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Abstract. Suppose U is an open bounded subset of 3-space such that the
boundary of U has Lebesgue measure zero. Then for any initial condition with
finite kinetic energy we can find a global (i.e. for all time) weak solution u to the
time dependent Navier-Stokes equations of incompressible fluid flow in U such
that the curl of u is continuous outside a locally closed set whose 5/3
dimensional Hausdorff measure is finite.

1. Introduction

Definition 1.1. Suppose/is a C00 function defined on an open subset Fof JR3 x R. If
ie {1,2,3} then D{fis the partial derivative of/with respect to the i component of
K3. The partial derivative of / with respect to the R component of R3 x R is
denoted by DJ. The letter ί is used because the second component of R3 x R
represents time. The vector function ( D 1 f , D 2 f , D 3 f ) is written Df. The function Af

3

is defined on the set Fby (Af) (x, ί) = Σ Di(Dtf) (*> *)• when the ranβe of/ i s R3 we
i= 1

define the functions div(/):F-»R and curl(/):F->#3 by

(div(/))(x,f)=Σ DJfct)
i=l

and

(curl (/)) (x, ί) = (φ2/3 - D3/2) (x, ί), (D3/; - DJJ (x, ί), (DJ2 - D2f1)(x, ί)).

We extend these definitions in the obvious way to the case where / is a
distribution. Hausdorff measure is defined in Definition 6.5, R+ is the set
{ί£jR:ί>0}, Lp is the Lebesgue space of p-integrable functions with norm || ||p,
and the summation convention for repeated indices is used. If A and B are sets
then A~B={xeA:xφB}.
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The purpose of this paper is to prove the following :

Theorem 1.2. Suppose U is an open bounded subset ofR3 such that the boundary of
U has Lebesgue measure zero. Suppose that w° ;jR3->.R3 is an L2 function such that
w°(x) = 0 for almost every xφU and §w?(x)Dif(x)dx = Q for every C°° function
f:R3-+R with compact support. Then there exists a set ScU x R+ and there exists
an L10/3 function u\R3 x R+ -+R3 such that Du is an L2 function and the following
properties hold :

(1) u(x,t) = Qfor almost every (x,t)φUxR+,
CO

(2) J J ui(x,t)Dif(x,t)dxdt = Q iff\R3xR-+R is a C°° function with compact
o I*3

support,

(3) - j w°(x)/;.(x,0>/x= J j [ι4x,0][D^x,ί) + 4flx,t)]dxA
#3 0 #3

00

+ f f K/x, ί)w,(x, t)Djft(x9 t)dx at
0 I*3

i f f : R 3 x R-+R3 is a C°° function with compact support such that div(/) = 0 <zm/ ί/ie
support off is contained in U x R,

(4) if K is a compact subset ofUxR+ then KπS is compact,
(5) the function curl (u) αw fee modified on a set of Lebesgue measure zero so that

it becomes continuous on (U x R+)~S,
(6) the 5/3 dimensional Hausdorff measure of S is finite,
(7) the one dimensional Hausdorff measure ofSn(R3 x {t}) is a bounded function

ofteR + .

A few informal comments will clarify the statement of this theorem. The two
factor spaces in R3 x R+ represent space and time, respectively. The function w° is
a given velocity vector field with finite kinetic energy which represents an
incompressible flow inside U. This function should be thought of as being defined
on U. Making w° equal to zero outside of U helps to simplify the exposition. Parts
(l)-(3) state that u is a time dependent weak solution to the Navier-Stoke
equations of incompressible fluid flow in U with initial condition w°. Again, we
make u equal to zero outside of U x R+ to simplify certain statements. Part (1) and
DueL2 are a weak way of saying that u is zero on the boundary of U. The function
curl(w) is an element of L2 (since DueL2). Hence curl(w) is an equivalence class of
functions which differ only on sets of Lebesgue measure zero. Parts (4), (5) state
that one of the functions in this equivalence class is continuous on the open set
(U x R+)~S. Parts (6), (7) say that S is a very small set.

Definition 13. If — oo^α<fe^oo then

(a, b) = {x \ a < x < b} , [α, b] = {x : a ̂  x ̂  b} ,

and (α,fo] = {

Euclidean norms will be denoted by | |. If /is a function defined on a subset of ft3

and ze{l,2, 3} then Dtf is the partial derivative o f / with respect to the i
component of R3 and Df = (Dj,D2f,D3f). If i,;,/ce{l,2,3} then Dijf = Dί(Djf)
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and Dijkf = Di(Dj(Dkf)). The collection of C°° functions with compact support
fromX into Y will be written C%(X, Y). An absolute constant is a positive constant
that does not depend on any of the parameters in this paper. Since there are several
hundred absolute constants in this paper, we will denote them by the letter C
without bothering to distinguish most of them with subscripts. Thus the various
C's below represent different constants. If a constant depends only on a parameter
H we write it as C(H).

This research was inspired by the work of Almgren [1], Leray [3], and
Mandelbrot [4]. There are other results of this nature in [5,6] and [7], where it
was assumed that U is all of euclidean space. In [5] it was shown that u is
continuous except for a locally closed subset of K3 x R+ whose Hausdorff
dimension is at most 2. In [6] we had a similar result for flows in 5 dimensional
space-time (with R3 x R+ replaced by R4 x R+) where the Hausdorff dimension of
the singular set was shown to be at most 3. The proofs in [5] and [6] are very
different from the proof in this paper, which is based on the method of [7]. Paper
[7] was a primitive version of this type of result in which the conclusion resembled
statement (7) of Theorem 1.2.

2. Technical Preparation

Throughout this section we assume that we are given a continuous function
u:R3xR+-+R3 such that

J f |tt(x,ί)l2Λc:f>θl (2.1)
U3 J

is a bounded set of real numbers,

Du is an L2 function. (2.2)

We also assume that {α, c} C R3, {fc, d} C R, {m, p, n, q} is a set of integers, and the
following six properties hold:

b>2~2m, (2.3)

\a-c\<2~m, (2.4)

(2.5)

(2.6)

2p, (2.7)

g = maximum of n and p. (2.8)

Frequent use will be made of the following definition:

Definition 2.1. If / lc# 3 x# and / is a function defined on A we use the

abbreviations I(f,A) = \f and M(/,^4) = the supremum of {|f(x,t)| :(x,t)e A}. If
A
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, teR, r>0, s>0, and h>Q then

B(χ, r) = {y e R3 : \y - x\ ̂  r} ,

and ί-s^

and ί-s^w^

Lemma 2.2. IfB(y,r/4)cB(x,r) and t>s>0 then

I(\u\2,K(x,t9r9s))

£ 03s(M (M2, K(y, t, r/4, 5))) + Cr\l(\Du\\ K(x, t, r, 5))) .

Proof. Using the continuity of w, the assumption DueL2, approximation by
smooth functions, and Lemma 1.2 of [7] we obtain

2J \u(z, w)\2dz^ Cr3(supremum {|M(Z, w)

+ Cr2/ J \Du(z,w)\2dz
\B(x,r)

for almost every w > 0. Now integrate over t — s ̂  w ̂  t.

Lemma 2.3. H^ have n^m and p^m.

Proof. From (2.6) we obtain 2~ ("+ 1 )<2~w-|α-c|<Ξ2~m. Since n and m are
integers, we conclude n^m. From (2.7) and (2.5) we obtain

Again, the fact that p and m are integers implies p ̂  m.
We will use the abbreviation

if i>m. (2.9)

Lemma 2.4. ///c is an integer, fcΞ>m+l, and 2~ ( m + 1 )<|a — c|
(a) ifk^n+i andk^p + 1 then

, 2~k, 2

(b) ί

(c) ifn^p,

24kI(\u\

(d) ifk^n + 2 and k^p + 2 then
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Proof. From the hypotheses we obtain \a
This allows us to make the following definition: ek is the point on the line

segment joining a and c that satisfies \ek — c\ =(3/4)2 ~k.
We have

B(ek,(l/4)2-k)cB(c,2-k). (2.10)

We will now prove

B(ek,(l/4)2-k)cB(a,2-m-2-(k+V). (2.11)

If \x-ek\ ^(1/4)2 ~k then the definition of ek and (2.4) yield

The above proves (2.11). Now we will prove

B(c,2-k)cA(a,2-m,2-k+2) if fegn+1. (2.12)

Suppose |x — c\^2~k. Then (2.4) yields

In addition, (2.6) and k^n+l yield

|x — α| ̂  |c — α| — |x — c|

>2~m _ 2~n _ 2~k>2~m _ 2~ f e + 1 _ 2~ f e>2~m _ 2~k+2

The above proves (2.12). Now we show

B(c,2-k}cB(a,2-m-2-(n + 2)) if k^n + 2. (2.13)

If \x-c\^2~k and k^n + 2 then (2.6) yields

The above proves (2.13). From (2.7) we obtain

d — b + 2~2m>2

The above and (2.3) yield

Now we are ready to prove (a). We assume

k^n+1 and fe^p+1. (2.15)

From (2.11) and (2.15) we obtain

B(ek,(l/4)2-k)cB(a,2-m-2-(k+1>)cB(a,2-m-2-(p+2}). (2.16)

Now (2.16), (2.5), (2.14), and (2.9) yield

(2.17)
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Observe that the proof of the inclusion in (2.17) forces 2~m-2~( ;7+2)>0 and
2-2m_2-2(P + 2)>0 jhese conditions are required in Definition 2.1 [and in (2.9)].
This sort of thing will come up several times. Alternatively, we can use Lemma 2.3.

