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The Navier-Stokes Equations on a Bounded Domain*
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Abstract. Suppose U is an open bounded subset of 3-space such that the
boundary of U has Lebesgue measure zero. Then for any initial condition with
finite kinetic energy we can find a global (i.e. for all time) weak solution u to the
time dependent Navier-Stokes equations of incompressible fluid flow in U such
that the curl of u is continuous outside a locally closed set whose 5/3
dimensional Hausdorff measure is finite.

1. Introduction

Definition 1.1. Suppose f is a C* function defined on an open subset V of R® x R. If
ie{1,2,3} then D,f is the partial derivative of f with respect to the i component of
R3. The partial derivative of f with respect to the R component of R®*x R is
denoted by D,f. The letter ¢ is used because the second component of R*x R
represents time. The vector function (D1 £ D, f, D, f)is written Df. The function Af

is defined on the set V' by (4f) (x, )= Z D(D,f)(x,t). When the range of f is R* we
define the functions div(f):V—R and curl (f):V—R3 by

(div (/) (x, 1) = ; D,fi(x.1)

and

(curl () (%, ) =((D,.f3 = D3 /5) (x, 1), (D3 f; = D f3) (x, 1), (D1 f, = D, f1) (%, 1)) .

We extend these definitions in the obvious way to the case where f is a
distribution. Hausdorff measure is defined in Definition 6.5, R* 1is the set
{teR:t>0}, L? is the Lebesgue space of p-integrable functions with norm | |,
and the summation convention for repeated indices is used. If 4 and B are sets
then A~B={xe A:x¢B}.

*  This research was supported in part by the National Science Foundation Grant MCS-7903361
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The purpose of this paper is to prove the following:

Theorem 1.2. Suppose U is an open bounded subset of R® such that the boundary of
U has Lebesgue measure zero. Suppose that w°:R3—R3 is an L? function such that
wo(x)=0 for almost every x¢U and [w)(x)D,f(x)dx=0 for every C* function
f:R3— R with compact support. Then there exists a set SCU x R* and there exists
an L*°3 function u:R3 x R* - R? such that Du is an L? function and the following
properties hold :

(1) u(x,t)=0 for almost every (x,t)¢U x R*,
2 | [ ufx,0)D;f(x,t)dx dt=0 if f:R*x R—>R is a C* function with compact
0 R3
support,

(3) — j O(%)fi(x, 0)dx = Ojo f %, )] [D,fi(x, )+ Af(x, t)]dx dt

Of f“(x tuy(x, )D; f(x, )dx dt

if f:R3x R—R?is a C*® function with compact support such that div(f)=0 and the
support of f is contained in U X R,

(4) if K is a compact subset of U x R* then KNS is compact,

(5) the function curl (u) can be modified on a set of Lebesgue measure zero so that
it becomes continuous on (U x RT)~ S,

(6) the 5/3 dimensional Hausdorff measure of S is finite,

(7) the one dimensional Hausdorff measure of SN(R3 x {t}) is a bounded function
of teR™.

A few informal comments will clarify the statement of this theorem. The two
factor spaces in R x R* represent space and time, respectively. The function w® is
a given velocity vector field with finite kinetic energy which represents an
incompressible flow inside U. This function should be thought of as being defined
on U. Making w® equal to zero outside of U helps to simplify the exposition. Parts
(1)-(3) state that u is a time dependent weak solution to the Navier-Stoke
equations of incompressible fluid flow in U with initial condition w°. Again, we
make u equal to zero outside of U x R™ to simplify certain statements. Part (1) and
Due L? are a weak way of saying that u is zero on the boundary of U. The function
curl (u) is an element of L? (since Due L?). Hence curl (u) is an equivalence class of
functions which differ only on sets of Lebesgue measure zero. Parts (4), (5) state
that one of the functions in this equivalence class is continuous on the open set
(U x R*)~S. Parts (6), (7) say that S is a very small set.

Definition 1.3. If — oo Za<b=< o then
(a,b)y={x:a<x<b}, [ab]l={x:a<xZbh},
[a,b)={x:a<x<b}, and (a,b]={x:a<x=b}.

Euclidean norms will be denoted by | |. If f'is a function defined on a subset of R3
and ie{1,2,3} then D,f is the partial derivative of f with respect to the i
component of R* and Df =(D, f,D,f,D,f). If i,j,ke{1,2,3} then D f=D(D;f)
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and D, f=D(D/D,f)). The collection of C* functions with compact support
from X into Y will be written C3(X, Y). An absolute constant is a positive constant
that does not depend on any of the parameters in this paper. Since there are several
hundred absolute constants in this paper, we will denote them by the letter C
without bothering to distinguish most of them with subscripts. Thus the various
C’s below represent different constants. If a constant depends only on a parameter
H we write it as C(H).

This research was inspired by the work of Almgren [1], Leray [3], and
Mandelbrot [4]. There are other results of this nature in [5,6] and [7], where it
was assumed that U is all of euclidean space. In [5] it was shown that u is
continuous except for a locally closed subset of R®*x R* whose Hausdorff
dimension is at most 2. In [6] we had a similar result for flows in 5 dimensional
space-time (with R x R* replaced by R* x R*) where the Hausdorff dimension of
the singular set was shown to be at most 3. The proofs in [5] and [6] are very
different from the proof in this paper, which is based on the method of [ 7]. Paper
[7] was a primitive version of this type of result in which the conclusion resembled
statement (7) of Theorem 1.2.

2. Technical Preparation

Throughout this section we assume that we are given a continuous function
u:R3x R*—R3 such that

{ j3 [u(x, t)|2dx :t>0} 1)

is a bounded set of real numbers,
Du is an L? function. (2.2)

We also assume that {a,c} CR3, {b,d} CR, {m, p,n,q} is a set of integers, and the
following six properties hold:

b>272m, (2.3)
la—c]<27™, (2.4)
b—2"2m<d<b, (2.5)
270D Mg 27", (26)
272t D g —(h—272m <27 %P, 2.7
g=maximum of n and p. (2.8)

Frequent use will be made of the following definition:
Definition 2.1. If ACR®*x R and f is a function defined on 4 we use the
abbreviations I(f, A)={f and M(f, A)=the supremum of {|f(x,t):(x,t)eA}. If
A
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xeR3, teR, r>0, s>0,and h>0 then
B(x,r)={yeR’:ly—x|=r},
K(x,t,r,5)={(y,w)eR3>x R:|ly—x|<r and t—s<w<t},
A(x,r,h)={yeR3>:r—h<|y—x|<r+h},
T(x,t,r,s,h)={(y,w)eR*xRir—h<|y—x|<r+h and t—s<w<t},
D(t)={(y,w)eR®*x R:w<t}.
Lemma 2.2. If B(y,r/4)CB(x,r) and t>s>0 then
I(ul?, K(x,t,r1,5))
S Cr3s(M(lu|%, K(y, t,7/4,5))) + Cr¥(I(|Du)?, K(x, t, 7, 5))).

Proof. Using the continuity of u, the assumption Due L2, approximation by
smooth functions, and Lemma 1.2 of [7] we obtain

| |u(z,w)|?dz < Cr3(supremum {|u(z, w)|*:z€ B(y, r/4)})

B(x,r)

+ Cr2( [ |Du(z, w)IZdz)

B(x,r)
for almost every w>0. Now integrate over t —s <w=t.
Lemma 2.3. We have n=m and p=m.

Proof. From (2.6) we obtain 2-®*D <27 ™ _|g—¢|<2™™ Since n and m are
integers, we conclude n=m. From (2.7) and (2.5) we obtain

272 o~ (h—272m <h—(b—27 M) =27 2",

Again, the fact that p and m are integers implies p =m.
We will use the abbreviation

G()=K(a,b,27"=271272"—2%) if i>m. 29)

Lemma 2.4. If k is an integer, k=m+1, and 2™V <|g—| then
(@) ifk=n+1 and k<p+1 then

2% I(ju|?, K(c,d, 27,27 20+ D) < C2*27 2P M(|ju|?, D(d)nG(p +2))
+ C22*I(|Du|?, T(a,b,27™,272m 27k 2))

(b) if n>p, p+2=k, and k<n+1 then

2% I(|ul*, K(c,d, 275,27 2)) < C27*M(jul?, D(d)nG(k + 1))

+ C2%*I(|Du)?, T(a,b,27 ™, 27 2™ 27k*2))

(c) if n<p, n+2=k,and k=<p+1 then

24 I(lu|?, K(c,d,27*, 2720+ 2)) < C2%2~ 2P M ([u|?, D(d)"G(p +2)),
(d) ifk=zn+2 and k=p+2 then

2 I(lu)%, K(c,d,27%, 272 < C27*M(ju|?, D(d) " G(g +2)).
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Proof. From the hypotheses we obtain |a—c|>2" ™"V >2"k
This allows us to make the following definition: e, is the point on the line
segment joining a and c that satisfies |e, —c|=(3/4)27%.

We have

B(e;, (1/4)27%)CB(c, 27"). (2.10)
We will now prove

Ble,,(1/427%CB(a,2~m—2"¢* 1), (2.11)

If |x —e,| <(1/4)27* then the definition of ¢, and (2.4) yield
Ix—alS|x—e+le,—alS(1/427 *+(la—c|—(3/4)27F) <2 m—2~ &+ D,
The above proves (2.11). Now we will prove
B(c,27 ¥ CA(a,27™27%*2) if k<n+]1. (2.12)
Suppose [x—c| <27 Then (2.4) yields
Ix—a|Slc—al+|x—c|<2 M2k <2Tm 427k 2
In addition, (2.6) and k<n+1 yield
x—alzle—al~|x—c|
=2 m—2 2 kxpmm_pTktl_pkypmm )Tkt
The above proves (2.12). Now we show
B(c,279CB(a,2 ™—2""*2) if k=n+2. (2.13)
If |x—c|<27% and k=n+2 then (2.6) yields
[x—a|Slc—al+|x—c|<2™m—2"@+h o=k
<M=t D L 9=tk _p-m_-(n+2)
The above proves (2.13). From (2.7) we obtain
d—b+272m>2720 )5 2= 2p+2) 4 )= 20p+2)

The above and (2.3) yield

d—272p*D5p(272m )72t )5 (), (2.14)

Now we are ready to prove (a). We assume

k=n+1 and k=Zp+1. (2.15)
From (2.11) and (2.15) we obtain

Ble, (1/427%CB(a,2 "2~ ** D) CB(a,2 ™ -2+ ), (2.16)

Now (2.16), (2.5), (2.14), and (2.9) yield
K(e,, d,(1/4)27%, 272+ 2)
CD(d)NK(a,b,2 " —2"@+D 2=2m_2=20+2) — D(d)G(p+2). 2.17)
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Observe that the proof of the inclusion in (2.17) forces 27" —2"®*2 (0 and

27 2m_2~ 2+ 2., These conditions are required in Definition 2.1 [and in (2.9)].

