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Abstract. We formulate the equilibrium correlation functions for local observ-
ables of an assembly of non-relativistic, neutral gravitating fermions in the
limit where the number of particles becomes infinite, and in a scaling where the
region Ώ, to which they are confined, remains fixed. We show that these
correlation functions correspond, in the limit concerned, to states on the
discrete tensor product (X)j/x, where the £/x's are copies of the gauge

xeΩ

invariant C*-algebra stf of the CAR over L2(R3). The equilibrium states

themselves are then given by (X) ώρo(jc), where ώβ is the Gibbs state on ja/ for an
xeΩ

infinitely extended ideal Fermi gas at density ρ, and where ρ0 is the normalised
density function that minimises the Thomas-Fermi functional, obtained in [2],
governing the equilibrium thermodynamics of the system.

1. Introduction

The thermodynamical limiting behaviour of a non-relativistic assembly of N
neutral, gravitating fermions of one species, confined to a suitably regular bounded
three-dimensional domain Ω, is not of the usual type, since the internal energy,
temperature and volume of the system scale like JV7 / 3, N4/3 and N" *, respectively,
as JV-> oo [1-4]. The system also possesses simple properties of scale in variance. In
the particular scaling where the domain Ω and the temperature are fixed, while the
particle mass and gravitational constant become proportional to N2/2> and N'1,
respectively, the specific free energy tends, as JV->ao, to the minimum value of the
Thomas-Fermi functional Φ0 on the bounded probability densities on Ω, given by
the formula

Φ0(β)= f d^oίeWM ί d * x d 3 y , (1.1)
Ω β2 \χ~y\

where φ0(ρ) is the equilibrium free energy density of an ideal Fermi gas at density ρ
and at the given temperature, T. According to a numerical solution of the resultant

0010-3616/80/0071/0001/S04.60



2 H. Narnhofer and G. L. Sewell

Euler equation [3] for the case where Ω is spherical, the system undergoes a phase
transition at a temperature Tc and for Tή= Tc, the probability density function that
minimises Φ0 is unique. Furthermore, it has been proved [5] that, whenever Φ0 is
minimised at a unique probability density ρ0, then this latter function
corresponds to the normalised equilibrium density distribution of the system in
the limit N->co; while the normalised densities at different points of Ω become
uncorrelated in this limit.

The purpose of the present paper is to formulate the equilibrium states of the
system, in the limit JV-»oo, in the same scaling, described above, that was used in
[4, 5]. Here, a state means a positive normalised linear functional on the
C*-algebra of observables of the system, but in view of the chosen scaling, this
algebra is not taken to be that of the CAR over L2(Ω): for as the system consists of
an infinity of particles confined to a bounded region, its states could not possibly
be locally normal ones on the latter algebra [6]. In fact, we arrive at our
specifications of both the algebra of observables and the equilibrium states of the
infinite assembly of particles in through a treatment of the limiting form, as iV-κx),
of the equilibrium correlation functions of localised observables of the finite
system, that are transformed to a scaling where the length unit is the mean
interparticle spacing (cf. Sect. 2). In this way we arrive at the conclusion that the
algebra of observables of the infinite system is given by the discrete tensor product

(X) j/^ where the j/^'s are copies of the gauge-invariant C*-algebra, j/, of the
xeΩ

CAR over L2(R3); and that, if the Thomas-Fermi functional Φ0 for the given
temperature is minimised at the unique probability density ρ0, then the equilib-

rium state of the system is (X) ώρo(x), where ώρ is the Gibbs state on corresponding
xeΩ

to particle number density ρ.

The essential reason why the rescaled observables correspond to (X) j/x may
xeΩ

be understood as follows. In the limit JV-»oo, every neighbourhood of a point
x(eΩ) contains an infinity of particles. Thus, when the observables are suitably
rescaled, it transpires that, in this limit, each point x(eί2) carriers with it an algebra
of observables jtfx, given by a copy of j^, while the algebra of observables for the

entire system is (X) j/x. The elements x of £2, as they appear in this discrete tensor
xeΩ

product, should be regarded as points in the hydrodynamical sense, since the
algebra of observables attached to each of them corresponds to that of an infinite
system. Accordingly, we term this tensor product the hydro-local algebra of

observables, and denote it by 3?g(stf\ Further, the equilibrium state (X) ώρo(x)
xeΩ

that we obtain is characterised by the properties that, at each point x(eΩ) it
reduces to that of an ideal Fermi gas at the prevailing local density ρ0(x); and that
it carries no correlations between the observables attached to different points of Ω.

