+, <(φ,e — p) = 0}. Hence a nh-projection P is uniquely
determined by its nh-projective unit p.

A nh-projective unit is an extreme point of L = [0, e]. This implies that in a von
Neumann algebra the extreme points of L are the nh-projective units and nh-
projections are of the form φ^p φ-p with peexL.

5. Interactive nh-Projections

Complete positivity of an operation is a natural and simple condition. In general
this assumption is too weak and leads only in the case of central projections to
interesting results. Interactivity will describe the interaction of a nh-projection on
the first system I with a pure state projection on the second system II. The
notation will be the same as in Chap. 3. JmεnnQm is the projection on the n-ih pure
state, where εnneMm is the usual n-th matrix unit and 1 ̂ n^m. En: = (εnn\ denotes
the induced operation on the coupled system 1x11. The functorial property of the
correspondence Φ-^Φl implies that En is a projection independent of m. Recall that
the subspace V1=E1(Vlxl^ is order isomorphic to Fj. A nh-projection P on Fj is
called interactive if there is an operation R on Vlxll with the following properties:

(iάn\R = R(idn\ is a nh-projection on Vn (nelN), E1R = RE1=P regarding the
isomorphism V1 ̂  Vl and EnR = REn = En(n = 293....).
The restriction R\Vn (neN) is characterized by the following properties (cf.

[13], Lemma 3.3).
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Definition. Let F be a complete matrix ordered base norm space. P a nh-projection
on V. P is called interactive (= inh-projection) if the diagonal matrix
diag(p,£, ...,e) is a nh-projective unit on Mn(V).

We denote the set of inh-projections by P^ and the set of inh-projective units
by U^. P^ is ordered by the usual order of projections: P^QoPQ = QP = P. U^
has the relative order of A. By Werner's result ([13], Theorem 5.1) U^ and P^ are
order isomorphic to the lattice of all projections P(Am) of a FP^-algebra Am, called
the matrix multiplier algebra. The map P(Am)-^UQO has a unique w*-continuous
linear extension Am^A which is a matricial order isomorphism. Hence Am is
embedded in A as a w*-closed subspace which is the closed linear span of U^. A
and V are unit linked bimodules over Am. For PeP^ and peU^ we have the
formulas Pφ = p-φ p and Pδx = pxp (φeV,xeA). Moreover V and A are Am-
matrix ordered: g*-Mm(V)+ gCMn(V) + and g*Mm(A)+gcMn(A)+ for all mxn
matrices g with entries in Am. (A similar notion was defined by Powers, the
algebraically admissible cones [10].)

The predual (Am)δ is matricial isomorphic to V/A^ with the quotient order. The
states φ, ψ are equivalent modulo A^ iff the strength \\Pφ\\ = \\Pψ\\ for all inh-
projections P. The assumption that the inh-projective units separate the states

and (v^P) — ̂ V^p) for all

implies that ̂  = 0, hence Am = A and V is the predual of Am.

6. Superselection Rules and Matrix Order of Classical Systems

Recall that the order centre G(V) is the span of those linear operators T on F for
which T and idκ-T are positive [14]. If Pe0(F), P2 = P, then P is said to
represent a superselection rule. Then P and P': = idv — P are nh-projections.

It is easy to see that an inh-projection P is in the order centre of V iff the
corresponding inh-projective unit p is in the centre of the matrix multiplier
algebra. An inh-projection is always completely positive. In general complete
positivity does not imply interactivity of a nh-projection.

Theorem. Let V be a complete matrix ordered base norm space and let PeO(F),
P2 = P. P is an inh-projection iff P and Pf are completely positive.

Proof. We denote by βx :α-^ε11αε11 the nh-projection on the first pure state and
by β' :a-»(ln — είi)(x,('ί — εlί) the complementary nh-projection in Mπ, where εtj

denotes the usual matrix units. IdF®β and idF®β' are nh-projections on Mn(V)
([13], Lemma 3.2). The nh-projections P®idw, P'®idn, idF®β, and idF®β'
commute, hence P®β, P®β', P'®β, and P'®β' are nh-projections ([13],
Lemma 2.3). Since (P®idJ(F<g>βO = (P'<8>βO(^®idJ = 0, R : = P®idn + P'®β' is
positive, R2 = R. K<5(e®lπ)=:(P(5®idπ-|-P/<5®β'<5)(e(>

lπ implies that R is norm non increasing.
Let xeMn(A)+, x^p®l n + p'®(ln —ε^). Then
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We obtain (P'δ®Qfδ)x = (Pfδ®Qfδ)(Pfδ®iάn)x = (Pfδ®idn)x = x-(Pδ®idn)x. Hence
x = Rδx. R is hereditary.

Let φeMn(V)+ and <<p,e®lΛ> = <R<p,έ?<g)l> Then

hence

Since P'®Q is neutral it follows that

and therefore Rφ = φ. R is neutral. K is a nh-projection with nh-projectiv unit
diag(p,e, ...,<?). Hence P is an inh-projection. Π

Let V be a matrix ordered space. Since any αeMn+ is a square: α — 7*7,
condition (m) implies that

V+®Mn+cMn(V)+. (6.1)

The dual Vδ is matrixordered by the dual cones, hence

Vδ

+®(Mn)
δ

+c(Mn(V))δ

+. (6.2)

Notice that (Mn)
δ

+ is order isomorphic to Mn+ by the usual duality
<α,j5> = trace(αίj8) for α,jβeMπ. Mn(F)+ is a tensor cone in V®Mn ([15],
Definitionl.il).