This sort of thing will come up several times. Alternatively, we can use Lemma 2.3.
From (2.15), (2.12), (2.5), and (2.14) we obtain

K(c,d,27% 2720 D) T(a,b,27™ 27 2m 27 k*2), (2.18)
From (2.10), (2.14), Lemma 2.2, (2.17), and (2.18) we obtain
24 I(Ju)%, K(c,d,27% 272+ 2))
<24 C27 3R T2 DM (Ju)?, K (e, d, (1/4)27F, 27 20+ )
+2%C27 2 [(|Du|?, K(c,d,27*,27 2(p* D))
< C227 2P M(Ju|?, D(d)G(p +2))
+ C2%*I(|Duj?, T(a,b,27™ 27 2m 27 k+2))

Properties (2.14) and (2.3) imply that u is defined on the sets that appear above.
This proves (a).
Now we prove (b). We suppose

n>p, p+2Zk, and k=n+1. (2.19)
Using (2.19), (2.14), (2.19) again, and (2.3) we obtain
d—27%>d 272 D5 p (27 2m 27 2p+2)
>b—(27m-272)>p—(272m-27 2kt 0, (2.20)
Now (2.11), (2.5), (2.20), and (2.9) yield
K(e,, d, (1/4)27% 272k
cD(d)nK(a,b,27m—2"k+1) p=2m_=2(k+1))

=D(d)NG(k+1). (2.21)
From (2.19), (2.12), (2.5), and (2.20) we obtain
K(c,d,27%27 2% C T(a,b,27™, 27 2m 27k+2) (2.22)

Now (2.10), (2.20), Lemma 2.2, (2.21), and (2.22) yield
2%I(lul* K(c,d,27*, 27 k)
<24k C27 32 2 M(|u)?, K(ey, d, (1/4)27F, 27 %K)
+2%C27 2 [(|Du|?*, K(c,d, 2%, 27 2k))
< C27*M([u|*, D(d)nG(k + 1))
+ C2%*I(|Du|?, T(a,b,27 ™, 27 2m 27 k*2))
Properties (2.20) and (2.3) imply that u is defined on the sets that appear above.

This proves (b).
Now we prove (c). We suppose

n<p, n+2zk, and k=Zp+1. (2.23)
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Using (2.23), (2.13), and (2.23) again we obtain
B(c,27%)CB(a,2 ™—2""*2)CB(a, 2 m—2""2), (2.24)
Now (2.24), (2.5), (2.14), and (2.9) yield
K(c,d, 27k 272" 2)
CD(d)nK(a,b,27m—2"®*2 2=2m_2=20% D)= D(d)NG(p+2). (2.25)
From (2.25) we obtain
2% I(Jul?, K(c,d, 27, 272+ 2)))
<24k C2 3220 DN (ju)?, D(d)NG(p +2)) .

Property (2.14) implies that u is defined on the sets that appear above. This proves
(c).

Finally, we prove (d). We assume

kzn+2 and kzp+2. (2.26)
From (2.26), (2.13), and (2.8) we get
B(c,2"%CB(a,2 ™—2""*2)CB(a,2 ™ —2"*2), (2.27)

From (2.26), (2.14), (2.8), and (2.3) we obtain
d—272>d—-272F D5 p (27 2m_22r+2)
2h—(27m—272* D)5, (2.28)
From (2.27), (2.5), (2.28), and (2.9) we obtain
K(c,d, 2% 272k
cD(d)nK(a,b,2™m—27*2 2=2m_ 226+ )= D(d)NG(q+2). (2.29)
From (2.29) we obtain
2% I(juf?, K(c,d,27%,27 %) 2% C2 732~ 2k M(|u|?, D(d)nG(q + 2)).

Property (2.28) implies that u is defined on the sets that appear above. This proves
(d). The lemma is proved.

Lemma 2.5. There is an absolute constant C, such that (see (2.9))

d | fuCx, )12 (1x — c| 4+ (d — 1))~ *dx dt

d—2-2(p+2) R3

d
§C1( { [ Julx, 1*(1x —a] +27™) " *dx dt)
d—2-2(p+2) R3
q+1
+ Y €2 M, D) Glk+ 1))
k=m+1
q+1
+ Y C2%I(Dul, Tla,b, 2™, 22 27k+2)).

k=m+1
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Proof. For every integer k we define E(k) by

E(k)=K(c,d,27% 2720+ D)< K(c,d, 27 ** 1) 2720+ 2) (2.30)
ifk<p+1, and
E(k)=K(c,d,27 %27~ K(c,d,2~**+ D, 2~ 2+ 1) (2.31)

if kZp+2. We have
{6,0:d=2"20* Dt <dy~{le, b= ) E). (232)
k=—o

Now we will prove
(Jx—c|+@d—1)?)~4<2** D if (x,t)eE(k). (2.33)

If k<p+1 and (x,t)e E(k) then [x —c|>2"* "1 and (2.33) follows. If k=p+2 and
(x,t)e E(k) then either |[x—c|>2"®*D or d—t>272**1D [n either case, (2.33)
follows. From (2.32) and (2.33) we obtain
d
| uCx, 1*(1x — c| + (d—t)*'*) = *dx dt

d—2-2(p+2) R3

=< i 24¢F D(ju|?, E(k)). (2.34)

k=—-o

Next we prove

m+1
Y. 24 DI(|u)?, E(k))
k=— o
d
gc( f( )f|u(x,t)|2(lx—a|+2_"’)_4dxdt). (2.35)
d—2-2(p+2) R3

Since the E(k) are disjoint and (2.32) holds, it suffices to show
4D < Clx—a|+27™ % if k<m+1 and (x,t)eE(Kk). (2.36)

Suppose k<m+1 and (x,t)e E(k). Then Lemma 2.3 and (2.30) yield |[x—c|<27%
Hence (2.4) implies

x—a|+2 "< |x—c|+|c—al+2m<2 k42T m g2
<2 kg kT2 cpkt3

Hence (2.36) holds, and this implies (2.35).
There are two possibilities: Either j[a—c| <2~ ™D or 2-™* D < |g—¢|. First we
examine the case

la—c| <27 m+ 1) (2.37)
We will prove

B(c,27%CB(a,27m—2"®*2) if k=m+2. (2.38)
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If k=m+2 then Lemma 2.3 implies
2—k+2—(p+2)SZ—(m+2)+2—(m+2)=2-—(m+1)‘
Hence (2.37) implies that every xe B(c, 2~ ¥) satisfies
x—a|Z|x—c|+|c—a L2742+ D
=2—k+2—m_2—(m+1)§2—m___2—(p+2).
Hence (2.38) holds. The argument that gave us (2.14) still yields
d—272FtD5p—(272m_27 2Pt 2)5 () (2.39)

since the hypotheses of Lemma 2.4 were not used in the proof of (2.14).
Now (2.5), (2.30)+2.32), (2.38), (2.39), and (2.9) imply

E(k)cD(d)nK(a,b,2™m—2"@*2 272m_3=20*+2) = D(d) N G(p +2) (2.40)
if k=m+2. From Lemma 2.3, (2.30), (2.31), and (2.40) we obtain

o]

> 2%I(ul?, E(k))

k=m+2
p+1 o
= Y 2%I(u E(R)+ Y 2**I(ul?, E(k)
k=m+2 k=p+2
p+1
< ), 282772 AM(|u)?, D(d)NG(p+2)
k=m+2

+ > 2*C27327 2 M(|ul?, D(d)nG(p+2))

k=p+2
< C27PM(jul?, D) G(p+2)). (2.41)

From Lemma 2.3 and (2.8) we get m+1=<p+1=gq+ 1. Hence (2.34), (2.35), and
(2.41) yield the conclusion of the lemma if possibility (2.37) holds.
The second possibility we must examine is

2=+ D g (2.42)

Now we have two cases: Either n<p or n> p. Assume first that n<p holds. Then
(2.42), (2.30), (2.31), parts (a), (c), (d) of Lemma 2.4, (2.8), and p=gq [which follows
from n<p and (2.8)] yield

S 2 (uf?, E(h)

k=m+1
n+1 pt1
= Y 2%I(u? Ek)+ Y 2*I(ul? E(k)
k=m+1 k=n+2

+ i 24 I(|u|?, E(k))

k=p+2
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n+1
< Y C2272M(jul%, D(d)NG(p+2))

k=m+1

n+1
+ Y C2*M(Dul’, T(a,b,27m, 272", 27k+2))

k=m+1
p+1

+ Y C2¥2722M(|ul?, D(d)NG(p+2))

k=n+2

+ i C27*M(jul?, D(d)nG(q +2))

k=p+2

< C2727 2" M(jul?, D(d)NG(p +2)

q+1
+ Y C2%*I(Dul? T(a,b,27m,27 2 275" 2))

k=m+1
+C27?M(Jul?, D(d)nG(q +2))
= C279M(|ul?, D(d)G(g+2))
g+1
+ Y C2%*I(Du?, T(a,b,27™,27 2™, 27K+ 2)),

k=m+1

V. Scheffer

(2.43)

From (2.8) and Lemma 2.3 we get m+ 1 < g+ 1. Hence (2.34), (2.35), and (2.43) yield

the conclusion of the lemma if possibilities (2.42) and n=<p hold.

Now we consider the case where (2.42) and n > p hold. Then (2.42), (2.30), (2.31),
parts (a), (b), (d) of Lemma 2.4, Lemma 2.3, g =n [which follows from n>p and
(2.8)], and m+1=p+1=g+1 [which follows from Lemma 2.3 and (2.8)] imply

S 2% I(uf, EK)
k=m+1
Y R ER)+Y 24T(uf ()

k=m+1 k=p+2

Y 2%, E()

k=n+2

pt1
< Y €227 M(ul, DA)NG(p+2)

k=m+1

pt1
+ Y C2*I(Dul, T(a,b,27m,27 2", 27+ %)
k=m+1
n+1
+ Y C27*M(ul%, D(d)nG(k+ 1))
k=p+2
n+1
+ Y C2*I(Dul®, T(a,b,27",27 2", 27k+2))

k=p+2

+ i C27*M(|u)*, D(d)nG(g +2))

k=n+2
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< C2°272PM(|u|?, D(d)NG(p +2))
n+1
+ ) C27*M(|u?, D(d)nG(k +1))
k=m+1
n+1
+ Y C2**I(IDu?, T(a,b,27™, 272" 27k*2))

k=m+1

+ C27"M(ju|*, D(d)nG(q +2))
< C27@* DM(jul?, D(d)NG(p +2))

+ qil C27*M(Ju?, D(d)NG(k + 1))

k=m+1

+C27@* Y M(ju|?, D(d)nG(g +2))

q+1
+ Y C22I(|Dul?, T(a,b,27™ 27 2m 27k+2))
k=m+1
g+1
< Y C27*M(juf%, DA)NGlk+ 1))
k=m+1
qg+1

+ Y C2I(Dul? T(a,b,27™ 27 2m 2 k+2)) (2.44)

k=m+1

The conclusion of the lemma in this case follows from (2.34), (2.35), and (2.44).
Lemma 2.5 has been proved.

Lemma 2.6. If f:R3®*—>R, fe L?, and Dfe L? then

( J I/’(y)l3oly)1/3

B(x,r)

SOV T 0N Cr T DIy,

B(x, 2r) B(x, 2r)

Proof. Let g:R3—[0,1] be a smooth function such that g(y)=1 for yeB(x,r),
g(y)=0 for y¢B(x,2r), and ||Dg|, <Cr~*. Set h(y)=g(y)f(y). Using the argument
in Lemma 3.1 of [5] and Young’s inequality we obtain

( ] lf(y)l3dy)”3 < ( ] Py

B(x,r)

<C( MOy ] IDPdy)

§CV—1/2(f {h(y)lzdy)1/2+CrI/2(§ th(y)‘Zdy>1/2
R3 R3

B(x, 2r) B(x, 2r)

éCr"”z( § If(y)lzdy)”2+Cr”2< ) IDg(y)IZlf(y)lzﬂly)”2

+ Cr”z( ) Ig(y)IZIDf(y)Izdy)”2

B(x, 2r)

éCr'm( | lf(y)lzdy)”erCr”z( | lDf(y)lzdy)“z-

B(x, 2r) B(x, 2r)
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Lemma 2.7. If 0<h<27™ then for almost every t>0 we have

| uCx, Ol(x —c|+h)~*h™ tdx
R3

§C2‘3"'/2h_3( | u(x, 0)*(x—al +2"")_4dx)”2
R3

B(a,2_"‘+2)

+C2""/2h“3( [ |Du(x, t)lzdx>”2.