The subject-matter of the article will be organised as follows. In Sect. 2, we
shall formulate the model and state the main theorem, yielding the limiting form as
N-+CO of the equilibrium correlation functions for the re-scaled local observables

and the resultant state ω: = (X) ωρo(x) on 2tf&(,stf\ We shall then discuss this
xeΩ

theorem and argue that ώ is an equilibrium state, not only because it represents a
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limiting form of Gibbs states, but also by virtue of its various stability properties :
we shall also make a conjecture concerning the possibility that the system supports
states that are metastable in the sense of being locally but not globally stable (cf.
[7]). In Sect. 3, we shall re-cast the theorem of Sect. 2 as consequences of other
theorems concerned with the linear response of the gravitational system to certain
perturbations. In Sect. 4, we shall make a number of constructions, leading to
further auxilliary theorems and lemmas. In Sects. 5 and 6, we shall present the
proofs of the theorems and lemmas, respectively, of the two previous Sections. The
two Appendices are devoted to self-contained treatments of non-gravitational
systems, that yield results required for the proofs of Sects. 4 and 5. Thus, in
Appendix 1, we shall employ a generalisation of the methods of [8] to establish
that the properties of a certain class of models are given by a mean field theory
and, in Appendix 2, we shall introduce a construction, analogous to that used in
[9] for the treatment of equilibrium states of lattice systems, to prove the
uniqueness of the translationally invariant equilibrium state of an ideal Fermi gas.

Finally, we remark that the whole theory presented here may easily be
generalised, as in [4], to two-component systems of charged gravitational
particles, for which the total charge is zero.

2. The Model

Let <&N be an assembly of N non-relativistic gravitational fermions of one species,
enclosed in a bounded, connected, three-dimensional region Ω. In the scaling
where Ω is fixed and the particle mass and gravitational constant are proportional to
]V2/3 and N~ 1, respectively, the Hamiltonian for &N is the operator in the Hubert
space ^fN(Ω) of antisymmetric square-integrable functions on ΩN, given by the
formula (cf. [4, 5])

7=1 i , 7 = l
i*7

where

υ(x,y)= -\x-y\-i, (2.2)

and where Dirichlet boundary conditions are assumed. We define ωN to be the
Gibbs state on the bounded operators in J^N(Ω\ for temperature β"1, i.e.

ωN = Ύτ(( )e-pH»)/Ύτ(e-βH»). (2.3)

In order to relate the properties of ̂  in the limit JV-»oo, to those of an ideal
Fermi gas, ,/, we introduce some definitions pertaining to the latter system. -We
take the algebra of observables, j/, for «/ to be the gauge-invariant C*-algebra of
the CAR over L2(R3). This algebra has a quasi-local structure [10, 11], i.e. it is the
closure of the union, J/L, of the C*-algebras, <$#(A), of the CAR over the spaces
L2(A\ with yi(cR3) bounded and measurable. We identify jtf (resp. £#(A)) with its
standard faithful representation in the Fock space 3? [resp. J^(A)C^f^ over
L2(R3) [resp. L2(AJ], Here jtf(A\ 3tf(A) are isotonic in A; and 3tf [resp.

[resp. 0Jfn(Λ)], where 3fn [resp. J^n(AJ] is the Hubert space of
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square-integrable antisymmetric functions on R3" (resp. Λn). We define the con-
ditional expectation E( //l) to be the mapping from &0 onto j/(A) given by

tf,Έ{A/Λ)g) = (f9Ag)VAes/ 9 f 9 g E t f ( Λ ) . (2.4)

For yeR + and xeR3, we define σ(y,x) to be the automorphism of #0
implemented in ffl by the unitary operator U(y, x) according to the formulae

σ(y, x)A = U(γ, x)AU(γ9 x)"1 (2.5)

where

( U ( y , x ) f ) n ( x 1 , . . . , x J = y 3 n / 2 f n ( y ( x 1 - x l ...,y(xΛ-x)) (2.6)

and/n is the n-particle component of/. For large y, the automorphism σ(y, x) serves
to concentrate the localisation of the observables around x : in particular, for
xelntΩ and Ae^L, σ(y,x)Ae^(Ω) for y large enough.

Let PN be the projection operator from Jtίf(Ω) onto 3FN(Ω\ and let
£#N(Ω): =PNstf(Ω)PN. For xeΩ, we define the mapping A^ANtX of si into &#N(Ω)
by the formula

: (2.7)

The AN x's correspond to observables for &N9 localised around x, as represent-
ed in a scaling where the unit of length is JV~ 1 / 3, which is essentially the mean
interparticle spacing.