From (2.15), (2.12), (2.5), and (2.14) we obtain

(a,b,2-m,2-2m,2-k+2). (2.18)

From (2.10), (2.14), Lemma 2.2, (2.17), and (2.18) we obtain

£ 24kC2~ 3k2- 2(p+ 2)M(|w|2, K(ek, d, (1/4)2"*, 2~ 2(p+ 2)))

+ 24kC2 - 2kI(\Du\ 2, K(c, d,2-k,2~2(p+ 2)))

^ C2fe2~ 2pM(\u\2, D(d)nG(p + 2))

+ C22kI(\Du\ 2, T(α, 2>, 2 ~ m, 2 ~ 2m, 2 - * + 2)) .

Properties (2.14) and (2.3) imply that u is defined on the sets that appear above.
This proves (a).

Now we prove (b). We suppose

n>p, p + 2^k, and fcgn+1. (2.19)

Using (2.19), (2.14), (2.19) again, and (2.3) we obtain

(2.20)

Now (2.11), (2.5), (2.20), and (2.9) yield

= D(d)nG(fc+l). (2.21)

From (2.19), (2.12), (2.5), and (2.20) we obtain

K(c,d,2-k,2-2/c)GT(α,6,2-m,2-2m,2- fc+2). (2.22)

Now (2.10), (2.20), Lemma 2.2, (2.21), and (2.22) yield

24kI(\u\2,K(c,d,2-\2-2k})

g 24fcC2 - 3fc2 ~ 2kM(\ u\ 2, K(ek, d, (1/4)2 ' fc, 2 ~ 2fe))

+ 24fcC2~ 2kI(\Du\2, K(c, d,2~k, 2~2k))

+ C22kI(\Du\2, T(α, 6, 2~m, 2~ 2m, 2~ f c + 2)) .

Properties (2.20) and (2.3) imply that w is defined on the sets that appear above.
This proves (b).

Now we prove (c). We suppose

^fc, and fc^p+1. (2.23)
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Using (2.23), (2.13), and (2.23) again we obtain

(2.24)

Now (2.24), (2.5), (2.14), and (2.9) yield

(2.25)

From (2.25) we obtain

^ 24kC2~ 3k2~ 2(p+ 2)M(|u|2, D(rf)nG(p + 2)) .

Property (2.14) implies that u is defined on the sets that appear above. This proves
(c).

Finally, we prove (d). We assume

and fc^p + 2. (2.26)

From (2.26), (2.13), and (2.8) we get

B(c,2-k)cB(a,2-m-2-(n+2})cB(a,2-m-2-(q + 2 } ) . (2.27)

From (2.26), (2.14), (2.8), and (2.3) we obtain

(2.28)

From (2.27), (2.5), (2.28), and (2.9) we obtain

(2.29)

From (2.29) we obtain

24^Γ(|u|2, K(c, d, 2Λ 2~ 2fc)) ̂  24*^^

Property (2.28) implies that u is defined on the sets that appear above. This proves
(d). The lemma is proved.

Lemma 2.5. There is an absolute constant Cl such that (see (2.9))

d
J j \u(x,t)\2(\x-c\ + (d-t)ll2Γ4dxdt

k = m+ 1

*

k = m+ 1
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Proof. For every integer k we define E(k) by

(2.30)

if k^p+1, and

E(k) = K(c,d,2-\2-2k)~K(c,d,2-(k+1\2-2(k+V) (2.31)

if k^p + 2. We have

{(x,t):d-2-2^+2^t^d}~{(c,d)}= 0 £(*)- (2.32)
k= - oo

Now we will prove

if (χ9t)eE(k). (2.33)

If fc^p+1 and (x,ί)e£(fc) then |x-c|>2~ ( f c + 1 ) and (2.33) follows. If k^p + 2 and
(x,ί)eE(fc) then either \x-c\>2~(k+1} or d-t>2~2(k+1\ In either case, (2.33)
follows. From (2.32) and (2.33) we obtain

f $\u(X9t)\2(\x
,J_2-2(p + 2) Λ3

g f 24(*+1)/(|M|2,£(/c)). (2.34)
fc= — 00

Next we prove

m+ 1

fc= -oo

(
d \

j J |M(X,ί)|2(|x — a\ + 2~m)~A'dxdt\. (2.35)

Since the E(/c) are disjoint and (2.32) holds, it suffices to show

T4 if k^m+1 and (x,f)eE(k). (2.36)

Suppose /crgw+1 and (x9t)eE(k). Then Lemma 2.3 and (2.30) yield \x — c\^2~k.
Hence (2.4) implies

Hence (2.36) holds, and this implies (2.35).
There are two possibilities: Either |α-c|fg2~ ( m + 1 ) or 2~(m+1)<|α-c|. First we

examine the case

m + 1 ). (2.37)

We will prove

B(c,2-k)cB(a,2~m-2-(p+2}) if k^m + 2. (2.38)
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If fc^w + 2 then Lemma 2.3 implies

Hence (2.37) implies that every xeB(c,2~k) satisfies

\x-a\^\x-c

Hence (2.38) holds. The argument that gave us (2.14) still yields

d-2-2(p+2}>b-(2-2m-2-2(p+2})>0 (2.39)

since the hypotheses of Lemma 2.4 were not used in the proof of (2.14).
Now (2.5), (2.30)-(2.32), (2.38), (2.39), and (2.9) imply

(2.40)

if k^m + 2. From Lemma 2.3, (2.30), (2.31), and (2.40) we obtain

£ 2+kI(\u\\E(k))
k = m+2

p+ 1 oo

= Σ 24*/(M2,E(/c)) +
k = m+2 k

p+1

= p+2

(2.41)

From Lemma 2.3 and (2.8) we get ra+ l ^ p + l < Ξ g + l. Hence (2.34), (2.35), and
(2.41) yield the conclusion of the lemma if possibility (2.37) holds.

The second possibility we must examine is

2~ ( m + 1 )<|α-c . (2.42)

Now we have two cases : Either n ̂  p or n > p. Assume first that n rg p holds. Then
(2.42), (2.30), (2.31), parts (a), (c), (d) of Lemma 2.4, (2.8), and p = q [which follows
from n^p and (2.8)] yield

m+ 1

Σ 24kI(\u\2,E(k))+ "X 24kI(\u\2,E(k))
k=m+l k=n+2

k = p+2
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^ Σ C2k2-2"M(\u\2,D(d)^G(p + 2))
k = m+l

+ Σ C22kI(\Du\2,T(a,b,2-m,2-2m,2-k+2))
k = m+l

p+ί

k = p+2

q+1

+ £ C22kI(\Du\2,T(a,b,2-m,2-2m,2-k+2))
fe = m + l

+ C2-pM(\u\2, D(d)nG(q + 2))

q+l

+ X C22/c/(|Dw|2,T(α,fo,2-m,2-2m,2-fc+2)). (2.43)
fc = m+ 1

From (2.8) and Lemma 2.3 we get m + 1 ̂  q + 1. Hence (2.34), (2.35), and (2.43) yield
the conclusion of the lemma if possibilities (2.42) and n^p hold.

Now we consider the case where (2.42) and n>p hold. Then (2.42), (2.30), (2.31),
parts (a), (b), (d) of Lemma 2.4, Lemma 2.3, q = n [which follows from n>p and
(2.8)], and m+l^p + l^q + l [which follows from Lemma 2.3 and (2.8)] imply

Σ 2*kI(\u\2,E(k))
k = m+ 1

= X 24kI(\u\2,E(k))+ Σ 24kI(\u\2,E(k))
fc=m+l k=p+2

+ £ 2*«I(\u\2,E(k))
k = n+2

p+1

^ Σ C2k2-2pM(\u\2,D(d)nG(p + 2))
k = m+ί

p+ί

+ Σ C22kI(\Du\2, T(α, ft, 2- w, 2~ 2m, 2~ f e +

fe = m+ 1

n + 1

- k 2C2-kM(\u\2,D(d)nG(k+l))

C2-kM(\u\2,D(d)rΛG(q + 2))
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^ C2p2 - 2pM(\u\ 2, D(d) n G(p + 2))

w + l

n + 1

4+1

X C2~'IM(|M|2)£>(ίi)nG(/c+l))

+ Σ C22k/(|Dw|2,T(α,b,2~m,2-2m,2-k+2))

^ £ C2-kM(|w|2,D(d)nG(/e+l))

+ £ C22/c/(|Du|2,T(α,fe,2"m,2-2m,2~k+2)). (2.44)

The conclusion of the lemma in this case follows from (2.34), (2.35), and (2.44).
Lemma 2.5 has been proved.

Lemma 2.6. Iff:R3->R,feL2, and DfeL2 then

ί ί \f(y)\3dy\ίl3

\B(x,r) )

^Cr-1/2( J \f(y}\2dyVl2 + Crll2t J \Df(y)\2dy\112.
\B(x,2r) I \B(x,2r) )

Proof. Let g:R3-+[Q, 1] be a smooth function such that g(y)=l for yeB(x,r),
g(y) = 0 for yφB(x,2r), and \\Dg\\^^Cr~l. Set /z(y) = g(y)f(y). Using the argument
in Lemma 3.1 of [5] and Young's inequality we obtain

j I /YιΛ|3/7ιιW3 < / Γ iJ,ΛΛ|3Λϊ,W3

B(x,r)

J

*
J

JB(x,2r) / \B(x,2r)

Cr1>2( j
\B(x, 2r)

J
x, 2r) / \B(x, 2r)
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Lemma 2.7. //0<ft^2~ m then for almost every £>0 we have

3 /
J \Du(x9t)\2dxV12 .

Proof. From Holder's inequality, the conditions on ft, (2.1), (2.2), Lemma 2,6, and
(2.4) we obtain the following for almost every t > 0 :

J \u(x,t)\(\x-c\ + hΓ4h-ldx
B(c, 2 ~ m)

^/ j |ιφc,ί)|W/3/ ί
«) j \B(c,2

j |M(x,ί)|3ώc\1/3Λ
2-«)

J |
->»+i)

J
,2-^+!)