Proof. From Holder’s inequality, the conditions on A, (2.1), (2.2), Lemma 2.6, and
(2.4) we obtain the following for almost every t>0:

[ fuCx, Ol(x —c|+h)~*h~tdx

B(c,2—m™)

s( | |u(x,t)l3dx)“3( | ((;x—c|+h)—4h~1)3/2dx)2/3

T \Be,2-m) B(c,2™ ™)

< C( [ (utx, t)|3dx)”3h" 3

B(c,2-™)
< C2’"/2< [ Jux, t)lzdx) 12p=3
B(L’,Z_"”' l)
+C2"'"/2< [ |Du(x,0)?dx\"/?h"3
B(c,2-m+1)

§C2’"/2h‘3( [ ulx, t){zdx)l/2

B(a,2""+2)

+C2‘"‘/2h‘3( f |Du(x,t)|2dx)”2. (2.45)

B(a,2'"'+2)

Let E={xeR3:x¢B(c,2”™)}. If xe E then (2.4) yields

x—al+27"<(x—c|+|c—a])+|x—¢|

<|x—c|+27"+|x—c|<3|x—c|<3(x—c|+h).

Hence the Schwarz inequality and 0<h<27" yield

[ Julx, t)l()x —c| +h)~*h~ *dx

sCh™! (f lu(x, t)l((x—a|+2-'")-4dx)
E
SCH* ([ (o 0llbe—al+277)7) (x—al +277)72dx)

gcw(j |u(x,t)|2(1x—a|+2-'")-4dx)1/2(j (|x—a1+2—m)-4dx)1/2
R3

R3
§Ch—12m/2( [ fuCx, t)|2(|x—a|+2"")‘4dx>”2
R3
<Ch~32- 32 ( [ luCx, 0)*(x—dl +2"”)"“dx)”2. (2.46)
R3

If xe B(a,2™™"?) then

(x—a|+27m) 42 4mz 2 b2 m 4y dms 0 12
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Hence
( [ fulx, 0)|?dx\'"?
B(a,2-m+2)

§C( [ ux, t)l"‘(lx—al—i—2_"‘)_42“""dx)1/2

B(ayz—m+2)

=27 ] e Ol 4277 ). 247)
R3

The conclusion follows from (2.45), (2.46), and (2.47).
Lemma 2.8. There exists an absolute constant C, such that the following holds : If
h=2"®*2 then

d
P f e, 0l(x—c|+h)~*h~ Ldx dt
d—h2 R3

d 1/2
§C22"3"'/2h“2< [ tux, t)}z(lx—a|+2“"‘)—4dxdt>
a>n2 R3

d 1/2
+c22—m/2h—2(§ | |Du(x,t){2dxdt) .

d—h? B(a,2~m*2)

Proof. The hypothesis of Lemma 2.7 is satisfied because of Lemma 2.3. Now use
Lemma 2.7, (2.14), and the estimate

d

d 1/2
i If(t)l”zdtéh(i If(t)ldt) ,
2 d—h2

d—h

which follows from the Schwarz inequality.

3.

We continue to use the notation introduced in Definition 2.1 and (2.9) and we
assume that u:R3>x R* —R? is a continuous function satisfying (2.1) and (2.2).

Lemma 3.1. For every H >0 there exist positive constants C,(H) and C,(H), which
depend only on H, such that the following is satisfied. Suppose we have the following
conditions: aecR3, beR*, m is an integer, b>2"2" TI'eR™, the inequality

H ™ Yu(c,d)| £ ; | Julx, 0)]2(x — c| +(d — 0)*/?) ™ *dxdt

d
+ [ [ G 0l(x—c|+h)~*h~ tdxdt+T (3.1)
d—h2 R3

holds whenever (c,d)e K(a,b,27™,27%™), 0<h<2"™ and d>h?,
I(Du|?, T(a,b,2_"',2_2'",r))__<_C3(H)r if O<rg27mtl, (3.2)
I(Dul2, K(a,b—272" +5,27m+2 ) SC,(H)2"s if 0<s<2"?", (3.3)

b—272m+g

[ (a0 (x —af +27m) *dxde < Cy(H)2>™s (3.4)

b—2-2m R3
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holds whenever 0 <s <2~ %™ and

I'<Cy(H)2". (3.5
Then we can conclude

[u(x,t)| SC,(H)2" "' if (x,0)eK(a,b,2” ™+ 272m(3/4)), (3.6)
Proof. We choose C,(H)>0 so that (3.7) holds (see Lemma 2.5):

2°C(C4H)? <(1/4H'Cy(H). (3.7
Then we choose C;(H)>0 so that (3.8) holds (see Lemmas 2.5 and 2.8):

C,C5(H)+24C,C4(H)+25C,(C4(H) 2 (1/4)H ™~ 1C,(H), C4(H)
S(I/HH™'C(H). (3.8)

For every integer i satisfying i=m+ 1 we define Z(i) to be the union of
{(x,)eR3x R:|x—a|=2""—2"1  p—272m 1 272t <p}

and
{(x,))eR3*xR:|x—a| L2 m=2" t=b—2"2m4 2721}

If i is an integer and i=m+ 2 we define Y(i) to be the closure of G(i)~ G(i— 1) [see

(2.9)]. We also set Y(m+1)=G(m+1). We obtain that Y(i)nY(j) is empty if

li—jl=2. We also obtain Y(i)nY(i+1)=Z(i). Set P= @ Y(i). We define a
1

i=m+

function f:P—R* as follows: If (x,f)e Z(i) then f(x,t)=C, (H)2". If i=m+2 we
use the Urysohn theorem to extend this definition of f continuously to Y(i)
so that C,(H)2'= f(x,1)=C,(H)2'~' whenever (x,t)e Y(i). Finally, we set f(x,?)
=C,(H)2™* ! if (x, t)e Y(m+1). We have the following properties for every (x, t)e P
and any integer i=m+1:

If (x,t)eG(i) then f(x,t)<C,(H)2", (3.9)
if |x—al227"—27" or t<b—27?"4+2"% then f(x,0)2C,(H)2.
(3.10)
We intend to show
Julx, )| < f(x,t) forall (x,t)eP. (3.11)

If (3.11) is false then the set S={(x,t)e P :|u(x, t)| = f(x,t)} is nonempty. Since u is
continuous, # is bounded on the compact set K(a, b,2~™,2~ 2™). Hence there exists
an integer i =m+ 1 such that |u(x, t)] < C,(H)2' for all (x, t)e P. Hence (3.10) yields
SCG(i). Since G(i) is compact and the functions u and f are continuous, we
conclude that S is compact. Hence there exists (c, d)e P such that

u(c,d)| = f(c,d), (3.12)
[u(x, ) £ f(x,t) if (x,t)eP and t=d. (3.13)
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From the hypotheses we obtain that (2.1)~(2.3) are satisfied. From (c,d)e P we
conclude that (2.4), (2.5) hold. We define the integers n and p by (2.6), (2.7) [this
determines n and p uniquely in view of (2.4), (2.5)]. We also define g by (2.8). Hence
all the hypotheses of Sect. 2 are satisfied. Using h=2"®*2 and observing that
d>h? follows from (2.3) and (2.7), and that h<2~™ follows from Lemma 2.3, we
obtain (3.14) from (3.1), Lemma 2.5, and Lemma 2.8:

H™u(c, d)

<c, ( f [ lux, t)|2(yx—aj+2—'")—4dxdt)

d—2-2(p+2) R3

+ Y O MOu, DG+ 1)

k=m+1

gq+1
+ Y C.2%*I(Du?, T(a,b,27 ™27 2™ 27+ 2)

k=m+1

d 1/2
+C22_3"‘/222“’+2)( [} | Julx, t)lz(lx—a|+2_"‘)_4dxdt)

d—2-2(p+2) R3

d 1/2
+czz—m/222w+2>( | | lDu(x,t)lzdxdt) +T. (3.14)

d—2-2(p+2) B(a,2‘"‘+z)

From (2.6) we obtain [a—c|>2"™—2"" From (2.7) we obtain d<h—2" 2" 42727,
Hence (2.8) implies that either |a—c|=2""—2"%0r d<b—2~2"+2" 24 must hold.
If g=2m+1 then (3.10) yields f(c,d)=C,(H)2% If g=m then f(c,d)=C (H)2? still
follows because f(x,1)=C,(H)2"* " holds for all (x,t)e P. Since Lemma 2.3 and
(2.8) imply g=m, we can use (3.12) to conclude

C,H)2°< fle, d)=|ulc, d)|. (3.15)

From (3.9) and (3.13) we conclude

qf C.27*M(jul*, D(d)NG(k + 1))

k=m+1

= qil C27HC,(H)2* )2 <2174C,(Cy(H))*. (3.16)

k=m+1

From (3.2) we obtain

g+1
z Clzzkl(lDulza T(a,b,z—m,z—Zm)z—k+2))
k=m+1
g+1
< Y C2%C,(H)2 kT2 <207 4C, Co(H). (3.17)

k=m+1
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Setting s=d — (b—2"2™), we use (2.5), (2.7), and Lemma 2.3 to obtain 0 <s <27 2P
<272 272D 5 p 272" Hence (3.4) and (3.3) yield

d

f | fu(x, 012 (1x —al +27™) " *dxdt

d—2-2(p+2) R3
b—2"2mtg
| | Ju(x, 012(1x — a] + 2™~ *dxdt
b—2-2m R3

< C,(H)23"s < C4(H)23m2 27 | (3.18)

d

IIA

|Du(x, t)|2dxdt
d—2-2(p+2) B(a’z—m+2)
b—2"2m+g
< [ Du(x,t)*dxdt

- b—2"2m B(a’z—m+2)

=I(|Dul, K(a,b—2"2"+45,27™+2 5)) < Cy(H)2"s < C,(H)2"2~ 27 (3.19)

Combining (3.14)—(3.19), (3.5), and g = m [which follows from (2.8) and Lemma 2.3]
we conclude
H™'C,(H)2¢<C,C,(H)23™2 72 4297 4C,(C,(H))* + 297 4C, C,4(H)
+ C22— 3m/222(p+ 2)(C3(H)23m2— 2p)l/2
+ C,27 M2 2(C,(H)2m2~ 22+ C4(H)22. (3.20)
From Lemma 2.3 and (2.8) we get 23™2~ 2P <27 <29, p<gq. Using this in (3.20) and
dividing by 2% we get
H™'C,(H)SC,C4(H)+2*C(C,(H))* +2*C,C,(H)+2*C,(C,5(H)/?
+24C,(C4(H) 2+ C4(H). (3.21)

However, (3.21) contradicts (3.7) and (3.8). This contradiction was obtained by
assuming that (3.11) is false. Now (3.6) follows from (3.11) and the substitution of
i=m+1 in (3.9).

4.

As in Sect. 3, we assume that u: R3> x RT —R?3 is a continuous function satisfying
(2.1) and (2.2). The notation comes from Sect. 2.

Lemma 4.1. Suppose that acR®, be R*, m is an integer, and b>2">". Then there
exists a number e such that 1/2<e<1 and the following holds: If v:R®*x R* ->R3 is
defined by v(x,t)=e(u(ex, e*t)), ' =e™'a, and b'=e™ *b then
I(Dv|*, T(a',b',27™,27 2™, 1))
<(80)2"r(I(Dul*,K(a,b,27™*2,272m)) if 0O0<r=27""1,
I(Dv|%, K(a',b' =27 2m 45,27 ™2 g))
<(80)2%"s(I(|Dul? K(a,b,27"*2,272™)) if 0<s=<27°",
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and

b —2-2m+s

| [ e, )2 (x — /| +27™) " *dxdt
b'—2-2m RS
b
§(160)22”’S( [ ] jux, t)lz(lx—a|+2“”‘)_4dxdt) if 0<s<27%m,
b—2-2m R3 .