Let £f(si} be the set of all translationally invariant states on si, and let
t , s , f ( : = t — β~1s) and n denote the functionals on &*(stf\ defined in [12],
corresponding to the densities of kinetic energy, entropy, free energy and particle
number, respectively, for the ideal Fermi gas, «/. The functionals / and n are thus
affine and (w*-)lower semicontinuous. As will be proved in Appendix 2, / has a
unique minimum, ώ , on y(tβ/)nn~1(ρ), and

f(ώρ) = φ0(ρ). (2.8)

Further, it may easily be inferred from the formulae in Appendix 2 that the
mapρ-+ώρ is w*-continuous while φ0 is lower-bounded, continuous, and boun-
ded on the compacts, and tends to oo as ρ->oo.

We are now in a position to state our main theorem concerning the limiting
form, as N-KX), of the equilibrium correlation functions for the re-scaled
observables {AN x} of&N.

Theorem 1. If the Thomas- Fermi functional Φ0 is minimised at a unique bounded
probability density ρ0 on Ω, then

Jim ί k \
Nm+A^\ J/z(x1? ...,

\/A(1\ ...,^(fc)e^ : he^^(Ωk), (2.9)
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where Π + denotes symmetrised product and ^^(Ωk) is the set of bounded continuous
functions on Ωk.

We define 3?5£(jtf), the hydrolocal algebra, to be the discrete tensor product
(X) jtfx, where the j^'s are copies of jtf. Thus, 2tf$£(sέ} is the inductive limit of the
xeΩ

C*-tensor products (X) $ix over finite point subsets F of Ω, equipped with the
xeF

canonical injection from (X)J/x into (X) j/χ for FcF1. For y4(1), ...,y4(/c)ej/ and
xeF xeF'

x1? ...x fc different points of £2, we define [yl(1), ...̂  x^ ...xk] to be element of

given by (gMx, with Ax = ,4(ί) for i= 1, . . . fc and ̂ x = / for x£{x1? ...,xj.
l

We then define JN to be the linear mapping, from ffl£?(£#) into the bounded
operators in 3?N(Q\ by the formula

k
7 Γ / j ( l ) Λ(k) . v V Ί TT Λ(0 O Ί f Y l

γL '1 ? •> -̂  5 - ^ 1 ? •> kJ — I I ~t~ ~^N x * \ /

i = l

We see immediately from these definitions that Theorem 1 may be restated in the
following form.

Theorem Γ. // the Thomas-Fermi functional Φ0 is minimised at a unique bounded
probability density ρ0 on Ω, then

Jim jd3*! . . .d3xk(ωN> JN) (\_AW, . . ., A^ x,,...,

l, . . ., xk)

(2.11)

where

ω:=(g)ώβ o ( J ( ). (2.12)
xeΩ

Comments

1. According to the numerical analysis of the Thomas-Fermi Euler equation,
δΦ0/δρ(x) = Q, for the case where Ω is spherical, the functional Φ0 is minimised at a
unique bounded probability density ρ0, except at the critical temperature Tc.
Accepting this result, we see that the condition governing Theorems 1 and Γ is
fulfilled, at least when Ω is spherical and Tφ Tc.

2. Theorem Γ specifies a precise sense in which ώ is the limiting form of ωN°JN

as N-KX). We interpret this theorem as signifying that the state ώ on the hydro-
local algebra ^JSf(j/) represents the properties of ωN in the limit 7V->oo.

3. We propose that ώ be taken to be an equilibrium state of the infinite system,
not only because it corresponds to the limit of a sequence of Gibbs states, but also
because it has the following stability properties.

(a) ώ is globally stable, in the sense that its specific free energy is the minimum
value of the Thomas-Fermi functional Φ0.