J |φ,ί)|2έίx\1/2

B(a,2-™ + 2) )

- 3 / J |Dφ,ί)|2^1/2. (2.45)
\B(a, 2~ w + 2) /

Let E-{xe.R3:x^(c,2-w)}. If xe£ then (2.4) yields

Hence the Schwarz inequality and 0<ft^2~m yield

E

^ CA

£3

R3

R3 I

x\ 1 / 2. (2.46)
/
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Hence

J |φ,ί)|W/2

( J \
\B(a, 2-™+ 2)

(2 47)
/

The conclusion follows from (2.45), (2.46), and (2.47).

Lemma 2.8. There exists an absolute constant C2 such that the following holds: If
h = 2~(p+2} then

d
J J \u(x,t)\(\x-c\ + hY4h-ldxdt

d-h2 R3

l/2

4-h2 R3

d \ l / 2

ί J \Du(x,t)\2dxdt\ .
!-fc2 β(α, 2- m + 2 ) /

Proof. The hypothesis of Lemma 2.7 is satisfied because of Lemma 2.3. Now use
Lemma 2.7, (2.14), and the estimate

d / d \ l / 2

J \f(t)\ίl2dt^h( J \f(t)\dt\ ,
d-/l2 \d-fc2 /

which follows from the Schwarz inequality.

3.

We continue to use the notation introduced in Definition 2.1 and (2.9) and we
assume that u :R3 x R + ~*R3 is a continuous function satisfying (2.1) and (2.2).

Lemma 3.1. For every H>Q there exist positive constants C3(H) and C4(H\ which
depend only on H, such that the following is satisfied. Suppose we have the following
conditions: aeR3, beR + , m is an integer, b>2~2m, Γ<=R + , the inequality

H~l\u(c,d}\^ J \u(x,t)\2(\x-c\+(d-t)1/2Γ4dxdt
d-h2 Ri

d

+ J $\u(x,t)\(\x-c+hΓ4h-ldxdt + Γ (3.1)
d-h2 R3

holds whenever (c,d)eK(a,b,2~m,2~2ml 0</z^2~w, and d>h2,

if 0<r^2~m + 1, (3.2)

H)2ms if 0<s^2~2 w, (3.3)

b-2~2m+s

J J |M(X, ί)l 2(i* - a\ + 2 ~m) ~ 4dxdt ^ C3(H)23ms (3.4)
b-2-2m R3
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holds whenever 0<s^2~2m, and

(3.5)

Then we can conclude

\u(x,t)\^C4(H)2m+1 if (x,OeKM,2-(m+1U~2m(3/4)). (3.6)

Proof. We choose C4(H)>Q so that (3.7) holds (see Lemma 2.5):

24C1(C4(#))2 ̂ (l/4)ίT ̂ (H) . (3.7)

Then we choose C3(#)>0 so that (3.8) holds (see Lemmas 2.5 and 2.8):

C4(H). (3.8)

For every integer i satisfying i ̂  m + 1 we define Z(z) to be the union of

and

If i is an integer and z'^m + 2 we define 7(0 to be the closure of G(z)~G(z— 1) [see
(2.9)]. We also set Y(m+l) = G(m+l). We obtain that Y(ΐ)nY(j) is empty if

|z-j|^2. We also obtain y(i)n7(z + l)-Z(z). Set P- Q Y(ΐ). We define a
ί-m+ί

function f:P->R+ as follows: If (x,ί)eZ(z) then /(x, ί) - C4(H)2'. If z^m + 2 we
use the Urysohn theorem to extend this definition of / continuously to Y(i)
so that C^H^/teO^C^ί^-1 whenever (x,ί)eY(0 Finally, we set/(x,ί)
= C4(H)2m+ 1 if (x, ί)e Y(m+ 1). We have the following properties for every (x, ί)eP
and any integer z ̂  m + 1 :

If (x,ί)eG(z) then /(x, ί) ̂  C^fl)^ , (3.9)

if |x-α|^2'w-2-/ or ί^fe-2~ 2 m + 2-2ί then /(x, ί) ̂  C4(/f )2f .

(3.10)

We intend to show

|w(x,ί)|^/(x,ί) for all (x,ί)eP. (3.11)

If (3.11) is false then the set S = {(x, ί)eP : |w(x, ί)l ̂ /(x

? 0} is nonempty. Since u is
continuous, u is bounded on the compact set K(a, b, 2~m, 2~ 2m). Hence there exists
an integer z^m+1 such that \u(x,t)\<C4(H)2l for all (x,ί)eP. Hence (3.10) yields
ScG(z). Since G(z) is compact and the functions u and / are continuous, we
conclude that S is compact. Hence there exists (c, d)eP such that

|wM)|^/M), (3.12)

\u(x,t)\^f(x,t) if (x,ί)eP and t^d. (3.13)
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From the hypotheses we obtain that (2.1)-(2.3) are satisfied. From (c,d)eP we
conclude that (2.4), (2.5) hold. We define the integers n and p by (2.6), (2.7) [this
determines n and p uniquely in view of (2.4), (2.5)]. We also define q by (2.8). Hence
all the hypotheses of Sect. 2 are satisfied. Using h = 2~(p + 2} and observing that
d>h2 follows from (2.3) and (2.7), and that /ι<^2~m follows from Lemma 2.3, we
obtain (3.14) from (3.1), Lemma 2.5, and Lemma 2.8:

J J \u(x9
d - 2 - 2 C p + 2) #3

q+1

d \ l / 2

J

/ d \ l / 2

+ C22-m/222(p+2) J J |Dtt(x,ί)|2ώcΛ +Γ. (3.14)

From (2.6) we obtain |α-c|^2~m-2-". From (2.7) we obtain d ̂  b - 2 ~ 2m + 2 - 2p.
Hence (2.8) implies that either \a-c\^2'm-2'q or d^b-2~ 2 m + 2~2^ must hold.
Iίq^m+1 then (3.10) yields f(c,d)^C4(H}2q. If q = m then f(c,d)^C4(H)2q still
follows because /(x,ί)^C4(#)2m+1 holds for all (x,ί)eP. Since Lemma 2.3 and
(2.8) imply q^m, we can use (3.12) to conclude

c,d)|. (3.15)

From (3.9) and (3.13) we conclude

^ Σ C12-fc(C4(H)2'[+1)2<2«+4C1(C4(H))2. (3.16)

From (3.2) we obtain

q+l

9+1

C1C3(H). (3.17)
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Setting s = d-(b-~2~2m\ we use (2.5), (2.7), and Lemma 2.3 to obtain
^2~2m, d-2-2(p+2)>b-2~2m. Hence (3.4) and (3.3) yield

d

J J \u(x,t)\2(\x

R3

s^C3(H)23m2-2p, (3.18)

d

J J \Du(x,t)\2dxdt
d-2-2(p + 2) B(a,2~m + 2)

b-2~2m+s

^ J J \Du(x,t)\2dxdt
b _ 2 - 2 m β(α j2-w + 2)

= /(|Dw^K(α,^-2-2m + 5,2-m + 2,5))^C3(7:/)2m5^C3(7ί)2m2-2^. (3.19)

Combining (3.14)-(3.19), (3.5), and q^m [which follows from (2.8) and Lemma 2.3]
we conclude

m/222(p+ 2)(C3(H)23m2- 2p)112

(3.20)

From Lemma 2.3 and (2.8) we get 23m2~2ί7^2^2ίZ, p^q. Using this in (3.20) and
dividing by 2q we get

H- 1 C4(H) ^ C t C3(H) + 24C,(C4(H))2 + 24CX C3(fl) + 24C2(C3(H))1/2

+ 24C2(C3(H))1/2 + C3(ff) . (3.21)

However, (3.21) contradicts (3.7) and (3.8). This contradiction was obtained by
assuming that (3.11) is false. Now (3.6) follows from (3.11) and the substitution of
i = m+l in (3.9).

4.

As in Sect. 3, we assume that u : R3 x R+ -+R3 is a continuous function satisfying
(2.1) and (2.2). The notation comes from Sect. 2.

Lemma 4.1. Suppose that aeR2, beR + , m is an integer, and b>2~2m. Then there
exists a number e such that 1/2 < e < 1 and the following holds : If v :R3 x R+ -+R3 is
defined by v(x,t) = e(u(ex,e2t)), a' = e'ίa, and b' = e~2b then

2, K(a, b, 2 ~ m + 2, 2 ~ 2m))) if

I(\Dυ\ 2, K(a', b' ~ 2 - 2m + 5, 2 ~ m + 2, s))

w| 2, X(α, fe, 2 ~ m + 2, 2 ~ 2m))) (f 0 < s ̂  2
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and

b'-2-2™ + s

j J \v(x,t)\2(\x-a'\ + 2-m

Proo/. Define g^.R-^R as follows: If /i^O or h^2~m+2 then gf 1(ft) = 0. If
ΰ<h<2~m + 2 then ^(/i) is the integral of \Du(x,t)\2 over the set

{(x,t):\x-a\ = h, b-2~2m^t^b}

with respect to the 3 dimensional measure on that set. We obtain

ϊ2-" + 2,2-2")), (4.1)

f gf1(3;)dj; = /(|DM|2,T(α,b,Λ,2-2 m,r)) (4.2)
h-r

> - m + 1if 0</z^2~m and 0<r^2~w + 1. For any integrable function / :R^R+ we define

-it*}' }
r>0 \h~r I

If S is a measurable subset of R we define m(S) to be the Lebesgue measure of S.
The Hardy-Littlewood theorem ([9], p. 55) says

(4.3)

Hence we obtain m {heR:Mg1(h}>2m + 3(5)\\gί\\1}^2~m~* and, consequently,

\ί}^[β. (4.4)

Now define g2 :R^R and #3 :R-*R as follows: If t<b-2~2m or t>b then g2(t)
= g ( t ) = 0. lfb-2~2m^t^b then

^2(ί)= f Kx,ί)|2(|x-α +2-")-4dx, (4.5)
,R3

03(ί)= j |DM(x,ί)l2dx. (4.6)
β(α,2-m + 2)

Using (4.3) we obtain

2m if i = 2,3. (4.7)

Let /C : JR->^ be the function defined by k(e) = b-2-2me2. Then k'(e)< -2~2m if
ί/2<e<L Hence (4.7) yields

<l and Mgί(b-2-2me2)>(4Q)22m\\gί\\1}^ 1/8 (4.8)
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if i = 2, 3. From (4.4) and (4.8) we conclude that there exists e such that 1/2 <e< 1
and (4.9) holds :

(4.9)

Now define υ, a', b' as in the statement of the lemma using this particular e. If
^2~m+1 then (4.2), (4.9), and (4.1) yield

I(\Dv\2,T(a',b',2-m,2-2m,r))

= (e~ l)I(\Du\2, T(α, fe, 2'me9 2~ 2me2, re))

w| 2, K(a, b, 2 ~ m + 2, 2 ~ 2m)) . (4. 10)

If 0<s^2~2w then (4.6) and (4.9) yield

^(e~1)(2se2)Mg3(b-2-2me2)

w| 2, K(a, b, 2 ~ m + 2, 2 ~ 2m)) . (4.