Proof. Define g,:R—R as follows: If h<0 or h=2""*? then g,(h)=0. If
0<h<2"™"2 then g,(h) is the integral of [Du(x, 1)|* over the set

{(x,0):|x—a|=h, b—2"?"<t<bh}
with respect to the 3 dimensional measure on that set. We obtain

lg.lly =1(Dul?, K(a,b,27""2,272"), (4.1)

h+r
§ 9.:(0)dy=1(Dul? T(a,b,h,27*", 1)) (4.2)
he

r

if0<h<2"™and 0<r<2"™"! For any integrable function f: R—R™ we define

My = sup(@)( { sy

If S is a measurable subset of R we define m(S) to be the Lebesgue measure of S.
The Hardy-Littlewood theorem ([9], p. 55) says

miheR : Mf(h)>1/c} <5cll S|, 4.3)
Hence we obtain m {heR:Mg,(h)>2""35)|g,l,} <27 and, consequently,
m{ecR:Mg,(27"e)>2""3(5)|g, I, } < 1/8. (4.4)

Now define g, : R—R and g, : R—R as follows: If t<b—272" or t>b then g,(t)
=g,()=0.If b— 272" <t <b then

g,(0)= RL'”(X’ D2 (x —a|+27™) *dx, (4.5)
gs()= [ [Du(x,t)*dx. (4.6)
B(a,2~m+*2)

Using (4.3) we obtain
m{teR : Mg (t)>(40)2*"|g,|,} <(1/8)27 2™ if i=2,3. 4.7

Let k:R—R be the function defined by k(e)=bh—2"?"¢* Then k'(e)< —2~*™ if
1/2<e<1. Hence (4.7) yields

m{eeR:1/2<e<1 and Mg (b—2"2"e?)>(40)2%"||g,|,} <1/8 4.8)
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if i=2, 3. From (4.4) and (4.8) we conclude that there exists e such that 1/2<e<1
and (4.9) holds:

Mg, (27"e) =(40)27 g, 1l »
Mg,(b—27?"e?) <(40)2*"| g, , (4.9)
Mgy(b—272"e?) < (4002 g5, -

Now define v, @, b’ as in the statement of the lemma using this particular e. If
0<r=<27™*1! then (4.2), (4.9), and (4.1) yield

I(Dv|, T(a’,b',27™, 27 2™ 1))
=(e” MYI(Dul?, T(a,b,2 " ™e, 2~ ™2, re))
<(e"HYI(Du|? T(a,b,2"™e,27 2™ re))
<(e”H2re)Mg,(27™e)
=(80)2"rllg, 14
— (80)2"rI(Duf%, K(a, b, 2~ ™+ 2,2~ 2m) (4.10)
If 0 <s<272" then (4.6) and (4.9) yield
I(|Dv]?, K(a,b' =27 2" 45,27m* 2 5))
=(e"HI(|Du|? K(a,b—2"Me? + 5e2,27 ™" 2¢, se?))

<(e"HYI(Du|*, K(a,b—2""2e* +se*, 27 ™% 2 s5¢?))
=(e7M)(2se*)Mg,(b—272"e?)
=(80)2%"s]|g,ll;
— (80)22"sI(|Duf2, K(a, b, 2~ ™" 2,2~ 2m) 4.11)
If 0<s<272" then (4.5) and (4.9) yield
b -2-2mas
j I [v(x, 2(x —a|+27 ™)~ *dxdt
p—3-2m R

b—272me2 + se2

=(e_3)( b_ZLmZ RLIu(x,t)lz(Ie_1(x—a)l+2"’)"“dxdt)

b— 2~ 2me2 + se2

g(e“3)< | [ u(x, 0)1*(jx—af +2_'")_4dxdt)

b—2 " 2mg2

S(e7>)2se*)Mg,(b—27"e*) < (160)2*"s] g, ,

b
=(160)2%™s ( [ f e, 0)2(x —al+ 2"”)4dxdt) . (4.12)
b—2-2m R3
The conclusion of the lemma follows from (4.10), (4.11), (4.12).
The purpose of Sects. 2-4 is to prove the following theorem:

Theorem 4.2. For every positive number H there exist positive constants Cs(H) and
C4(H), which depend only on H, such that the following is satisfied. Suppose we have
the following conditions: aeR3, beR™, m is an integer, b>2"?" I'eR™,



Navier-Stokes Equations on a Bounded Domain 19

u:R3x R —R3 is a continuous function satisfying (2.1) and (2.2), the conditions

I(Dul?, K(a,b,27™*2,27 ™) < C4(H)2™™, (4.13)
b
[ ] G, 0)2(x—al+27™)~ *dxdt < C4(H)2", (4.14)
b—2-2m R3
F<CyH)2" (4.15)

are satisfied, and inequality (3.1) holds whenever c, d, h satisfy the properties
(c,d)eK(a,b,27™ 272™), 0<h<2~™ and d>h?. Then we can conclude that (4.16)
holds :

[u(x, )ISCx(H)2™ if (x,t)eK(a,b,27™m"2,272m3), (4.16)

Proof. We set Cs(H)=(160)""C,(H) and C,(H)=(4)C,(H) (see Lemma 3.1). We
use Lemma 4.1 to find e and define v, @', b". Then the hypotheses (4.13) and (4.14)
and Lemma 4.1 yield

I(Dv|%, T(a',b',27™, 27 2™ 1))
<C,(Hy if 0<rg27m1,
I(Dv?, K(a',b' =27 2" 45,27 ™2 g))
SC,(H)2ms if 0<s=<27%m,

b'—2-2m+g
f f [v(x, 0)|*(]x — a'| +27™) " *dxdt
R3

b —2-2m
SCL(H2%s if 0<s<272m,

Our objective is to show that the hypotheses of Lemma 3.1 hold when a, b, I', u are
replaced by a', b, e, v. The above shows that we already have the analogue of
(3.2)~(3.4). The analogue of (3.5) and b’'>2"?" follow from 1/2<e<1 and the
hypotheses. We proceed to prove the analogue of (3.1). We assume
(c,d)eK(d,b,27™ 272, 0<h' <27 ™ d' > (W) Setting c=ec’, d=e*d’, h=eh’ we
obtain (c,d)e K(a,b,27 ™27 ?™)and 0<h <2~ ™ from 1/2<e< 1. We also conclude
d>h?. The hypotheses of the theorem yield (3.1) (as written), which can be
expressed as

H™ (¢, d)
o
s | [ O9)P(ly—cl+(@—9)"?) " *dyds

T o= R3

i
+ [ O, s)(y—c|+h)"*n) 'dyds+el .

d’'—(h')2 R3

This is the analogue of (3.1). Lemma 3.1 yields |v(x,t)<C,(H)2""! if
(x,0)eK(a,b’,2=m* 1) 27 2m(3/4)). Combining this with 1/2 <e <1 we obtain (4.16).
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5. Properties of Approximate Solutions

Definition 5.1. We fix, once and for all, a C® function 0:R3—[0,1] such that
0(x)=0if |x| =1, O(x)=1 if |x|] < 1/2, and O(x)=0(—x). We define 8’ C?(R?, R) by
0'(x)=0(x)/||0]|, and for every >0 we define 0, C3(R3, R) by 0.(x)=¢36'(c~ x).
We have [6;],=1 and the estimates [0,|,=<Ce™> |Df;|,=Ce™* |D,0.l,
<Ce¢ % and ID; el = Ce™°.

For the remainder of this section we fix 0 <a<e such that

14(0;) — 40, %0, 0)[ , =1. (.1)

This means, of course, that o is much smaller than ¢ when ¢ is small.

Definition 5.2. We set #=0,, Q=0,, and ¥ =P+ Q. Observe that we have ||, =1,
P()=0 if [x|22¢, |, <P, |2, <Ce % DY, <|Dd|,IQl,SCe,
ID;¥),<Ce™? and |D,; ¥, <Ce° Let X be the Hilbert space of all square
integrable functions f: R®*— R? with the inner product (f, g)= [ f{(x)g,(x)dx. Recall
that U is the open subset of R® given in Sect. 1. We define W to be the closed linear
subspace of X consisting of all w such that (1) w(x)=0 for almost every x¢U, (2)
[w{(x)Dg(x)dx =0 for every ge CZ(R?, R). The orthogonal projection of X onto W
will be denoted by P. The function S: W—X is defined by

S(w); = —((w;* P)D (w;x V) + P + A(w;+ Q% Q). (5.2)
Lemma 5.3. There exists a number M < oo (which depends on ® and Q) such that
[P(SW) = PSW)I =M lw—=wll,(Iwll, + Wl +1) if w,weW.
Proof . Using Young’s inequality and the Schwarz inequality we obtain

1S(w); = SwW);ll 5

= [[((wy PY(w; = w) =D ;W) ¥+ ((w; — i)+ P)wix D; ) « P
+ 1w, —w)x A2+ Q)

= [[w;x P)(w; = w)+ D P | PNy + 11w = wi) = ) wix D25 [ Pl
+lIw;—=will o [| 42+ Q)4

= llwyx Pl 1w, = wi) =D 5 + [ (w; = wi) = Pl [l wi D Pl
+llw; = will | 42 Q)]

SHwill I Pl lw; = will 1D P+ Ty = Wil N2 Wil 1D 21
+lIwi = will o[ A2+ Q) .

Finally, we have ||P(S(w)—S(W))|, < S(w)— S(w')|, because P is an orthogonal
projection.
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Lemma 5.4. If we W then (P(S(w)), w)= — [|D(w*Q)(x)|*dx.

Proof. The definition of W, the symmetry of ¥ and @, and approximation by C®
functions yields

(P(S(w), w) = (S(w), w)
= —[((w;* P)D (w; % V) VW, + [ (A(w; * 2+ Q))w,
= — (W P)D (w; P)w;x P)+ [ (A(w, % Q))(w;* Q)
= —(1/2)(J(w;+ YD (jw* P|*)) = [ID(w* Q)| = — [|D(w*Q)|*.

Definition 5.5. If f is a function from an open interval of R into X, s is an element of
the interval, and (f(s+ h)— f(s))/h converges in norm as h approaches zero, then the
limit is denoted by D, f(s).

Recall that w® is the initial condition given in Sect. 1.

Lemma 5.6. There exists a norm continuous function w:[0, 00)—W such that
w(0)=w°, D,w exists and is a norm continuous function from (0, c0) into W,

(D))= PSOHS)), 53)

I, < W0, i 520, (54)
and

[ ID0ts)s P0Pads (/2012 55)

Proof. The result in Lemma 5.3 and the standard local existence proof for ordinary
differential equations yield 6 >0 with the following property: If se R, w'e W, and
[w'l,<[|w°]|, then (5.3) can be solved on the interval [s,s+6] with initial
condition w’ at s. Since Lemma 5.4 yields (d/dt)|w(t)|| 3 <0 for any solution of (5.3),
the local solutions can be pieced together into a global solution with initial
condition w° at 0 that satisfies (5.4). From Lemma 5.4 we obtain

:f L ID(w(s) * Q)(x)*dxds = (1/2)[ w° 3.

In addition, Young’s inequality yields

st [D(w(s) * P)(x)|*dx = 13‘3 |D(w(s) * Qx D)(x)|2dx

R3

= (f ID(W(S)*Q)(X)Ide) [

Now (5.5) follows from | @], =1.

Lemma 5.7. If f:R3~{0}—>R is a C* function, if i, j, k are elements of {1,2,3},
M20,|f(x)| <M|x|™ ", D, f(X) <M|x| ™%, ge CF(R?, R), r >0, and g(x) =0 whenev-
er |x|=r then
(f+g) ) = CM(llglly +7[lgll HIxI™ 1,
|Dijk(f*g)(x)|§CM(||g||1+r6||Dijkgl|w)|x|_4,
1D (f*9)]l o <CM(|lglly + D391 ) .
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Proof. If |x| = 2r then

Ifxg)Cl=| | f (y)g(x—y)dy‘
k=52
§M(IX{/2)‘1(‘ ) lj<| " Ig(x—y)ld)/) =2MIx|" gl -

If |x| = 2r then a similar argument yields
ID;(f#9) ()| = |(Dyfxg) (x)| S 16M x|~ *|| g, -

If |x| <2r then

I(fxg) (x)| = | l£ \ Sglx— y)dy[
é(’ '£3 lf(y)fdy) lgll o = CM72|ig]l , = CMr~*(r*llg]l..).-

Once again, if [x] <2r then the same argument yields
ID(f29) ()| =1(f£D,,9) (x)| £ CMr?| D g, = CMr~ (| D g .).