(b) ώ is stable at the strictly local level, in the sense that its components ωρo(x)

at the points x of Ω are equilibrium states for a Fermi gas with the prevailing local
density ρ0(x), the value of which is determined by the minimisation of Φ0.
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4. We conjecture that the system may also possess metastable1 states for the
following reason. According to the numerical treatment of [3], the Euler equation
(δΦQ/δρ(x) = Q) governing the densities at which Φ0 is stationary, has solutions
other than ρ0 when β exceeds a critical value βc; and one of these solutions, ρ l s

corresponds to a smooth continuation, in β, of ρ0 from the region β<βc. Accepting

this result, one sees that ώ1: = (X) ώρι(JC) might be a candidate for a metastable
xeΩ

state, satisfying criteria specified in [7], since on the one hand it lacks the global
stability of (3a), while on the other it possesses the strictly local stability of (3b). In
order to establish ώ1 as a metastable state, it would be necessary, in our view, to
show firstly that it corresponds to the limit, analogous to that of Eq. (2.11), of a
sequence of Gibbs states for the JV-particle systems &N whose densities are
subjected to appropriate constraints and secondly to prove that ρί is the absolute
minimum of the restriction of Φ0 to the resultant constrained set of density
functions. If these properties were established, then it would follow that ώ1 would
be stable at both the strictly local and the local hydrodynamical levels, though not
at the global one, and would thus be metastable in a sense that slightly generalises
that prescribed in [7].

3. The Perturbed System

Our strategy for proving Theorem 1 will be centred on a treatment of the response
of the system &N to a certain class of perturbations. Thus, we start by defining the
perturbed Hamiltonian

Ωk i=l

where AeR, he^^(Ωk) and A(l\ ...A(k} are self-adjoint elements of J/L. The specific
free energy of the perturbed system is then

FN(λ)= - WΓMnTrexp-^μ), (3.2)

from which one sees that FN is a concave function λ. By Eqs. (2.3), (3.1) and (3.2),

Hence, F'N(Q) is equal to the value of the expression on the L.H.S. of Eq. (2.9) before
the limit JV-> oo is taken.

In order to relate the function FN to properties of the ideal Fermi gas, «/, we
define A to be the subset of R+ x Rfc given by

f(ω) < oo n(ω) = ρ ω(A(i]) = α(ί), for i = 1, . . , fe}

1 The suggestion that the model may possess metastable states was first made to us by W. Thirring
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and we define φ:R+ x Rk-»Ru{oo} by the formula

(3.4)

[and = oo otherwise .

Thus, as the functionals n and /are affine [12], it follows that A is a convex set and
that φ is jointly convex in its arguments. We define φ to be the closure of φ, i.e. the
greatest lower semi-continuous function on R+ x Rk that is majorised by φ [13] :
φ is thus also jointly convex in its arguments.

Let Tbe the space of L^-class functions on Ω, equipped with the w*-topology
dual to the bounded continuous functions on that space. We define Θ to be the
subspace of Tk+l given by {θ = (ρ,α)|ρeL00(Ω); αeLJΩ)*; ρ>0; Jd3xρ(x) = l};
and for 5eR, we define Θ(B) to be the subspace of Θ given by {θe Θ\φ(θ(x))^B for
x a.e. in Ω}. We then define the generalised Thomas-Fermi functional Φλ on Θ by
the following equations.

(3.5)

where

Φ(ρ,α)— j d3xφ(ρ(x\α(x)) + ̂  j d xd yv(x,y)ρ(x)ρ(y) (3.6)
Ω Ω2

and

ψ(ρ α) = f d3x,...d3x,h(x 1 5 ...,xJα(1)(xΛ..α(fe)(xk) (3.7)
\^> 7 / J 1 ί C ^ l ; ' 7 / C / v l / v It' ^ '

We now see from Eqs. (3.3) and (3.7) that Theorem 1 is an immediate
consequence of the following Lemma 2 and Theorem 3 and 4.

Lemma 2 [14]. // {/„} is a sequence of real-valued concave functions on R
converging pointwise to /, and if fn and f are differentiable at Z(eR), then

nlim/n'(ί)=/'(t).

Theorem 3.. Given A 0 eR + , 3B0eR+ such that, for all \λ\<λQ, and for arbitrary
B>B0,

lim FN(/ί) = mm{Φλ(ρ?α)|(ρ5α)e(9(5)} :=F(λ). (3.8)

Theorem 4. If the Thomas-Fermi functional Φ0 is minimised at the unique bounded
probability density ρ0 on Ω, then

ί"(0)=«P(ρ0,α0), (3.9)

where

a0(x) = (^\λ\...,^\x))ι and αg>(x) = ώρo(3e)(A(i>). (3.10)

We conclude this section with the statement of the following lemmas, that will
be used in the proofs of Theorems 3 and 4.
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Lemma 5. If Φ0 is minimised at the unique bounded probability density ρ0, then Φ is
minimised at (ρ0,α0) uniquely, where α0 is defined by Eq. (3.10); and further

φ(ρ0(x), α0(x)) - <pofeoM) (3 1!)