A classical statistical physical system is represented by a complete base norm
space V which is a vector lattice. V is called an AL-space. Theorem 3.1 of [15]
implies that for a Banach lattice the closure of any tensor cone coincides with the
closure of the projective cone Cp. Especially for any Banach lattice there is a
unique matrix order with closed cones Mn(V)+ =cδ(V+®Mn + ), where co denotes
the closed convex hull in natural product topology of Mn(V). Hence for classical
systems matrix order yields no additional structure. The notion of an inh-
projection and a projection in the order center coincide in this case.

7. Appendix. An Alternative Introduction of Matrix Order

The formulas (6.1) and (6.2) resulting from matrix order have a simple physical
meaning. Let V be a ^-ordered vector space representing a general statistical
physical system. Mn represents a finite quantum system called a n-level system. The
basic assumption of the following approach is that the coupled system is
represented by Mn(V)= V®Mn ordered by a cone Mn(V)+. Mn(V)δ is isomorphic
to Mn(Vδ}. It is ordered by the dual cone Mn(V)δ

+. Let φeF+, αeMn+ be states.
φ®a represents the coupling of the states φ and α without interaction. Hence it is
an element of Mn(V)+. (6.1) is fulfilled. Let XE F+, βe(Mn)

δ

+ be simple observables.
Then x®β represents the product of x and β without interaction of the two
systems and is an element of Mn(F)+. Hence 6.2 is fulfilled.
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For a π-level system Mn and a m-level system Mm we assume as usual that the
coupled system Mm(Mn) is order isomorphic to Mmn by the natural identification
Mn®Mm = Mmn. The map7m§n:Mw(MII)^Mll(Mm),7m>(8))8) = j8®a is an order
isomorphism. α®β denotes the usual Kronecker product of the matrices αeMn,
βeMm.

The next assumption is that the coupling process is associative

(mO) Mm(Mn(F))+=Mmn(F)+ (associative law)

and commutative

(ml) idF®;mιΠ(Mm(Mn(F))+) = Mπ(Mm(F))+ (commutative law) .

The formulas (6.1) and (6.2) motivated above read as follows

(m2) Mn(V)+ ®Mm+ cMm(MK(F))+ (product of states)

and

(m3'J idv®idn®a(Mm(Mn)+)cMn(V)+ for all oceMδ

m+ .

We call the conditions (m2) and (m3) the tensor cone laws.
We replace condition (m3) by

(m3') idF®α(Mm(Mn) + )cMn(F)+ for all aεMδ

m+ .

If V is a locally convex space with closed cones Mn(V)+ then (m3') is equivalent to
condition (m3). In general (m 3') implies (m3).

Theorem. Let V be a * -ordered vector space with a family Mn(V)+ of cones in
Mn(V) (rcelN). Define Mm(Mn(V))+ by (mO). // the conditions (ml), (m2), (m3') are
satisfied, then V is matrix ordered by the family Mn(V)+ (we IN). On the other hand
any matrix ordered space V fulfills (ml), (m2), and (m3')

Proof. Notice thatMf+ =Mn+ by the usual duality <α,j8> = trace(j8ία) for α,j8εMπ.
Mn has the canonical basis εtj of matrix units. Mn2 has the basis είj ®εkz

(ij, fe, /— 1, ...,n). The matrix ε= ^ε^ φε^eM^ is positive since s2 — nε. The
contraction Γ":MII2-»C,

T"(α) = trace (βrα) = X α^ for α = £ α.^ε^ ® ε fc/eMM2

is a positive linear form. By condition (m3') the map

idF®idm(χ)T" :Mn2(Mm(F))-^Mm(F)

is positive. Condition (ml) implies that

idF® T"(x)idm = (idF(x)idm® T")(idF(x);mjn2) : Mm(Mπ2(F))-+Mm(F) (7.1)

is positive. Let v = £ % (g) εfci ε Mπ( F). Then υ (g) ε = ̂  ̂  % ® εω ® εy ® εy

εMπ(Mπ2(F)). By definition of Γ" we have
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By definition (mO) and condition (m2) we get

Mn(V)+ ®Mm(Mπ)+ cMm(Mn2(F)) + . (7.3)

(7.1), (7.3), and (7.2) imply

(idv®T"®idn)(Mn(V)+®Mn2 + ) = Mn(V)+ . (7.4)

Let Φ :Mn->Mm be a completely positive map. We have

(7.5)

on the vector space Mn(F)®Mπ2 = F®Mn®Mn®Mπ. Applying (7.4), (7.5), (7.3),
and (7.1) we conclude that

= (idF®Γ«®idm)(idF®idn®idn®Φ)(Mπ(F)+®Mn(Mn)+)

C(idF® T"®idJ(Mπ(F)+ ®Mm(Mn)+)

C(idF®Γ"®idJ(Mm(Mn2(F)+)

CMm(F)+.

We have proved that condition (m') of Chap. 2 is fulfilled.
Let V be a matrix ordered space. Then the spaces Mn(V) are matrix ordered by

the cones Mm(Mn(V))+ : - Mmn(V) + . The formulas (6.1), (6.2) imply (m2) and (ml').
There is a permutation matrix πeMmn such that jm>n(α(x)jS) = π*(α(x)jβ)π. Hence
condition (ml) is satisfied. Π
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