If 0<s^2~2 m then (4.5) and (4.9) yield

^

J j |φ,ί)|2(|^-α| + 2- m )- 4 rfxΛ. (4.12)
2-2m K3 /

The conclusion of the lemma follows from (4.10), (4.11), (4.12).
The purpose of Sects. 2-4 is to prove the following theorem :

Theorem 4.2. For every positive number H there exist positive constants C5(H) and
C6(H), which depend only on H, such that the following is satisfied. Suppose we have
the following conditions: αe^3, beR + , m is an integer, b>2~2m,
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u : R3 x R + -^R3 is a continuous function satisfying (2.1) and (2.2), the conditions

, (4.13)

b

f f \u(x,t)\2(\x-a\ + 2-mΓ4dxdt^C5(H)2m, (4.14)
b - 2 - 2 m R3

Γ^C5(H)2m (4.15)

are satisfied, and inequality (3.1) holds whenever c, d, /z satisfy the properties
M)eK(a,fc,2~m,2~2m), 0</z^2~m, and d>h2. Then we can conclude that (4.16)
holds :

\u(x,t)\^C6(H)2m if (x,t)εK(a,b,2-™-2,2-2™-3}. (4.16)

Proof. We set C5(H) = (16QΓ*C3(H) and C6(H) = (4)C4(H) (see Lemma 3.1). We
use Lemma 4.1 to find e and define υ, a', b'. Then the hypotheses (4.13) and (4.14)
and Lemma 4.1 yield

J(|Dι?|2, 7K&',2-m,2~2V))

^C3(H)r if 0<r^2~ m + 1 ,

ι;| 2, K(α', &' - 2 ~ 2m + 5, 2 - m + 2, 5))

2ms if

J J |ι;(x,ί)|2
2-2m J?3

5 if

Our objective is to show that the hypotheses of Lemma 3.1 hold when α, b, Γ, u are
replaced by α', b', eΓ, v. The above shows that we already have the analogue of
(3.2)-(3.4). The analogue of (3.5) and bf>2~2m follow from ί/2<e<ί and the
hypotheses. We proceed to prove the analogue of (3.1). We assume
(c', df) e K(a', b', 2 ~ m, 2 ~ 2m), 0 < h' ̂  2 ~ m, d! > (hf)2. Setting c = ecf, d = e2d, h = eh we
obtain M)eK(a,M~m,2-2m) and 0</z^2~ m from l/2<e<L We also conclude
d>h2. The hypotheses of the theorem yield (3.1) (as written), which can be
expressed as

d'-(h')2 Ri

d'

+ ί f I
d'-(Λ')2 K3

This is the analogue of (3.1). Lemma 3.1 yields |ί;(x,ί)|^C4(#)2m+1 if
(x, t) e K(af, b',2-(m+ί\2- 2m(3/4)). Combining this with 1/2 < e < 1 we obtain (4. 1 6).
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5. Properties of Approximate Solutions

Definition 5.1. We fix, once and for all, a C°° function #:#3^[0, 1] such that
θ(x) = 0 if \x\ ̂  1, θ(x) = 1 if |x| ̂  1/2, and 0(x) = 0( - x). We define θ'e CJ(jR3, jR) by
θ'(x) = θ(x)/||θ||1 and for every ε>0 we define 0;eC^(R3,R) by ^(x) = ε~3θ/(ε"1x).
We have 110^ = 1 and the estimates H^

For the remainder of this section we fix 0 < α < ε such that

\\A(ff^-A(θf

e*ffΛ*θf

a)\\2^l. (5.1)

This means, of course, that α is much smaller than ε when ε is small.

Definition 5.2. We set Φ = θ'ε,Ω = 0;, and Ψ = Φ * Ω. Observe that we have || !P || t = 1,
!P(x) = 0 if |x|^2ε, H ϊ P I L ^ I I Φ I L I I ί i l l ^ C ε - 3 , H^yL^ HDiΦILIIΩH^Cε- 4 ,
IID^^II^^Cε'5, and HDy^l^^Cε"6. Let X be the Hubert space of all square
integrable functions / : R*-*R3 with the inner product (f,g) = $fi(x)gi(x)dx. Recall
that U is the open subset of JR3 given in Sect. 1. We define W to be the closed linear
subspace of X consisting of all w such that (1) w(x) = 0 for almost every xφU, (2)
$wi(x)Dig(x)dx = Q for every geC%(R3,R). The orthogonal projection oϊX onto W
will be denoted by P. The function S : W^X is defined by

S(w). - - ((w . * Ψ)Dj(wi * Ψ)) * Ψ + Δ^i * Ω * Ω) . (5.2)

Lemma 5.3. There exists a number M < oo (which depends on Φ and Ω) such that

IIP^w^-P^w^lU^MIIw-wΊI^Hwl^ + llwΊ^ + l) if w,w'e^.

Proof. Using Young's inequality and the Schwarz inequality we obtain

Finally, we have ||P(S'(w)-Sί(w'))||2^||S(w)-Sl(w')||2 because P is an orthogonal
projection.
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Lemma 5.4. // we W then (P(S(w)), w)= -$\D(w*Ω)(x)\2dx.

Proof. The definition of W, the symmetry of Ψ and Ώ, and approximation by C°°
functions yields

«P)wt

Definition 5.5. If / is a function from an open interval oϊR intoZ, s is an element of
the interval, and (f(s + h) — f(s))/h converges in norm as h approaches zero, then the
limit is denoted by Dtf(s).

Recall that w° is the initial condition given in Sect. 1.

Lemma 5.6. There exists a norm continuous function w : [0, oo)-*W such that
w(0) = w°, Dtw exists and is a norm continuous function from (0, oo) into W,

(Dtw)(s) = P(S(w(s))), (5.3)

||w(s)||2^||w°||2 if 5^0, (5.4)

and

0 R3

Proof. The result in Lemma 5.3 and the standard local existence proof for ordinary
differential equations yield (5>0 with the following property: If seR, w'e W, and
||w'||2^ ||w°||2 then (5.3) can be solved on the interval [s,s + <5] with initial
condition w' at s. Since Lemma 5.4 yields (d/df)||w(f)| |2^0 for any solution of (5.3),
the local solutions can be pieced together into a global solution with initial
condition vv° at 0 that satisfies (5.4). From Lemma 5.4 we obtain

OO

J $\D(w(s)*Ω)(x)\2dxdsί(l/2)\\W°\\2

2.
0 Ri

In addition, Young's inequality yields

J \D(w(s)*Ψ)(x)\2dx= J \D(w(s)*Ω*Φ)(x)\2dx

^ / J |D(w(5)*fl)(x)|2dx\||Φ||ί.
\κ3 /

Now (5.5) follows from H Φ H ^ l .

Lemma 5.7. Iff:R3~{Q}^R is a C°° function, if i, j, k are elements o/{l,2,3},
(x) = Q

er \x\ ^r then

\Dijk(f*g)(x)\^CM(\\g\\1+r6\\Dijkg\\J\x\
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Proof. If |x|^2r then

\ χ - y \ £ \ χ \ / 2

1 / J
\x-y\Z\x\l2

If |x|^2r then a similar argument yields

^ 0II i

If |x|<2r then

^ί ί

\\ Dίjkg || J .

Once again, if |x| < 2r then the same argument yields

I V/*ff) Wl = iσ*ΰy*flf) (x)l ^ CMr2 1| Dϋtff || M = CMr

The conclusion follows by combining these estimates.

Definition 5. 8. The functions J: R3~{0}-+£ and Q f:R
3->R for ί>0 are given by

JM=-(4π|x|)-1, (5.6)

a(x)^(2/i)-3r3/2exp(-|x|2/(4i)). (5.7)

Lemma 5.9. Ift>09R> 2(t 1/2), l(x) - Θ((2Λ) " 1x), Jr(x) = λ(x) J(x), and g(x) = λ(x)Qt(x)
then

\Dijk(J'*g*Ψ*Ψ)(x)\^C(\x\ far all xεR3 .

Proof. We fix i,j, fee {1,2, 3}. The integer n is defined by the condition 2~nR^
>2~n~1R. From JR>2(ί1/2) we conclude n^l. For any integer m satisfying
O^m^n we set λm(x) = λ(2mx). We also define ^mM = (Λ»-Λn+ι)M6 fM

 for

0 ̂  m < n, and gιΛ(x) = λn(x)Qt(x). We have the following properties :

= Σ
m = 0 m = 0

(21-«H)6||D(Jtflfm||eo^C.
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We also have \Jf(x)\^C\x\'\ \DίjkJ
f(x)\^C\x\~4. Now we can use Lemma 5.7 to

conclude

m = 0

Σ c(\\gm\\1+(21-mR)z\\gja))\x\-ί^c\χ\-ί, (5.