The conclusion follows by combining these estimates.

Definition 5.8. The functions J: R*~{0}—R and Q,:R3>—R for >0 are given by
J(x)=—(@nlx])"", (5.6)

0,(x)=(2]/n) 73t~ exp (—|xI?/(41)). (5.7)

Lemma5.9. If t>0,R > 2(t'/%), A(x)=0((2R) ™ *x), J'(x) = A(x)J(x), and g(x) = A(x)Q,(x)
then

D, 3 (J'xgx P V) (x)| S C(Ix| +1?)~* for all xeR>.
Proof. We fix i, j, ke {1,2,3}. The integer n is defined by the condition 27 "R >¢'/?
>27""1R. From R>2(t'?) we conclude n=1. For any integer m satisfying

0=m=n we set 4,(x)=A2"x). We also define g,,(x)=(4,,— A+ ) (X)Q,(x) for
0<m<n, and g,(x)=41,(x)Q,(x). We have the following properties:

g(x)= Zog,,,(x), g ()=0 if [x|Z2'""R, Y 9.l =llgl;=1,
m= m=0

X QRPN SC, X QT RCID S
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We also have |J'(x)| <Clx| ™%, |D,;J'(x)] £ C|x|~*. Now we can use Lemma 5.7 to
conclude

(g (S S 175g,) 0

< 3 Cllgal, + 2 "RE gl S ORI (58)
IDI's0) (IS 3 1D, 56,) )
< 3 Cllgaly+@1 " RID g S Clxl ™, (59)

1Dl *9) o = ;0 DT %G ) o

= Z,O C(lgmlly + @' "RYID gl ) (21 T"R) ™

B3

Z (lgulls + @1 "R)IDyjgmll ) (£1/2) " * < C(112) 7. (5.10)

We also have

[P, =P, IIP],=1
and
D,

(P o = 1Dy Pl W] S Co™°.

ijk ijk

Hence (5.8), (5.9), the fact that (P+¥)(x)=0 whenever |x|=4e, and Lemma 5.7
yield

1D (g W W) ()| S C(| PP, +(40)° | Dy P V) )Ixl " * < Cx( ™. (5.11)
From (5.10) we obtain

1Dl #g# P P)| o, 1Dy J 5G| o | ¥ Pl 4
= IDy T %)l o = CVP) . (5.12)
Now (5.11) and (5.12) yield the conclusion of the lemma by considering separately
the cases |x|>t'/? and |x|<tY/2

Definition 5.10. The i components of w(s) and (D,w)(s) will be written w,(s) and
Dw{s) (see Lemma 5.6). We will also use the notation wi(s)=w(s)«¥ and
w'(s)=w(s)x .

Lemma 5.11. If the hypotheses of Lemma 5.9 are satisfied, ce U,

{xeR3:|x—c|<4R+2e}CU,
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and s>0 then
I R§3 L(D,wis)— A(wi(s)) (x)] [A(g*J") (x — C)]dX’

= C(RL 0w(s) )P (1x — ] + t”z)"“dX> + WOl A=)l -

Proof. We fix ie{1,2,3} and define f:R*—>R> by f,=g, ;=0 if j+i. We have
A(f+J'+¥)= —curl (curl (f+J'+ )+ grad (div (f+J'+¥)).

Hence we can use D,w(s)e W, the fact that the function
h(x)=curl (curl (f+J'*¥))(x —c)

is an element of W, (5.3), (5.2), and w(s)e W to conclude

JL(Dwi(s) ()1 [A(g#J") (x — c)]dx
= [ [(Dw,(s)) ()] [A(f,#J") (x —c)]dx
= [ [(Dw,(s)) ()] LA+ P) (x — ¢)]dx
= — [ [(Dw,(s)) (x)] [curl (curl (f+J'* ) (x — c)] dx
={ L(W(s)D (w;(s)+'P) (x)] [curl (curl (f*J"*P)) (x — )] dx
—j [A(w,(s)xQxQ) (x)] [curl (curl (f+J'*¥)) (x — )], dx
= — JLW{(8)) ()] [(w}(5)) (x)] [D curl (curl (fJ"+ P P))) (x — )], dx
+ [ [A(w,(5)xQ2xQ) (x)] [A(f,xJ'*¥) (x — c)]dx. (5.13)

The Schwarz inequality, (5.4), Young’s inequality, (5.1), and Definitions 5.1 and 5.2
yield

I LA(wi(s)) (x)1 [4(g+J") (x —c)1dx
— [ [A(w,(s)%Q*Q) ()] [A(f,+J"* P) (x — ¢)]dx]
=] [Owi(s)x4P) (x)] [A(g*J") (x — ¢)]dx
— [ [ws)=A(Px2+Q)) (x)] [A(g*J") (x — c)]dx]|
= [W(s)H(A(P#Q2) — A(PxQ2xQxQ)) ||, [| A(g+T ) [ 1
= W), [1(A(P) — AP+ Q)+ Q||| Alg=J ),
S WOl A(®) — A(PQ+Q) Q11 [ Alg*T ) S WOl Alg=T )l - (5.14)

Finally, (5.13), (5.14), and Lemma 5.9 yield

If LD, wils) — A(wi(s)) (x)] [A(g+J") (x — c)]dx|
<IJ L) ()T [wy(s) ()] [D(curl (curl (f+J"+ ¥+ ¥))) (x —¢)1,dx]
+ WOl Nl 4(g+I) 4
<CJ W) )2(x — | +£1/2) " *dx) + [[w° | A(g =T ), -
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Theorem 5.12. There exists an absolute constant C,> 0 with the following property :
IfceU,0<h<R/2,d>h? and {xeR3:|x—c|<4R+4e} CU then

C3Hw@)(e)
d
< | JIWE) @P(x—cl+(d—s)t?) " *dx ds
d—h2 R3
+ } J 1w s) (x—c|+h)"*h~ 'dxds
d=h? R3
+ 2| WO, + R WO ,R ™72 |wO| ,R ™2,

Proof. We fix ie {1,2,3}, define 1 and J' as in Lemma 5.9, set J"(x)=(1— A(x))J(x),
and define the function g and f from [0,d) into CZ(R?,R) by

(g(s) (x)=Ax)Q,_(x),  f(s)=4(g(s)xJ").
We have
J(s)=A(g(s)xJ)— A(g(s)xJ") = g(s) — g(s)x 4" (5.15)

Since J"(x)=J(x) for |x|>2R, we obtain 4J'(x)=0 for |x|>2R. We also have
J'(x)=0 for |x|<R. Combining this with [|4]|,<1, |DA|,<CR™', and
[44], <CR™? we obtain

14", =C,  4J"|,=CR™*2. (5.16)
From (5.15) and (5.16) we obtain

Lf &I =gl + 1914771, =C. (5.17)
If we set Y(x,s)=0Q,_(x) for s<d then we obtain D,Y+ AY=0. Hence we conclude

(Dg(s)+ 4(9(5))) (x) = AAx)Q, - (%) + 2D;A(x)D;Q, _ (x)). (5.18)
This shows

(Dg(s)+ A(g(s)) (x)=0 if |x]<R or [|x|>2R. (5.19)

We also have the estimates [Q,_ (x)| < C|x| ™3, |D,Q,_ ()= C|x|~* If |x| > R then
(5.18) yields

I(D,g(s)+ A(g(s)) ()| SCR %|x| >+ CR x| *<CR™5 if [|x|>R. (5.20)

Now (5.19) and (5.20) yield | D,g(s)+ A(g(s))||, <CR™ /2.
Combining this with (5.15) and (5.16) we obtain

ID,f(s)+ A(f(s)]l, = CR™ 2+ Dg(s) + A(g(s) |1 4J"]| ; <CR™ /2. (5.21)
From Definition 5.10 and (5.4) we obtain

IWEI = WS LIPS W)l = w0, (5.22)
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Now suppose d—h?<s'<d—h?*/2<s"<d. From Lemmas56 and 5.11, the
Schwarz inequality, (5.21), (5.17), and (5.22) we obtain

|4, LD T L) el
AU IRy

S[ éfs L(Dwi(s)) ()T L(f(9)) (x — ¢)Jdx ds

+1 ] IO (T (v

=

SI IL LDwi(s) ()] [(f(s)) (x —¢)]dx ds

- sj ]i& [(wi(s)) (x)] [A(f(s)) (x —c)]dx ds

+ f zi(s [wi(s) ()] LD, S () + A(f(9))) (x — c)]dx ds

gc(f 10/ 6) QP (=l +(d =92 dx ds)
+ ;f Wl Ll f )l ds+C Cf W (s)I,R™ 7’2d8>
=C (f §3 I(w'(s)) ) *(x — cf + (d —5)"/?) " *dx dS>
+ CS(SR =) WO, + Cls" =) |wO|| ,R™ 772 (5.23)
In addition, (5.15), (5.22), and (5.16) yield
‘ st [wi(s)) ()T [(f () (x — c)]dx
- st L(wi(s)) (x)] [(g(s) (x — c)]dx
SIWElg@)=aT" [, = WOl llg ) 477, = Cllw° [ ,R ™3/ (5.24)
when s=s' or s=5". From (5.23), (5.24), and the properties of &, s we get
' IL [wi(s") ()] [(g(s")) (x — c)]dx
- Rfs Lwi(s) ()] [(g(s) (x—<)] dx‘

gc( j f‘l(W'(s))(x)lz(lx—cl+(d—s)”2)“‘dxds>

+ Ch2||w°|| ,+ Ch2||wP°|| ,R™ 72 + C||wP| ,R 32 (5.25)
2 2 2
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From Lemma 5.6 we obtain that the function u(x,s)=(w'(s))(x) is bounded and
continuous. This implies

111}} Rf [wi(s™) ()] [(g(s")) (x = ¢)]dx = (wi(d)) (¢) . (5.26)
Since d—h?<s'<d—h?/2 we have
[(g(s) (x = =10y y(x— ) S Clx —c|+h) " *h. (5.27)

Combining (5.25)-(5.27) we obtain
d

I(w’(d))(c)léc(f [ 1w'(8)) ()| 2(jx — ] +(d— s)1/2)-4dxds)

d—h? R3

+C ( R§3 0w/ (s") (NI — ¢l + )~ *h dx)

+ Ch?||w°], + Ch?|w°||,R™ 72+ C||w°|| ,R™3/? (5.28)
for d—h?<s' <d—h?/2. The conclusion follows by averaging (5.28) over s'.

Lemma 5.13. If s>0, fe CY(R3, R), the distance between spt(f) and the complement
of U exceeds 2e, ie{1,2,3}, the function g:R>*—R?> is defined by g,=f, g;=0
whenever j=+1i, and z:[0, 0)—X is defined by z(s)=curl (W'(s)), then
JL(Dz(s) ()] [f (x)]dx
= [ [W()) ()] [(z(5)) ()] [D(f+ P+ ) (x)]dx
— [ [(zs) )] [wi(s)) ()] [D j(f* ¥+ ) (x)]dx
+[ [(z(s) ()] [4f (x)]dx
+ [ [ ()+(A(PQxQ) — AP)) (x)] [curl (9) (x)],dx.
Proof. We fix ie {1,2,3}. The fact w(s)e W implies div(w'(s))=0. Hence we obtain
curl (Wi(s)D (w'(s))) = wi(s)D (z(s)) — z (s)D (w'(s)) .