^ Σ C(\\gJ1+(21-»R)6\\Dtfigm\\J\xΓ4ZC\x\-*, (5.9)

^ Σ C(||0II1||1+(21-"Λ)6||DίJlkflm||00)(21-»R)-4

m = 0

^ Σ C(||0mi|1+(21-mJ?)6||βoΛ||00)(ί1/2)-4^C(ί1/2)-4. (5.10)

We also have

and

11^(^*5011 *£\\DijkΨ\\ o

Hence (5.8), (5.9), the fact that (Ψ*Ψ)(x) = Q whenever |x|^4ε, and Lemma 5.7
yield

6^ (5.11)

From (5.10) we obtain

^C(tV2Γ*. (5.12)

Now (5.11) and (5.12) yield the conclusion of the lemma by considering separately
the cases |x|>ί1/2 and \x\^tί/2.

Definition 5.10. The i components of w(s) and (Dtw)(s) will be written w (s) and
Dtw.(s) (see Lemma 5.6). We will also use the notation w'.(s) = wf(s)* Ψ and
w'(s) = w(s)*¥ί.

Lemma 5.11. If the hypotheses of Lemma 5.9 are satisfied, cell,
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and s>Q then

I f [(βχ(s) - d(vψ))) (x)] [z%*J') (x - c)]<foc
I*3

+\\w°\\2\\Δ(g*J')\\1.

Proof. We fix ze{l,2,3} and define f:R3-*R3 byft = g9fj = 0 if + ί. We have

Δ(f* J'* !P) = - curl (curl (/* J'* !P)) + grad (div (/* J'* ϊ7)).

Hence we can use Dtw(s)e W, the fact that the function

h(x) = curl (curl (/* J'* !P)) (x - c)

is an element of W, (5.3), (5.2), and w(s)e Wto conclude

/n* J'* SO (x - c)]dx

= - J L(Dtwn(s)) (x)] [curl (curl (/* J'* ψ)) (x - c)]nrfx

= j [((wχs)D/w;(s)))* f ) (x)] [curl (curl (/*/'* !P)) (x - c)]ndx

- j [ J(wπ(s)*ί2*ί2) (x)] [curl (curl (/* J'* Ψ)) (x - c)]nrfx

= - ί [K (s)) (x)] [K(s» (x)] [D/curl (curl (/*J'* y* f )))(x - c)]̂ x

P)(χ-c)]rfx. (5.13)

The Schwarz inequality, (5.4), Young's inequality, (5.1), and Definitions 5.1 and 5.2
yield

- 1 [zKwn(s)*Ω*Ω) (x)] [/!(/„* J'* SO (x - c)]dx|

= || [(w;(s)*zl SO (x)] [ J(ί * J') (x - c)]dx

- j [(Wi(s)* J( f *Ω*Ω)) (x)] \_Δ(g*J') (x - c)]dx|

^ || w(s)*(/l(Φ*Ω)-Λ(Φ*Ω*Ω*Ω))|| „ \\Δ(g*J')\\ 1

')||1. (5.14)

Finally, (5.13), (5.14), and Lemma 5.9 yield

Ij [(£>X(s) - d(wj(s))) (x)] [_Δ(g* J') (x - c)]dx|

^ lί C(wχs)) (x)] [K(s)) (x)] [0/curl (curl (/* J'* f * SO)) (x
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Theorem 5.12. There exists an absolute constant CΊ >0 with the following property :
IfceU, 0</z<#/2, d>h2, and {xe£3 :\x-c\^4R + 4ε}C U then

I $\(w'(S})(x)\2(\x-c\+(d-s)i/2Γ4dxds
d-h2 R3

d

+ f J \(w

Proof. We fix ze{l,2,3}, define λ ana J' as in Lemma 5.9, set J"(x) = (l-λ(x))J(x),
and define the function g and f from [0,d) into CJ(K3,Λ) by

(g(s)) (x) = λ(x)Qd_s(x) , f(s) = Δ(g(s)*J') .

We have

f(s) = Δ(g(s)*J) - Δ(g(s)*J") = g(s) - g(s}*ΔJ" . (5. 15)

Since J"(x) = J(x) for \x\>2R9 we obtain ΔJ"(x) = 0 for \x\>2R. We also have
J"(x) = 0 for \x\<R. Combining this with μi^^l, HD^^^CR-1, and

2 we obtain

'ΊI^C, \\AJ"\\2^CR~312. (5.16)

From (5.15) and (5.16) we obtain

\\f(s)\\^ \\g(s}\\ , + \\g(s)\\ jμj 'Ίli^C. (5.17)

If we set 7(x, s) = Qd _ s(x) for s < d then we obtain Dt Y+ A Y= 0. Hence we conclude

(Dtg(s) + A(g(s})) (x) = Aλ(x)Qd_s(x) + 2(Diλ(x)DίQd_s(x)) . (5.18)

This shows

(Dtg(s) + Δ(g(s)))(x) = Q if x <K or |x |>2Λ. (5.19)

We also have the estimates \Qd_s(x)\^C\x\-\ \DiQd_s(x)\^C\x\~4. If |x|>R then
(5.18) yields

5 if \x\>R. (5.20)

Now (5.19) and (5.20) yield \\Dtg(s) + A(g(s))\\2^CR~1/2.
Combining this with (5.15) and (5.16) we obtain

(5.21)

From Definition 5.10 and (5.4) we obtain

l lw^l l^ l lw^H.l l^ l l^ l lw^l l^ l lw 0 ! ! , . (5.22)
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Now suppose d-h2^s'^d-h2/2<s"<d. From Lemmas 5.6 and 5.11, the
Schwarz inequality, (5.21), (5.17), and (5.22) we obtain

j J ί(Dtφ))(x) ]ί(f(s))(x-c) ]dxds
S' R3

s' R3

s"

ί f ΓΦX iJ J L\ ϊ I

- ] ( [(wί(s)) (x)] CΛ(/(s)) (x - c)]dx ds

s"

ί ί C (

^C f
S'

^C j

In addition, (5.15), (5.22), and (5.16) yield

(5.23)

-3/2 (5.24)

when s = s' or s = s". From (5.23), (5.24), and the properties of s', s" we get

I f
1*3

(5.25)
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From Lemma 5.6 we obtain that the function u(x,s) = (w'(s))(x) is bounded and
continuous. This implies

lim J [(wj(s")) (x)] [(0(5")) (x - c)]dx = (wί(d)) (c) . (5.26)
S"^d tf3

Since d - h2 ̂  sf ^ d - h2/2 we have

|(^5θ)(x-c)|^|ρd_s/(x-c)|^C(|x-c| + ̂ -4/z. (5.27)

Combining (5.25)-(5.27) we obtain

3 /
0||2 + C^2 | |w0 | |2R-7 / 2 + C||w°||2R-3 / 2 (5.28)

for d — h2 ^s'^d — h2/2. The conclusion follows by averaging (5.28) over s'.

Lemma 5.13. Ifs>G,feC^(R3,R), the distance between spt(f} and the complement
of U exceeds 2ε, ie{l,2,3}, the function g:R3->R3 is defined by gt = f, ί7y = 0
whenever j Φ i, and z:[Q, co)-> X is defined by z(s) = curl (w'(s)), then

= ί [(w;(s)) (x)] [(z;(s)) (x)] [D;(/* y* ψ) (

] [(wί(s)) (x)]

+ f [(wB(s)*(J(y*Ω*β)-Λ«P))(x)] [curl(6f)(x)]nί/x.

Proo/ We fix ie{l,2, 3}. The fact w(s)e W implies div (w'(s)) = 0. Hence we obtain

curl (M/.(s)£>/w'(S))) = wχs)D/z(s)) - 2/s)D/w'(s)) .

Hence the property curl (g)* Ψe W, Lemma 5.6, and the properties div (w'(s)) = 0,
div (z(s)) = 0 yield

(2j(s)) (x)] [/(x)]dx = ί [(D,zn(s)) (x)] ίgn(x)-]dx

ί l(Dtwn(s)) (x)] [(curl (0)* !P) (x)]Bdχ

- ί C((w;(s)Z)/w;(S)))* f ) (x)] [(curl (3)* SO M] A

+ j [4(wB(s)*Ω*Ω) (x)] [(curl (0)* SO (x)] A

)̂ )) - Zj(s)D /<(«))) (x)] [to.* S"* SO (x)]ώc

+ ί [(wB(s)*(/l(Sιr*Ω*Ω)- JSO)(x)] [cur

S»* SO (

ί [(WB(S)*( J( F*Ω*ί3) - 4 SO) (x)] [curl (g) (x)]Bdx .
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The conclusion of the lemma now follows.

Definition 5.14. The functions u and z from R3 x [0, oo) into R3 are defined by

u(x, s) = (w'(s)) (x) and z(x, 5) = (curl (w'(s))) (x) .

Note that

and

\Du(x,s)\^\\w(s)\\2\\DΨ\\2^\\w°\\2\\DΨ\\2

(see Lemma 5.6). Hence u and z are bounded functions.

Lemma 5.15. If aε (7, 6e#, and h>0 such that

b>h2, {xeR3:\x-a\^h}cU,

and s<h/64 then there exist integr able functions

F:R3x(-ao,Q)-*R,

G:R3x(-ao,Q)-+R3,

and

Hi:R
3x(-ao,Q)-*R3

for iε{l,2, 3} swc/z ί/zαί
(a) z/dί/zβr |x|^ή/8 or s^ -h2/8 then F(x,s) = Q and G(x9s) = Hi(x,s)
(b) HFH^C, ||F||6/5^c/z-5/6, HGII^CΛ, iicii^
(c) z/cejR3, |c-α|^7ft/8, αnίί b-Ίh2β^d^b then

zt(c, d) = J J [w^x, s)z .(x, s) - z/x, sX(x, 5)] G/x - c, 5 - d) Jx Js
0 Jί3

d

+ J J zi(x9s)F(x — c9s — d)dxds
0 Λ3

+ ί ί [(wn(s)*(/ί ( f *Ω*Ω) - J f )) (x)] [#,.(* - c, s - rf)]^x ds .
0 fl3

Proo/ We can find a C°° function β:#-»[0, 1] such that β(s) = 0 if

5^-/z2/8, j8(5) = l if s^-h2/l6,

and ||DίJS||oo^32/ι-2. We also define

ί/:#3-+[0,l] by .^(x) = θ(16Λ"1x)

(see Definition 5.1). We fix iε {1,2,3} and define the functions

/:K3x(-oo,0)->R and #:#3 x (- oo,0)->J^3

as follows :

/(x, s) = β(s)η(x)Q _ s(x) , 9i(x, s) = /(x, s) ,
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and

gfj.(x,s) = 0 if y ' Φ i .

We set

F = Dtf + Af, Gj = D/*Ψ*Ψ, and /f. = curl(0).

If c and d are as in part (c) and d — h2/l6^df <d then Lemma 5.13 yields

J zf(x, d'>7(χ - c)Qd _ d,(x - c)dx = J zf(x, d')/(χ -c,d'- d)dx
K3 #3

d'

- J J Dtzί(x,s)f(x-c,s-d}dxds
0 #3

d'
J I zi(x,s)Dtf(x-c,s-d)dxds
0 #3

= ί ί [M/x> 5K *X 5) - z

0 K3

d'

+ J J z (x, s)F(x — c, 5 —
0 Λ3

d'

ί [K(s)*(J(?P*fi*Q)-2l!P))(x)] [ffiίx-c^-d^dxώ. (5.29)

0

d'

0

Part (a) follows from ε< ft/64, Definition 5.1, and Definition 5.2. We have
F(x, s) = 0 if |x| ̂  ft/32 and - ft2/16 ̂  s < 0. This yields the estimates on F in (b). We
also have

I I G .H, ̂  \\Djf \\p\\ Ψ* Ψ\\ , = \\D/ \\p\\ Ψ\\ , || Ψ\\ , = \\D/ \\p

for p = 1 and p = 6/5. This and the definition of / yield the rest of (b). Since z is
bounded and continuous (see Lemma 5.6), the left hand side of (5.29) converges to
zfad) as d'^d. Since M, z, and w(s)*(A(Ψ*Ω*Ω) — AΨ) are bounded and G, F, if.
are integrable, we conclude that the integrals in (c) exist and that the right side of
(5.29) converges to the right hand side of (c) as d'-+d.

Theorem 5.16. // aε (7, be R, ft > 0, b > ft2, {xε R3 : |x - a\ ̂  ft} C U9 ε < ft/64,

Km = {(x, s)e K3 x R : |x - α| ̂  (4 + m)ft/8, b - (4 + m)ft2/8 ̂  5 ̂  b} , (5.30)

M = max{|tt(x,s)|:(x,,s)eJK4}, and M' = \ \Du\2 then there exist a function
κ4

y : [0, oo)-> [0, GO) and a number A < oo such that
(a) y and A depend only on ft, M, M', and ||w°||2,
(b) γ(0) = 0and

(c) iz
(d) |z(c, d) - z(c', d')l ̂  7(k - c'\ + \d- d'\) if (c, d) and (cf, d') are elements of K0.
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Proof. If (c,d)eK3 we define (see Lemma 5.15)

d

z'.(c, d) = J J [M /x, s)z .(x, 5) - z/x, *X(x, 5)] G/x - c, 5 - d)dx ds
0 K3

d

-f J J zi(x,s)F(x — c,s —
0 K3

<(c,d) = J f [(w,1(s

We have z = z' + z". Using Lemma 5.6, Definition 5.1, Definition 5.2, Lemma 5.15,
and (5.1) we obtain

|z;'M)|̂ ί(||w(s)||2̂ ^
o

0 | | 2 fe . (5.31)

Using Young's inequality ||/*#||3^ 11/11 2 I I ^ I I 0/5 (see Ά P 271]) and Lemma 5.15
yields

( |φ |) / 2 | |G| | 6 / 5 + C / f N 2 W 2 | |F | | 6 / 5 .
K3 I \K4 I \KA I

Since (5.31) yields / J |z"|3\1/3^C||w°||2/z8/3, we can use Lemma 5.15 and the above
.

to obtain

|z|)2\1/2Λ1/6 + C/
κ4 J

(5.32)

Once again we can use Young's inequality | |/*0||6^||/H3 | |0| |6 /5 and
Lemma 5.15 to obtain

From (5.31) we obtain / J \z"\6\1/6^C\\wQ\\2h
ll/β. Hence Lemma 5.15 and the

above yield

) Us J

|z|3y/3/z1/6 + C||w°| |2/z1 1 / 6. (5.33)
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If (c,d)eKί then Holder's inequality, Lemma 5.15, and (5.31) yield

ίCl j (M |z|)6W6 ||G||6/5 + C/ί |Z | 6W 6 | |F| | 6 / 5 + C||w°||2ή
1*2 I \κ2 }

° | | 2Λ. (5.34)

Combining (5.32)-(5.34), and the estimates / J | z | 2 W 2 ^C/j |DM|2\1/2 = (
\K.4 / \KA /

we obtain that |z| is bounded on K1 by a number that depends only on h, M, M',
and ||w°||2. We conclude from this and from the argument in (5.31) that the
functions

\uj(x,s)zi(x,s)l\zi(x,s)\, and \(wn(s)*(Δ(Ψ*Ω*Ω)-ΔΨ))(x)\

are bounded on K1 by a number that depends only on h, M, M', and ||w°||2. The
rest follows from Lemma 5.15 and the definitions of Gp F, and Ht.

Lemma 5.17. There exist absolute constants C8 and C9 such that

00

0 tf3

and

b

I I \u(x,t)\2(\x-a\ + 2'mΓ4dxdt

\ 3 / 5

J J \u(x,t)\10/3(\x-a\ + 2-mΓ4dxdt\ 2~2m/5

2 -2m ^3

whenever b>2~2m and

Proof. Using Holder's inequality, the first inequality in Line 9, p. 127 of [8],
Definition 5.10, Definition 5.14, Young's inequality, and Lemma 5.6 we obtain

J j |M(x,ί)|10'3dxΛ
0 K3

oo

= J J \u(x,t)\2\u(x,t)\*l3dxdt

g J C / J \Du(x,t)\zdx\ί $ \u(x,t)\2dx\2/3 dt
o (RI

£ J C f J |D«(x,ί)|2

^ J C / J
o U3
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If b>2~2m and αe#3 then Holder's inequality yields

b

j J \u(x,t)\2(\x-a\ + 2-mΓ4dxdt
b-2-2m R3

b

= J J (\u(x,t)\2(\x-a\ + 2-mΓ12/5)(\x
b-2-2™R*

I b \ 3 / 5

^ f ί \u(x,t)\10/\\x-a\ + 2-mΓ
\ f c _ 2 - 2 m R3

\ 2 / 5

3/5

2~2m/5 .

Definition 5.18. If / is a function defined on R3 x R and g is a function on R3 then
we set

whenever the integral makes sense.

Lemma 5.19. // / is a C°° function with compact support from R3 x R into R3 such
that div(/) = 0 and the distance between the support of f and the complement of
UxR exceeds 2ε then there exist real numbers a<b and a C°° function
g :R3 x R-+R3 such that curl(g) = /, g(x, s) = 0 if sφ[_a, b], and

0 R3

Proof. We can find a<b such that /(x,s) = 0 if sφ[a,b]. Recalling Definition 5.8 we
set g= — curl(/*J) and obtain

curlte)=-curl(curl(/*J)) =

= /-grad((div(/))*J) = /.

If 5>0 then Definition 5.10, Definition 5.14, the fact that the function h(x)
= (/* Ψ)(x,s) is an element of W, and the argument in the proof of Lemma 5.13



Navier-Stokes Equations on a Bounded Domain 33

yield

s) * β * Ω)

)^zί(x,s)-zj(x,s)

/i * Ω * 0)(x,

The conclusion follows by integrating over s and using Lemma 5.6.

6.

Let ε1? ε2, £3, . . . be an infinite sequence of positive numbers with limit zero. We can
find an infinite sequence α1? α2, α3, ... of positive numbers such that απ<εn and (5.1)
is satisfied whenever (α, ε) = (αn, εn). For each n we can set α = αn and ε = εn and use
all of the definitions and results of Sect. 5. The corresponding functions u and z
introduced in Definition 5.14 will be denoted by un and zn [so that zn = cuti(un}].
From (5.4), Young's inequality ||w(s)* ψ\\2^ ||w(s)||2|| Ψ\\l9 Lemma 5.17, and (5.5)
we obtain

f |ttn(x,f)l2dx^||w°| |! if ί^o, (6.1)

j |^(x,ί)Γ0/3^Λ^C8||w°||f/3, (6.2)
0 Λ3

oo

I J|DM"(x,i)|2dxdig(l/2)||w°|||. (6.3)
0 R3

By passing to a subsequence, we may assume that un converges weakly in L10/3 to
a function u and that Dun converges weakly in L2 to Du. Hence curl(w") converges
weakly in L2 to curl(w).

Definition 6.1. For every integer m we fix a countable set A(m)cR* with the
following properties : (a) Every xeR 3 is contained in the interior of B(a,2~m~3) for
some aeA(m) (b) {B(a, 2"m~4) : aeA(m)} is a collection of disjointed sets. We also
set B(m) = {2~2m + 2~2m~6i: i is a positive integer}. Recalling Theorems 4.2 and
5.12, we define D(m) = {(a,b)EA(m)x B(m): there exists an integer N such that (6.4)
is false for all n^N}.