Hence the property curl(g)«¥e W, Lemma 5.6, and the properties div(w'(s))=0,
div (z(s)) =0 yield

JIDzs) (x )] Lf(0)]dx = [ [(D,z,(s)) (x)] [g,(x)]dx

= [ [(D,w,(s)) (x)] [curl (g) (X)] dx

=] [(D (S (x)] [(curl (g)+¥) (x)],dx

= — [ L(wi(s)D(w,(s))*¥) (x)] [(curl (g)x ¥) (x)],dx
+ [ [A(w,(5)x2%Q) (x)] [(curl (g)+ ¥) (x)],dx

= — [ LW ()D (2,(5)) = z{(5)D (w;(5))) (x)] [(g,* ¥ P) (x)]dx
+[ [4(w;(s)) (x)] [eurl (g) (x)],dx
+ f [(w s)* AP +Q+Q)— AY)) (x)] [curl(g) (x)],dx

= [ [W}(8)2,(5) = z(s)wy(s)) (x)] [D (g, * ¥ P) (x)]dx
+J [(Z,, S)) (x)] [4g,(x)]dx
+ [ LW ()x(A(PxQ2xQ2)— AWP)) (x)] [curl (9) (x)],dx .
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The conclusion of the lemma now follows.
Definition 5.14. The functions u and z from R3x [0, c0) into R* are defined by
u(x,s)=w'(s))(x) and z(x,s)=(curl (W(s))) (x).
Note that
e, ) = W), 21, < w0l 121,
and
IDu(x, ) < [wls)l, | D], < w0, | DI,
(see Lemma 5.6). Hence u and z are bounded functions.
Lemma 5.15. If ac U, beR, and h>0 such that
b>h?*, {xeR3:|x—a£h}CU,
and ¢ <h/64 then there exist integrable functions
F:R3x(—00,0)—>R,
G:R®*x(—00,0)>R3,
and
H,;:R3®x (—00,0)->R?

for ie {1,2,3} such that
(a) if either |x|=h/8 or s< —h?/8 then F(x,s)=0 and G(x,s)=H(x,s)=0,
(b) [IFl, <C, [Fllg)s<Ch™%5, | Gll, <Ch, | Gllgs < ChUS, |H,|l, < Ch,
(¢) if ceR3, |c—a|<Th/8, and b—Th?*/8 <d<b then

3

z(c,d)= i ) [u(x, 8)z(x, 8) — z/(x, S)uy(x, )]G (x — ¢, s — d)dx ds

z(x,8)F(x—c,s—d)dx ds

_|._

©

R

_l_

Qb A O %=

[(w,(s)+(A(P*QxQ) — AW¥)) (x)] [H,(x — ¢, s — d)],dx ds.

R

Proof. We can find a C*® function :R—[0, 1] such that f(s)=0 if
s<—h?8, Ps)=1 if s=-—h?*16,

and ||D,B| ., £32h~2 We also define
n:R3-[0,1] by n(x)=0(16h"1x)

(see Definition 5.1). We fix ie {1,2,3} and define the functions
f:R3x(—0,00»R and g¢:R3®x(—0,0—»R?

as follows:

f(x’ S) = ﬁ(s)’?(x)Q - s(x) > gi(x’ S) = f(xa S) 5
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and
gx,s)=0 if ji.
We set
F=D,f+4f, G;=D;f+P+¥Y, and H,=curl(g).

If ¢ and d are as in part (c) and d —h?/16 <d’ <d then Lemma 5.13 yields

j 2%, dW(x —c)Q,_p(x—c)dx = [ z/(x,d)f(x—c,d — d)dx

l} j (X, S)f(x —C,§— d)dx ds

[

3

da’
+{ | z{x,9)D.f(x—c,s—d)dx ds
0 R

oe—ﬁn.

j Lu(x, 5)z,(x, 5) = 2(x, S)uy(x, )]G (x — ¢, s — d)dx ds
R

P

+ [ | z{x,)F(x—c,s —d)dx ds

R3

F [ [ [w, (s)-(A(P+QxQ)— AP)) (x)] [H,(x —c, s— d)],dx ds. (5.29)

d
|
0
a’
|
0 R3

Part (a) follows from g<h/64, Definition 5.1, and Definition 5.2. We have
F(x,s)=0if |x| <h/32 and —h?*/16 <s<0. This yields the estimates on F in (b). We
also have

G, = 1D U PP = 1D f I I PN 1= 1D,

for p=1 and p=6/5. This and the definition of f yield the rest of (b). Since z is
bounded and continuous (see Lemma 5.6), the left hand side of (5.29) converges to
z{c,d) as d'—~d. Since u, z, and w(s)x(A(P*2xQ)— A¥) are bounded and G, F, H,
are integrable, we conclude that the integrals in (c) exist and that the right side of
(5.29) converges to the right hand side of (c) as d'—d.

Theorem 5.16. If ac U, beR, h>0, b>h?, {xeR3:|x—a|<h}CU, e<h/64,
K, ={(x,5)eR>*x R:|x—a|<(4+m)h/8,b—(4+m)h*/8<s<b}, (5.30)

M =max {Ju(x,s)|:(x,s)eK,}, and M'= | |Dul* then there exist a function
K4
y:[0, 00)—>[0, c0) and a number A< oo such that

(a) y and A depend only on h, M, M', and |w°|,,
(b) p(0)=0 and lim y(6)=0,
5-0

(©) lzle,d)| = A if (c,d)e K,
(d) [z(c,d)—z(c",d) S y(lc—c'|+|d—d')) if (c,d) and (c',d') are elements of K,
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Proof. If (c,d)e K, we define (see Lemma 5.15)
zc,d)= tji | [u (%, 8)24(x, 5) = z (X, Su(x, 5)]G (x — ¢, s — d)dx ds
0 R3
+ iif | z{(x,s)F(x—c,s—d)dx ds,
0 R
z{(c,d)= dj | [ (9)+(A(P*Q2xQ)— AP)) (x)] [H{(x —¢,s —d)],dx ds.
0 R3

We have z=z'+z". Using Lemma 5.6, Definition 5.1, Definition 5.2, Lemma 5.15,
and (5.1) we obtain

|zi(c,d)| = g (W)l 1 A(P R+ Q2) — A 2)( gs |Hx—c,s— d)ldX) ds

< CWO |, (A(P24Q) — AB)2|
< C[w0l| | A(@+@x2)— A, 2] ;h < Cl[w] b (5.31)

Using Young’s inequality | f+glls < f1,llgll s (see [8, p. 271]) and Lemma 5.15
yields

(K§3 IZ'I3)”3§C(I£4 (IuHZI)z)”2 [Glless+ C(Kf4 l212)1’2 IFles-

Since (5.31) yields ( { |z~[3)”3 < C|wP|,h®3, we can use Lemma 5.15 and the above

K3
to obtain

J‘ 123\ <C j (ullz)?\/2h V6 + C J‘ |22 1/2h—5/6+C”W0“2h8/3
(K3 ) (K4 ) (K4 )

§C(M+h-1)( f |z|2)1/2h”6+C||w°|12h8/3 . (5.32)
K4

Once agamn we can use Youngs inequality [ f+glls=|fll5lglle;s and
Lemma 5.15 to obtain

[ 121V =C( [ (ullz)' 2 1G5+ C( [ 12172 [ Fllgs-
(&=L ) )

From (5.31) we obtain (f |z”16)1/6§C|[w°||2h“/6. Hence Lemma 5.15 and the
K;

above yield
(j' |Z'6>1/6§C(j (lullzl)3)1/3 h1/6+c<J‘ [Z|3)1/3h—5/6+C“W0”2h11/6
Ko K3 K3

<CM+h" 1)<j |z|3)”3h”6 +CwO)| htHe (5.33)
K3
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If (c,d)e K

then Holder’s inequality, Lemma 5.15, and (5.31) yield

|z(c, ) = 2'(c, d)| +|2"(c, d)|
= C( [ (lu IZI)6)”6 IGlle/s+ C(g IZI6>”6 IF 65+ Cllw°ll b

K>

§C(M+h_1)(j [Z|6)1/6h1/6+C||W0||2h.
K>

31

(5.34)

Combining (5.32)~(5.34), and the estimates (j |212)1/2§C(§ |Du|2>1/2=C(M’)1/2

Ka K4
we obtain that |z| is bounded on K, by a number that depends only on h, M, M,
and |[w°|,. We conclude from this and from the argument in (5.31) that the

functions

lux,5)z(x,5)], |z(x,5)l, and |(w,(s)*(4(¥Q2xQ)— AP))(x)|

are bounded on K, by a number that depends only on h, M, M’, and |w°|,. The
rest follows from Lemma 5.15 and the definitions of G, F, and H,.

Lemma 5.17. There exist absolute constants Cg and Cq such that

o= 8

R3
and

b

]

p—2-2m

<C,

[uCx, )] dxdt < Cg|w°|3°7

Rfs lu(x, ) %(x — a] +2 7™~ *dxdt

b 3/5
( [ ] fux, t)|1°/3(|x—al+2_"’)_4dxdt) 27 2mi5
R3

b—2-2m

whenever b>2"%" and acR>.

Proof. Using Holder’s inequality, the first inequality in Line 9, p. 127 of [8],
Definition 5.10, Definition 5.14, Young’s inequality, and Lemma 5.6 we obtain

[ § lu(x, 0)|**dxdt

0 R3

Il

IIA

IA

IIA
o8 908 o8 o8 o038

lIA

luCx, t)|*u(x, )| **dxdt

= —

u(x, t)|6dx>1/3 (1!3 [u(x, t)|2d>c)2/3 dt

[

C( |Du(x, t)]zdx>(
|

3

Ju(x, t)|2dx)2/ 3dt

C(R3 |Du(x, t)lzdx)( [(w(2))(x) 2dx)z/3|| V| 13de

3

C(f ID(w(t) *Y’)(X)Izdx) IwlI52de = C((1/2)Iw 113 1w°1127) .
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If b>272™ and ae R® then Holder’s inequality yields

b

j [ u(x, 0)*(x —a] +27 ™)~ “dxdt
b—3-2m R3

= lf J (ulx,01*(x—al+27™) " 2B)(Ix —a| +27™) " ¥ dxdt
b—2-2m R3
b 3/5
é( ) flu(x OB (x—al+2" )4dxdt)
b—2-2m

.(b—j j(lx—a|+2—m)_4dxdt>2/s

—2m R3

<G § {0 emal 2y ] 2o
2-

b— 2m

Definition 5.18. If f is a function defined on R® x R and g is a function on R3 then
we set

(f *g)(x, )= If(;v, (x—y)dy

whenever the integral makes sense.
Lemma 5.19. If f is a C* function with compact support from R® x R into R such
that div(f)=0 and the distance between the support of f and the complement of

U x R exceeds 2& then there exist real numbers a<b and a C® function
g :R®x R—R3 such that curl(g)=f, g(x,s)=0 if s¢[a,b], and

- RI [wP()1L(f;* P)(x, 0)]dx
= ? | [ui(x, $)1[D,f{x, s) + A(f; Q2 Q)(x, s)]dxds
+ °j° J [u (%, 8)2,(x, 8) — 2 (X, S)uy(x, )] [D (g, ¥+ P)(x, s)]dxds .
0 R3

Proof. We can find a<b such that f(x,s)=0 if s¢[a, b]. Recalling Definition 5.8 we
set g = —curl(f *J) and obtain

curl(g)= —curl(curl(f *J)) = A(f *J)— grad(div(f *J))
=f—grad((div(f)=J)=1.