2mI(\Dun\2, K(a, b, 2~m+ 2, 2" 2m))

J J w"(x,ί)|2(|x-α| + 2-m)-4JxJίUc5(C7). (6.4)
2-2m R3 /

The proof of the next lemma is left to the reader.
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Lemma 6.2. There exists an absolute constant C10 with the following properties:

/ j \\x a\ ~τ~ z* j —^ c_x •< rίZj Jor an
aeA(m)

I b

y { i nx MXZ^i J J J \Λ, t;̂ |Λ
(a,b)εA(m) x B(m) \b- 2 ~ 2m R3

/or any integrable function /^O.

Lemma 6.3. // m ̂  0 ί/ίerc ί/ze number of elements in the set D(m) is less than

where C X 1 is ίfte minimum of (1/2)C5(C7) αrcd ((1/2)C5(C7))5/3.

Proof. If this is false then we can find /c distinct elements in D(m), where k is the
smallest integer greater than or equal to M. We denote these elements by (α , fr .),
ΐ e { 1, 2, . . . , fc}. There exists an integer N such that (6.4) is false whenever n ̂  N and
(a, b) is one of the (αf, 6(.). This implies that we have either

2"7(|Dι/Ί2, K(ai9 6J9 2-+ 2, 2~ 2m)) > (1/2)C5(C7) (6.5)

or

(6.6)
bi-2- 2m

if n^N and l^i^k. Since (6.6) is equivalent to

\ 5 / 3

2-5m/3 I J K(x,i

\ f c . _ 2 - 2 m £3

>((l/2)C5(C7))5/3

? (6.7)

the sum of the left hand sides of (6.5) and (6.7) must exceed C1 1 for every n ̂  N and
Irgi^k. Now Lemma 6.2, Lemma 5.17, (6.3), Lemma 6.2 again, m^O, and (6.2)
yield

Clίk< Σ

k I bt \ 5 / 3

Σ 2~5 m / 3 J j |uN(x,ί)|2(|x-
i = l \bi-2-2"1 Ri

2-7m/3C|/3 J

f J \uN(x,t)\10/3dxdt

This contradicts the definition of k.
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Lemma 6.4. IfbeB(m) then the number of elements in the set

A = {aEA(m):(a,b)ED(m)}

is less than

Proof. If this is false then we can find k distinct elements of A, where k is the
smallest integer greater than or equal to M'. We denote these elements by α ,
IE {1,2, ... ,fc}. There exists an integer N such that (6.4) is false whenever n^N.ais
one of the 0., and b in the hypothesis. Hence the first and third inequalities in
Lemma 6.2, (6.3), and (6.1) yield

k

C5(CΊ)k< £ 2mI(\DuN\2

9K(ai9b,2-m+2,2-2m))

b - 2 - 2 m _ R 3

J \uN(x,t)\2dxdt]

As before, this contradicts the definition of fe.

Definition 6.5. For any nonempty subset 5 of Λ3 x R we define

- d \ 2 ) 1 / 2 :(a,b}εB and M)e£}

and we set diam((/>) = 0. Suppose 0<rf^4 and A is a subset of K3 x #. Then for
every δ > 0 we define φd

δ( A) to be the infimum of all numbers of the form

(Γ(ί/2Y/Γ((d/2) +
i= 1

where A. is a subset of #3 x R, Ac (J Ai9 and diam(^4f)^5. Observe that (/>^)

^^μ) if ^^/y. This allows us to define Hd(A)= lim^(A). Hd(A) is called the d

dimensional Hausdorff measure of A. For additional details, see [2].

Lemma 6.6. There exist absolute constants C12, C13, and C14 with the following
property : For every integer /c^:0 there exists a compact set S(k)cR3 x R+ such that

(a)
(b) #W)n(#3x W^C^lKlli1 if ί>0,
(c) if (c,d)e(jR3 x [2 2/c, oo))~S(fc) ί/ien ί/iβrβ ^x/sί 0^2 integer m^k and

(a9b)eA(m)xB(m) such that (c9d) is in the interior of X(α,b,2"m"3,2"2 m~5) and
(6.4) is true for infinitely many n.

Proof. For every integer m^O we let T(m)C#3 x R+ be the union of all the sets
K(a, b,2~m-*,2~2m~5) such that (α, b)eD(m). Then we let S(k) be the intersection of
all T(m) such that m^/c. Lemma 6.3 implies that D(m) is finite. Hence every T(m) is
compact, and this implies that S(k) is compact. If (c,d}φS(k) then (c,d)φT(m) for
some m^/c. If, in addition, (c,d)eR3 x [2~2/c, oo), then d^2~2k^2~2m and hence
there exists (a,b)eA(m)x B(m) such that (c, d) is in the interior of
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K(a,b,2~m~3,2~2m~5). Since (c,d)φT(m)9 we must have (a,b)φD(m). This proves
(c). We have diam(K(a,fe,2~m~3,2~2 m~5))<2-m when m^O. If k is given then, for
every m^k, S(k) is covered by the sets K(a,b,2~m~3,2~2m~5) where (a,b)eD(m).
Hence Lemma 6.3 yields

(a,b)eD(m)

||w0||2 + C13||w
0||^3 (6.8)

whenever δ^.2~m. Taking the limit as w— >oo, we obtain (a). Now suppose that
k§:0 is an integer and ί>0. For every m^k, T(m)n(R3 x {ί}) is covered by a
collection of sets K(α,b,2~m~3,2~2 m~5) such that (a9b)eD(m) and b takes at most
three distinct values [since we can discard those sets K(a9 b, 2~m~ 3, 2~ 2m~ 5) which
do not intersect R3 x {ί}]. Hence we can use the argument of (6.8) and Lemma 6.4
to conclude

x t ^ r o n x

when δ^2~m. We obtain (b) by taking the limit as m->oo.

Lemma 6.7. Suppose β > 0 and F is απ open subset of R3 such that the closure of V is
compact and the closure of V is contained in U. Then there exists an integer k^O
and a function z:(Vx [2~2k, oo))~S(k)-»jR3 such that

2~2k^β, z(x9 f] = (curl (M)) (x, ί)

for almost every (x, ί) m ίfte domain of z, απίί z 15 α continuous function.

Proof. We let <5 be the distance between the closure of V and the complement of U.
The number δ is positive because the closure of V is compact. There exists R > 0
such that 4R < δ. Now we can find an integer k large enough so that fc ̂  0, 2 ~ 27c ̂  /?,

+1<(5, and

C7)2fc. (6.9)

Suppose (x, ί)e(Fx [2~2k, oo)) — S(k). Lemma 6.6 yields an integer m^k and
(a,b)eA(m)xB(m) such that (x,t) is in the interior of K(α,fo,2~m~3,2"2 m~5) and
(6.4) is true for infinitely many n. We can find an infinite sequence n1<n2<n3< ...
such that (6.4) is true for every n = nt and, in addition, 4#-|-2~ fc+1+4επ<<5 for
every n = ni. We now establish the following claim: If n is one of the nί9

(c,d}eK(a,b,2-m,2-2m\ 0</z^2~m, and d>h2 then

ί $\un(y,s)\2(\y
d-h2 R3

+ \ f|u-(y,s)|(|3'-c| + Λ)-*Λ-1d3'<fa + C5(C7)2». (6.10)
d-h2 jR3
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If \y-c\^4R + 4εnι then

-a\ + \a-x\^

Since xe F, we conclude ye 17. In particular, we have ce U. In addition, we have
0<h^2~m^2~k<R/2. Now we can use k^m and Theorem 5.12 to conclude
(6.10). We use (6.1), (6.3), and Theorem 4.2 with H = CΊ and Γ-C5(C7)2m to
conclude

\un(c,d)\^C6(CΊ)2m if M)eK(αA2~m~2,2~2m~4) and n = n. for some i.

(6.11)

Since (6.4) is true for all n = nt, the collection of numbers

{I(\Dun\\K(a,b,2-m-2,2-2m-4)):n = ni for some i}

is bounded. Combining this with (6.11) and Theorem 5.16 we conclude that the
collection of functions (curl(wn) :n = nt for some i and εn<(2~m~2)/64} is uniformly
bounded and equicontinuous on K(a,b, 2~m~3,2~2 m~5). By Ascoli's theorem, a
subsequence converges uniformly to a continuous function. This limit function
must coincide almost everywhere with the weak limit curl(w) of the original
sequence curl(wn). This means that we can make curl(w) continuous on the interior
of K(α,b,2~m~3,2~2 m~5) by redefining it on a set of Lebesgue measure zero. The
conclusion of the lemma follows easily.

Theorem 6.8. There exists a set ScUxR+ such that
(a) if K is a compact subset of U x R+ then KnS is compact,
(b) the function curl(w) can be modified on a set of Lebesgue measure zero so

that it becomes continuous on (U x R+)~S,

(d) H\Sn(R3 x {f}))£C14||w°||* if ί>0.