If s>0 then Definition 5.10, Definition 5.14, the fact that the function h(x)
=(f*¥)(x,s) is an element of W, and the argument in the proof of Lemma 5.13
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yield

JLD )AL, 5)ldx

= [[D W) L(f;* P)(x, 5)]dx

= — [L(W(s)D(wi(s) * VYT L(f;* P)(x, 5)1dx
+ [ [A(w(s)* 2+ Q)] [(fi+ P)(x, 5)]dx

=—([u (%, 8)D z(x,5) — 2 (X, 5)D juyx,s)] [(g;* ¥+ P)(x,s)]dx
+ [ [Auy(x, s)I[(f;+ @ Q)(x, 5)]dx

= [[u/x,5)z(x,5) — z(x, S)u(x, )] [D (g, ¥+ P)(x,5)]dx
+ [ Tux, )1LA(f;+ Q* Q)(x, s)]dx .

The conclusion follows by integrating over s and using Lemma 5.6.

6.

Letey, ¢,, &5, ... be an infinite sequence of positive numbers with limit zero. We can
find an infinite sequence o, «,, &5, ... of positive numbers such that o, <¢, and (5.1)
is satisfied whenever (o, ¢) =(o,, ¢,). For each n we can set o =a, and ¢=¢, and use
all of the definitions and results of Sect. 5. The corresponding functions u and z
introduced in Definition 5.14 will be denoted by u" and z" [so that z"=curl(u")].
From (5.4), Young’s inequality [[w(s)* ¥|, =< [w(s)|,I|P|l,, Lemma 5.17, and (5.5)
we obtain

| e, 0)Pdx < (|wl|3 if 20, (6.1)
R3
}O f u"(x, 0)|13dxdt < Cg||w°||3%3, (6.2)
0 R3
T j |Du™(x, )*dxdt <(1/2)||w°||3. (6.3)

0 R3

By passing to a subsequence, we may assume that u" converges weakly in L'%3 to
a function u and that Du" converges weakly in L? to Du. Hence curl(u") converges
weakly in L? to curl(u).

Definition 6.1. For every integer m we fix a countable set A(m)CR> with the
following properties: (a) Every xe R® is contained in the interior of B(a,2™ ™ 3) for
some ae A(m); (b) {B(a,2" ™ *):aec A(m)} is a collection of disjointed sets. We also
set B(m)={2"2™+272m~%j: | is a positive integer}. Recalling Theorems 4.2 and
5.12, we define D(m)= {(a, b)e A(m) x B(m): there exists an integer N such that (6.4)
is false for all n= N}.

2"I(|Du"?, K(a,b,27™*2,272m)
b
+2—'"( { f|u”(x,t)|2(|x—a|+2”"‘)_4dxdt)§C5(C7). (6.4)
b

—2-2m R3

The proof of the next lemma is left to the reader.
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Lemma 6.2. There exists an absolute constant C,, with the following properties :

(Ix—al+2™™)~*<C,,2*" for all xeR3,
10

ae A(m)

b
Y ( | t)(lx—a|+2_"‘)'4dxdt>
(a,bye A(m) x B(m) \b— 2 ~2m R3
= C1024m1(f> R*xR?),
I(f’ K(aa b’ 2—m+ 2a 2_ 2m)) é C1OI(f’ R3 X R+)
(a,b)e A(m) x B(m)
for any integrable function f=0.
Lemma 6.3. If m=0 then the number of elements in the set D(m) is less than
M =C7 25" C,o(172) w13+ C3PCy W03,
where C,, is the minimum of (1/2)C4(C,) and ((1/2)C4(C,))>.

Proof. If this is false then we can find k distinct elements in D(m), where k is the
smallest integer greater than or equal to M. We denote these elements by (a;, b,),
ie{1,2,...,k}. There exists an integer N such that (6.4) is false whenever n> N and
(a,b) is one of the (a;,b,). This implies that we have either

2"I(1Du"?, K(a;, b, 27" 2,272M) > (1/2)C5(C) (6.5)
or
2_'"( ? j [u"(x, t)lz(lx—-ai|+2_'”)_4dxdt> >(1/2)C4(C,) (6.6)
b;—2~2m R3

if n= N and 1Zi<k. Since (6.6) is equivalent to

bs 5/3
Z_Sm/3< [ lu"(x,r)|2(|x—ai|+2‘"')‘4dxdt)

b;—2~2m R3
>((1/2)C4(C,)", (6.7)

the sum of the left hand sides of (6.5) and (6.7) must exceed C, , for every n= N and
1<i<k. Now Lemma 6.2, Lemma 5.17, (6.3), Lemma 6.2 again, m=0, and (6.2)
yield

k
C11k< z 2mI(‘DuN'2>K(aiabi’z_m+292_2m))
i1
K by 5/3
+ Y 2_5'”/3( [ |uN(x,t)|2(]x—ai|+2_"')_4dxdt)
=1 bi—2-2m R3

<2mCy o I(|Du™*,R®*x R™)

k b;
22 [ a2

i=1 b,—2-2m R3
<2"C,,(1/2)[wO]] §+2-7m/3cg/3c1024m( [ f e, t)I1°/3dxdt)
0 R3

S273C (12| w013+ 273 C5RC o Co w1277 .

This contradicts the definition of k.
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Lemma 6.4. If be B(m) then the number of elements in the set
A={ae A(m):(a,b)e D(m)}

is less than
M'=(C5(C;))™12"C,|Iw°[3(3/2).

Proof. If this is false then we can find k distinct elements of A, where k is the
smallest integer greater than or equal to M’'. We denote these elements by a,,
ie{l,2,...,k}. There exists an integer N such that (6.4) is false whenever n= N, a is
one of the a;, and b in the hypothesis. Hence the first and third inequalities in
Lemma 6.2, (6.3), and (6.1) yield

k
Ci(C k< Z 2" (| Du™|?, K(a, b, 27m*2 p=2my)
i=1

k b
+.22—'"( f j|uN(x,t)|2(|x—ai|+2‘"‘)“4dxdt>

b—2-2m R3

b
<2mC, I(1Du"?,R? x R+)+2—mc1024m( [T t)|2dxdt)

b—2-2mR3
S27C, o(1/2)[ W01 +277C, 242 2 w0 3 =27C o [ WO 33/2).
As before, this contradicts the definition of k.
Definition 6.5. For any nonempty subset B of R® x R we define

diam(B)=sup {(ja—c|®>+|b—d|*)*'? :(a,b)e B and (c,d)e B}

and we set diam(¢)=0. Suppose 0<d=<4 and 4 is a subset of R*>x R. Then for
every 6 >0 we define ¢%(A) to be the infimum of all numbers of the form

13

where A, is a subset of R*x R, AC | ] A4, and diam(4,)<§. Observe that ¢j(4)
i=1

io (F(1/2Y/1(d/2)+ 1)2 (diam(4,))",

> pi(A) if 6 <. This allows us to define HY(4)= (lsin% dYA). HY(A) is called the d
dimensional Hausdorff measure of 4. For additional details, see [2].

Lemma 6.6. There exist absolute constants C,,, C,5, and C,, with the following
property : For every integer k=0 there exists a compact set S(k)CR® x R such that
S(k)C S(k+1),

(a) HY(S(K)SC,wOl3+C, w0407,

(b) HY(SH) (R x {()) =C, | w°|2 if ¢0,

(©) if (c,d)e(R>x[272* o0))~S(k) then there exist an integer m=k and
(a,b)e A(m) x B(m) such that (c,d) is in the interior of K(a,b,27™ 3,272"~3) and
(6.4) is true for infinitely many n.

Proof. For every integer m=0 we let T(m) CR3>x R™ be the union of all the sets
K(a,b,27™73,27 2™~ 5) such that (a, b)e D(m). Then we let S(k) be the intersection of
all T(m) such that m=k. Lemma 6.3 implies that D(m) is finite. Hence every T(m) is
compact, and this implies that S(k) is compact. If (¢, d)¢S(k) then (c, d)¢ T(m) for
some m=k. If, in addition, (c,d)e R® x [27 %, o), then d=272*>2"2" and hence
there exists (a,b)e A(m)x B(m) such that (c,d) is in the interior of
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K(a,b,27™73,272m~5)_ Since (c,d)¢ T(m), we must have (a,b)¢D(m). This proves
(c). We have diam(K(a,b,27 ™ 3,272~ 5)) <2 ™ when m=0. If k is given then, for
every m=k, S(k) is covered by the sets K(a,b,2~™" 3,27 2™ 5) where (a, b)e D(m).
Hence Lemma 6.3 yields

¢;PSk)= Y C(diam(K(a,b,27" 73,2727 %)%
(a, b)e D(m)

SCowllz+Coslw (37 (6.8)

whenever 6 =2"". Taking the limit as m— oo, we obtain (a). Now suppose that
k=0 is an integer and ¢>0. For every m=k, T(m)n(R> x {t}) is covered by a
collection of sets K(a,b,27 ™ 3,27 2™~ 5) such that (a,b)e D(m) and b takes at most
three distinct values [since we can discard those sets K(a, b,27™~3,272m~3) which
do not intersect R* x {t}]. Hence we can use the argument of (6.8) and Lemma 6.4
to conclude

B3 (S(R)N(R® x {£})) S 3(T(m)(R? x {t}) < C, [w°]3
when § =27™. We obtain (b) by taking the limit as m— co.
Lemma 6.7. Suppose p>0 and V is an open subset of R? such that the closure of V is

compact and the closure of V is contained in U. Then there exists an integer k=0
and a function z :(V x [27 %, c0))~S(k)— R such that

27%<p,  2x, ) =(curl () (x,1)
for almost every (x,t) in the domain of z, and z is a continuous function.

Proof. We let 0 be the distance between the closure of ¥ and the complement of U.
The number ¢ is positive because the closure of V is compact. There exists R>0
such that 4R <J. Now we can find an integer k large enough so that k>0,2~ 2 <,
27F<R/2, 4R+27**1 <§, and

27 2KlwOll, +27 2w ,R T2 4 [wO ,R T2 < C5(C,)2". (6.9)
Suppose (x,t)e(V x [27%, 0))~S(k). Lemma 6.6 yields an integer m=k and
(a, b)e A(m) x B(m) such that (x,t) is in the interior of K(a,b,2" ™ 3,272m~5) and
(6.4) is true for infinitely many n. We can find an infinite sequence n, <n, <n; < ...
such that (6.4) is true for every n=n, and, in addition, 4R+27%*1+4¢, <4 for
every n=n, We now establish the following claim: If n is one of the n,
(c,d)eK(a,b,27™272™), 0<h<2"™ and d>h? then

C3 Mu(c, d)|

d
< [ [ w,s)X(ly—cl+(d—s)'?) " *dyds
d—h2 R3

d
+ | [ wG,9)(y—cl+h)~*h~tdyds+ C4(C,)2™. (6.10)
d-K2 R3
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If [y—c|=4R +4e¢, then

ly—x|<|y—cl+lc—al+]la—x|<4R+4e, +27" 27773
<4R+4g, +2741 <6,

Since xe V, we conclude ye U. In particular, we have ce U. In addition, we have
0<h<2 m<27%*<R/2. Now we can use k<m and Theorem 5.12 to conclude
(6.10). We use (6.1), (6.3), and Theorem 4.2 with H=C, and I'=C4(C,)2" to
conclude

[u"(c,d)] < Co(C,)2™ if (c,d)e K(a,b,27™~ 2,272~ %) and n=n, for some i.
6.11)

Since (6.4) is true for all n=n,, the collection of numbers
{I(Du"|?,K(a,b,27™"2,272m~4)) :p=n, for some i}

is bounded. Combining this with (6.11) and Theorem 5.16 we conclude that the
collection of functions {curl(u") : n=n, for some i and ¢, <(2~™ 2)/64} is uniformly
bounded and equicontinuous on K(a,b,27™"3,272m~5), By Ascoli’s theorem, a
subsequence converges uniformly to a continuous function. This limit function
must coincide almost everywhere with the weak limit curl(u) of the original
sequence curl(u"). This means that we can make curl(u) continuous on the interior
of K(a,b,27™3,272m~5) by redefining it on a set of Lebesgue measure zero. The
conclusion of the lemma follows easily.

Theorem 6.8. There exists a set SCU x R™ such that

(@) if K is a compact subset of U x R™ then KNS is compact,

(b) the function curl(u) can be modified on a set of Lebesgue measure zero so
that it becomes continuous on (U x R*)~ S,

(©) HP(S)=Cy, w3+ C 5wl 3%,

(d) H'(SN(R?>x {t})) S C,[Iw°||3 if ¢t>0.

Proof. We construct an infinite sequence V;, V,, V;, ... of open subsets of U such
that closure (V,)CV,, ,, closure (V,) is compact, and the union of the ¥, is equal to
U. We will use the abbreviation 27 2*=p(k). Using Lemma 6.7 we obtain an
increasing sequence k, <k, <k, < ... of nonnegative integers such that the re-
striction of curl(u) to (V, x [b(k,), c0))~S(k,) is equal almost everywhere to a
continuous function. We define

S=S(k,)u ( @1 Sk, )~ (V, x (b(k,), oo))))-

If K is a compact subset of Ux R* then there exists an integer N such that
K CV, x (b(k,), ) for all n>N. Hence

SAK =(S(k,)nK)o ( U (S0 )~ (7, x (bl oo)»mK))

n=1
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which is a union of finitely many compact sets. This proves (a). Now suppose
(a,b)e(U x R*)~S. We have two possibilities: (1) (a,b)e V; x (b(k,), 00); (2) there
exists n such that (a,b)eV, ., x (b(k, ), ) but (a,b)¢V, x (b(k,), 0). If (1) holds
then (a,b)e(V; x (b(k,), 0))~S(k,). If (2) holds then (a,b)e(V,, , x (b(k,, ;), )
~S(k,, ) because (a,b)¢S implies (a, b)¢S(k, . )~ (V, x (b(k,), ©0)), and combining
this with (2) yields (a, b)¢S(k, ., ,). In either case, (g, b) is contained in an open set on
which curl(u) coincides almost everywhere with a continuous function. This proves
(b). Since Hausdorff measure is a Borel measure and S(k) CS(k+ 1), we obtain (c)
and (d) from Lemma 6.6 and the following:

o)< [ sk = lim 1Sk,

n— oo

§C12||W0”§+C13||W0||50/3 >

HI(SA(R® x {1}) < H‘(( Dl S(k,,)> A(R® x {z}))

= lim H(S(Kk)(R x () SCouw0lF if >0,

Definition 6.9. For every integer m and every positive integer n we set E(m,n)
={be B(m) :(6.4) is false for some ae A(m)}.

Lemma 6.10. The number of elements in the set E(m,n) is less than the number M
described in Lemma 6.3.

Proof. If this is false then we can find k distinct elements in E(m, n), where k is the
smallest integer greater than or equal to M. We denote these elements by b,
ie{1,2,...,k}. For each i, there exists a;e A(m) such that (6.4) is false when (a, b) is
replaced by (a;, b;). Carrying out the argument in the proof of Lemma 6.3 (the only
difference being that we are now dealing with a single n, which only simplifies
things), we obtain a contradiction.

Lemma 6.11. If V is an open subset of R such that the closure of V is compact and
the closure of V is contained in U, n >0, and 0< < T < co then there exists a closed
set FCR™ such that the Lebesgue measure of F is at most n and a subsequence of the
sequence curl(u") converges uniformly on V x (B, T) ~ F).

Proof. We let 6 >0 be the distance between the closure of ¥ and the complement of
U. We find R >0 such that 4R <§ and we find an integer m large enough so that
m=0,2"2"<B 2""m<R/2 4R+2"™ 1<,

272042720 R 72 4 w0 ,R™¥2 S C(C)2m,
and (see Lemma 6.3)

27EmTICH2MAC H((1/2)[WO)5 + C3PCy w0157 <. (6.12)
We let E'(m,n)={be E(m,n):b < T+2~ 2™}, Since {be B(m):b < T+2~ 2™} is a finite

set which contains E'(m, n) for every n, we conclude that, as n varies, E'(m, n) can
only be one of a finite number of different sets. Hence there exists an infinite
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sequence 1y <n,<n,< ... of positive integers such that

Em,n)=E'(m,n,)=E(m,ny)=....

Setting E'=E'(m,n,), we define F to be the union of the intervals [b—2~ "5 b]
for beE'. From Lemma 6.10 and (6.12) we conclude that the Lebesgue mea-
sure of F is at most #. If (x,t)e V x ((f, T) ~ F) then (x,t) is contained in the inte-
rior of K(a,b,27™73,272m=5) for some (a,b)eA(m)x B(m). If beE then
te[b—272m~5 b]CF, which contradicts the choice of (x,t). Hence we conclude
b¢E'. From b—2~2m"3 <t < T we obtain b< T+ 2~ 2™ This implies that b¢E(m, n;)
for all i and, in particular, that (6.4) is true for every n=n,. Since V x ((, T)~F) is
bounded, we obtain that V x ((f, T)~F) is covered by the interiors of a finite
collection of sets of the form K(a,b,27 ™ 3,27 2™ 5) such that (a, b)e A(m) x B(m)
and (6.4) is true for every n=n,. The rest follows from the argument in the proof of
Lemma 6.7.

Lemma 6.12. If fis a C* function with compact support from R®x R into R such
that div(f)=0 and the support of f is contained in U X R then there exist real
numbers a<b and a C* function g:R3x R—R3 such that curl(g)= f, g(x,s)=0 if
s¢la,b], and

— | wl(x)fi(x, 0)dx

w

=T [, 9] [D S0 9)+ A, 1dx ds
0

R

+ 1 ) [uyle )] [curl (W)(x, )T [D g, 5)1dx ds

©

R

+

?ﬁ
|

— [(curl (w)) (x, $)] [u{x, $)] [D;g,(x, s)]dx ds . (6.13)

@

R

Proof. The a, b, g found in the proof of Lemma 5.19 depend only on f. Therefore we
can use Lemma 5.19, Definition 5.1, and Definition 5.2 to find real numbers a<b
and a C*® function g:R3 x R—R? such that curl(g) = f, g(x,s)=0 if s¢[a,b], and

— j [w)(x)] [(f%0, =0, ) (x, 0)]dx

Ii

[u(x, )] [D,fix,s)+ A(f;x0, 0, )(x,s)]dx ds

>5:-w

[uj(x, 5)z;(x, 5)1 [D (9,50, %0, x0,, 0, ) (x, 5)]dx ds

[ La—

w

+ o+
O 8 O 8 O=— 8

[ - — [25(x, s)u(x, )] [D (g0, 0, *0, 0, )(x,s)]dx ds (6.14)

R

w

is satisfied for sufficiently large n. Since f is C® with compact support and u"
converges to u weakly in L'%3, the first two integrals in (6.14) converge to the first
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two integrals in (6.13) as n— co. To complete the proof we have to show that for
every £>0 and every positive integer N there exists an integer n= N such that the
sum of the last two integrals of (6.14) is within ¢ of the sum of the last two integrals
of (6.13). Suppose ¢ and N are given. We set &, =0, 0, +0, «0, and use the
boundedness of U and the fact that g(x, s)=0 for s¢[a, b] to find a positive number
M such that [D(g+®,)(x,s)|SM and |Dg(x,s)| <M if xeU. We may as well
assume that b >0 [otherwise the integrals in (6.13) are all zero]. Letting m(U) be
the Lebesgue measure of U, we find #>0 such that

(BOMCE w1 3(nb + 2n(m(U))/3(1/2)"2 <e/4. (6.15)

Since U is bounded, we can find an open subset ¥ of R® such that the closure of V
is compact, the closure of V'is contained in U, and the Lebesgue measure of U~V
is at most #. Let 8 be a positive number such that §<n and f<b. Setting T'=b, we
can use Lemma 6.11 to find a closed set FCR™ such that the Lebesgue measure of
F is at most # and there is an infinite sequence n, <n, <n; < ... of positive integers
such that N =n, and the subsequence

(Z"=curl(u"):n=ny,n,,n,,...)
converges uniformly on Vx((f,T)~F). We set E=Vx((f,T)~F) and let
h:R3>x R* >R be the function defined by h(x,s)=1 if (x,s)eE and h(x,s)=0
otherwise. Setting z=curl (1), we conclude from the boundedness of E that the
subsequences

(h(x, s)zi(x, s)D (g ®D,) (x,s):n=ny,n,, 13, ...)
and

(h(x,5)z}(x, 5)D (g+®,) (X, 5) :n=n,,n,,15,...)

converge in L'®” norm to h(x, s)z(x, s)D,g,(x, s) and h(x, )z (x, s)D ;g (x, s). Now the
weak convergence in L*%/® of u" to u yields that a subsequence of

£ [W(x, )z} (x, 5) — Z}(x, s)uj(x, )] [D (g;+D,) (x, s)1dx ds (6.16)
converges to

£ Luj(x, 8)z,(x, ) — z,(x, s)u,(x, )] [D,g,(x, s)Jdx ds. (6.17)
In particular, we can find arbitrarily large n such that (6.16) and (6.17) differ by no

more that /2. The proof will be completed by setting G=(R3 x [0, T])~E and
showing that

] | [w(x, 5)z{(x, s) — Z}(x, sui(x, )] [D (g:+®,) (x,s)]dx ds' <e/4, (6.18)
G

]f [u,(x, )z(x, 5) — z (X, s)u,(x, 5)] [D;g,(x, 5)]dx dsl <cg/4 (6.19)
G
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hold for sufficiently large n. Since T'=b, the Lebesgue measure of (U x [0, T])~ E
is at most the sum of the Lebesgue measure of (U~ V) x [0,b] and the Lebesgue
measure of U x ([0, f]UF). Hence the Lebesgue measure of (U x [0, T])~E is at
most nb+2n(m(U)). Since, by hypothesis, the boundary of U has Lebesgue
measure zero, we conclude that the Lebesgue measure of (closure (U) x [0, T])~ E
is at most #b + 2n(m(U)). Let K, be the collection of all xe R? such that the distance
between x and closure (U) is at most 2¢,, set G, = (K, x [0, T])~ E, and let a, be the
Lebesgue measure of G, The above and the boundedness of U yield

lim a, <nb+ 2y(m(U)). Hence we can use (6.15) and find a positive integer N’ such

that
(B6)MC3M w0 3(a,)3(1/2) > <g/4 if n=N'. (6.20)

Using Holder’s inequality, (6.2), and (6.3) we obtain
J lwi(x, 5)z7(x, s)|dx ds
Gn

< (f [wi(x, )| *dx ds)”2 ( [ 128(x, s)|2dx ds)”2
Gn Gn

< (j |wi(x, 5)| O dx ds)3/1°(an)1/5(2)( | |Du"(x, s)|*dx ds)”2
G

Gn

S GO0 (a,) P (2) (1/2) 2w -
The same argument and the weak convergence of 4" and Du" yield

[ luj(x, 5)zx, )ldx ds < C3/* w1 3(a,)*(2) (1/2) 2.

Gn

If n is sufficiently large then (6.18) and (6.19) follow from the above, (6.20), and the
fact that u" and z" are zero outside of K, x R*. This completes the proof of the
lemma.

Now we can tie these results together and obtain the conclusion of
Theorem 1.2. The construction of u yields that u(x,f)=0 for almost every
(x, t)¢closure (U) x R*. Part (1) follows because we assume that the boundary of U
has Lebesgue measure zero. Part (2) also follows easily from the construction. Part
(3) follows from Lemma 6.12 and integration by parts in the last two integrals of
(6.13) [using the fact div(u)=0]. The remainder follows from Theorem 6.8, (6.2),
(6.3), and the definition of u.
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