Proof. We construct an infinite sequence F1? F2, F3, ... of open subsets of U such
that closure (Vn)cVn+ί, closure (Vn) is compact, and the union of the Vn is equal to
U. We will use the abbreviation 2~2k = b(k). Using Lemma 6.7 we obtain an
increasing sequence fc1</c2</c3< ... of nonnegative integers such that the re-
striction of curl(w) to (Vnx[b(kn),ao))~S(kn) is equal almost everywhere to a
continuous function. We define

0 (S(kn+ J~(Vn x (b(kn\ oo)))
= l

If K is a compact subset of UxR+ then there exists an integer N such that
KC Vn x (b(kn\ oo) for all n>N. Hence

U ((S(kn+ί)~(Vnx(b(kJ,π)))nK)\
ι = l /
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which is a union of finitely many compact sets. This proves (a). Now suppose
(a,b)ε(UxR+)~S. We have two possibilities: (1) (a9b)eV1x(b(k])9 oo); (2) there
exists n such that (a, b)eVn+1x (b(kn+ J, oo) but (α, b)φVnx (ft(fcn), oo). If (1) holds
then (α,b)e(F1x(fc(/c1),oo))-S(/c1). If (2) holds then (a,b)e(Vn+1 x (b(kn+1) oo))
~S(kn+ 1) because (α, fo)<£S implies (α, b)φS(kn+ ^)~(Vn x (ft(fcn), oo)), and combining
this with (2) yields (a, b)φS(kn+ J. In either case, (α, ft) is contained in an open set on
which curl(w) coincides almost everywhere with a continuous function. This proves
(b). Since Hausdorff measure is a Borel measure and S(fc)cS(fc+l), we obtain (c)
and (d) from Lemma 6.6 and the following:

Q s(fe Λ = lim H5

n=ί / n-+ao

<Γ l l w ° H 2

= ̂ l l W l l I I 2

. ) ] n(R3 x {ί})
»=ι / I

||w°||2 if f>0.

Definition 6.9. For every integer m and every positive integer n we set E(m,n)
= {beB(m): (6.4) is false for some

Lemma 6.10. T/z^ number of elements in the set E(m,n) is less than the number M
described in Lemma 6.3.

Proof. If this is false then we can find k distinct elements in E(m, n), where k is the
smallest integer greater than or equal to M. We denote these elements by ftfj

ze {1, 2, . . . , k}. For each z, there exists α E^4(m) such that (6.4) is false when (α, ft) is
replaced by (0f, ft.). Carrying out the argument in the proof of Lemma 6.3 (the only
difference being that we are now dealing with a single n, which only simplifies
things), we obtain a contradiction.

Lemma 6.11. // V is an open subset of R3 such that the closure of V is compact and
the closure of V is contained in 17, η > 0, and 0<β<T<co then there exists a closed
set F CR+ such that the Lebesgue measure of F is at most η and a subsequence of the
sequence curl(w") converges uniformly on Vx ((β, T)~F).

Proof. We let δ > 0 be the distance between the closure of Fand the complement of
U. We find R>0 such that 4R<δ and we find an integer m large enough so that

and (see Lemma 6.3)

(6.12)

We letF(m,π)-{fe6£:(m,π):ftgT + 2-2m}. Since {ftEβ(m):fe^T + 2~2m} is a finite
set which contains E'(m, n) for every n, we conclude that, as n varies, £'(m, n) can
only be one of a finite number of different sets. Hence there exists an infinite
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sequence nί<n2<n < ... of positive integers such that

E'(m, n1) = E'(m, n2) = E'(m, «3) = . . . .

Setting E' = E'(w,n.)5 we define F to be the union of the intervals [b — 2~ 2 m~ 5,b]
for beE'. From Lemma 6.10 and (6.12) we conclude that the Lebesgue mea-
sure of F is at most η. If (x, ί)e V x ((/?, T) ~ F) then (x, ί) is contained in the inte-
rior of K(a,fe,2~m~ 3,2~ 2 m~ 5) for some (a,b)εA(m)xB(m). If beE' then
te[_b — 2~2m~5,b']cF, which contradicts the choice of (x,ί). Hence we conclude
bφE'. From fc-2~2m~5<α<Twe obtain b < T + 2 ~ 2m. This implies that bφE(m, w f)
for all z and, in particular, that (6.4) is true for every n = nt. Since Vx((β, T)~F) is
bounded, we obtain that V x ((/?, T) ~ J7) is covered by the interiors of a finite
collection of sets of the form K(a,b,2~m~3,2~2m~5) such that (a,b)eA(m)x B(m)
and (6.4) is true for every n = nt. The rest follows from the argument in the proof of
Lemma 6.7.

Lemma 6.12. Iffίs a C°° function with compact support from R3 x R into R3 such
that div(/) = 0 and the support of f is contained in U x R then there exist real
numbers a<b and a C™ function g'.R^xR^R3 such that curl(0) = /, 0(x,s) = 0 if
sφ[a,b], and

= \ \ MX, s)] ίDJfx, s)
0 K3

00

+ ί ί [M/X, s)] [(curl («));(*, s)] [Dj0i(x, s)]dχ ds
0 R3

+ ? J - [(curl (M))/X, s)] [M;(x, s)] [D^x, s)]dx rfs . (6. 1 3)
0 R3

Proof. The α, b, gf found in the proof of Lemma 5.19 depend only on/. Therefore we
can use Lemma 5.19, Definition 5.1, and Definition 5.2 to find real numbers a<b
and a C°° function g:R3 x R-+R* such that curl (#) = /, g(x,s) = Q if s^[α,b], and

Γ f r nf
— J J LUί(x>t

0 K3

+ ί j - [zj(x, sK(x, s)] [D^*^*^*^*^) (x, s)]dx ds (6.14)
0 R3

is satisfied for sufficiently large n. Since / is C°° with compact support and un

converges to u weakly in L10/3, the first two integrals in (6.14) converge to the first



40 V. Scheffer

two integrals in (6.13) as n-^oo. To complete the proof we have to show that for
every ε > 0 and every positive integer N there exists an integer n ̂  N such that the
sum of the last two integrals of (6.14) is within ε of the sum of the last two integrals
of (6.13). Suppose ε and N are given. We set Φn = θ'Bn*ffan*θ'en*θ'Λn and use the
boundedness of U and the fact that g(x, s) = 0 for sφ\_a, b} to find a positive number
M such that \Dj(g^Φn)(x,s}\^M and (D^-fos^M if xeU. We may as well
assume that b>0 [otherwise the integrals in (6.13) are all zero]. Letting m(U) be
the Lebesgue measure of [7, we find η > 0 such that

(36)Mq/10||w0||^ + 2^(m(ί7)))1/5(l/2)1/2<ε/4. (6.15)

Since U is bounded, we can find an open subset Fof R3 such that the closure of V
is compact, the closure of Fis contained in 17, and the Lebesgue measure of U~ V
is at most η. Let β be a positive number such that β < η and β < b. Setting T= b, we
can use Lemma 6.11 to find a closed set FcR+ such that the Lebesgue measure of
F is at most η and there is an infinite sequence nί < n2 < n3 < ... of positive integers
such that N^n1 and the subsequence

(zn = curl (M") :n = nl9n29n39...)

converges uniformly on V x ((β, T) ~ F). We set E = V x ((β, T) ~ F) and let
h:R*xR+-*R be the function defined by h(x9s)=ί if (x9s)eE and h(x9s) = 0
otherwise. Setting z = curl(w), we conclude from the boundedness of E that the
subsequences

(A(x, s)z?(x, s)Dj(g^Φn) (x, s):n = n19 n2, n3, . . .)

and

(h(x9 s)znj(x, s)Dj(g^Φn) (x, s):n = nl9 n29 n3, . . .)

converge in L10/7 norm to h(x, s)z.(x, s)Djgi(x9 s) and fe(x, s)z;.(x, s)Djgi(x, s). Now the
weak convergence in L10/3 of un to w yields that a subsequence of

J [Mj"(x,s)z^x,S)-Z](x,φ^,s)] [DfatΦJfosfldxds (6.16)
£

converges to

J [M/X, s)z.(x, s) - z/x, sχ.(x, s)] [D^f(x, s)]dx ds . (6. 17)

In particular, we can find arbitrarily large n such that (6.16) and (6.17) differ by no
more that ε/2. The proof will be completed by setting G = (R3 x [0, T])~E and
showing that

(6.18)

[_Uj(x, s)zt(x, s) — Zj(x, S)M;(X, s)] \_Dβt(x, s)]dx da 5Ξ ε/4 (6.19)

|J[M/x,s)Zί(x,s) z.(x,φ,.(x,
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hold for sufficiently large n. Since T=b, the Lebesgue measure of (U x [0, T])~E
is at most the sum of the Lebesgue measure of (U~ V) x [0, b~] and the Lebesgue
measure of U x ([0, j8]uF). Hence the Lebesgue measure of (U x [0, T])~E is at
most.ηb + 2η(m(U)). Since, by hypothesis, the boundary of U has Lebesgue
measure zero, we conclude that the Lebesgue measure of (closure (U) x [0, T])~E
is at most ηb + 2η(m(U)). Let Kn be the collection of all xeR3 such that the distance
between x and closure (U) is at most 2εn, set Gn = (Kn x [0, T]) ~ E, and let απ be the
Lebesgue measure of Gn. The above and the boundedness of U yield

lim an^ηb + 2η(m(U)). Hence we can use (6.15) and find a positive integer ΛΓ such
n-»oo

that

(36)Mq/10||w0|||(αJ1/5(l/2)1/2<£/4 if n^N' . (6.20)

Using Holder's inequality, (6.2), and (6.3) we obtain

J \un

j(x,s)zn

i(x,s)\dxds
Gn

112\Dun(x9s)\2dxds

The same argument and the weak convergence of un and Dun yield

Gn

If n is sufficiently large then (6.18) and (6.19) follow from the above, (6.20), and the
fact that un and z" are zero outside of Kn x R + . This completes the proof of the
lemma.

Now we can tie these results together and obtain the conclusion of
Theorem 1.2. The construction of u yields that ιφc,f) = 0 for almost every
(x, ί)^closure(L7) x R+ . Part (1) follows because we assume that the boundary of U
has Lebesgue measure zero. Part (2) also follows easily from the construction. Part
(3) follows from Lemma 6.12 and integration by parts in the last two integrals of
(6.13) [using the fact div(w) = 0]. The remainder follows from Theorem 6.8, (6.2),
(6.3), and the definition of u.
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