Lemma 6. For BeR, Θ(B} is a complete, compact, metrisable space; and there exists
a finite ρB such that if(ρ,a)eΘ(B\ then ||ρ||00<ρβ and ||α(ί)||00<M(ί)|| for i=l, ...fc.

4. Constructions

In order to establish Theorem 4, we shall now make a number of constructions,
similar to those of [4]. These constructions will be carried out explicitly for the
case where Ω is a cube of side /. We note here that the restriction to such a form for
Ω is quite inessential as the same results would be obtained, with slightly lengthier
arguments, for any domain that is sufficiently regular to be approximated
arbitrarily closely by unions of 'small' cubes. In the following analysis, we shall
make the dependence of FN(λ) on β and / explicit, where necessary, denoting this
quantity by FN(λ9 βj).

(i) Regularisation of the Potential

We approximate the Newtonian potential v by a regular one vμ, defined by the
formula

1_™_,,v_ι, | )

U\ ' J / I I 'μ \χ-y\

with μ > 0 and we define HNμ(λ) and FNμ(λ, β, I) to be the Hamiltonian and specific
free energy, respectively, resulting from the replacement oft; by vμ in (2.1) and (2.2).
On following the procedure of [4: Sect. 3], we find that

(λ,βJ), (4.2)

where

lim lim bί(N9μ) = 0. (4.3)
μ-»oo JV-»oo

(ii) Division of Ω into Cells

We divide Ω into g equal cubic cells C15 ... Cg, centred at (c1? ...c ), respectively,
and separated by partitions. We then introduce the following three operations that
change the Hamiltonian from HNμ(λ) to HNμg(λ).

(a) We impose Dirichlet boundary conditions at the boundaries of the cells so
as to represent the presence of the partitions.

(b) We replace vμ by the step-function vμg, where

„ {x y)= KM if

 r , s ,
μfΛ ' yι \0 if x, y lie in the same cell. v ' '
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(c) For each of the cells Cr, we define C(

r

N} to be the largest open cube in Cr such
that, for xeC<N), σ(N1/3,xM(ί)ej*(Cr) for r = l, ...,#. We then replace h by hg%

(

g

N\
/ 9 \ f c

where ̂ N) is the characteristic function for \J Cj.N) , and h is the step-function
\ r = l /

given by the formula

otherwise.

We note here that it follows from our definition of C(

r

N\ together with Eq. (2.5), that

On following the procedure of [4: Sect. 4], we obtain the following estimate for the
specific free energy FNμg(λ), corresponding to the Hamiltonian HNμg(λ).

FNμg(λ, β, I + b2(g)) -b3(N, μ, g) £ FNμ(λ, β, I)

where

£>2(g)>0; lim b2(#) = 0; and lim lim b3(JV,μ,0) = 0. (4.8)
g—* oo g~* oo N~* oo

(iii) Distribution of Particles Among the Cells

The separation of the cells by partitions restricts the particle configurations in such
a way that the number of particles in each cell is an integer. Accordingly, the set
of admissible distributions of particles among the cells corresponds to

9

PN'. = {ρ = (Q1,...,Qg)\Nρr\Cr<EZ+ for r=l, . . . ,0; Σρ r |C r | = l}: the component
r = l

ρr of ρ(ePN) then corresponds to AT" x x mean particle density for Cr. For
ρePN, we define FNfigg(λ,βJ) to be the specific free energy of the system with
Hamiltonian HNμg(λ\ subject to the constraint that the distribution of particles
among the cells is given by ρ. We define

wβ (4.9)

and, by a simple extension of the argument of [4, Sect. 5], we find that

Jim [_FNμg(λ, β, I) - FNμg(λ, β, 0] = 0, (4.10)

(iv) Thomas-Fermi Functionals

Let Φμλ be the functional obtained by replacing v by vμ, and let Φμgλ be the one
obtained by replacing v, h by vμg, hg in the formulae (3.5)-(3.7), that define Φλ.

Lemma 7. The restrictions of Φλ and Φμλ to <9(β) are lower semicontinuous.

Lemma 8. Let Θg be the subset of Θ whose elements Θ take uniform values in each of

the cells C l 5 ...Cg. Then, given A 0 eR + , and intervals (βί,β2), (^1^2) on tne positive
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real line, there exists £0eR such that, for μ,geR+, j8e(j81,j82), / e ( / l 5 / 2 ) and \λ\<λ0,
the restriction of Φμgλ to Θg is minimised at an element θμgλ of Θ(B°\

Theorem 9.

Jim FNμg(λ, β, /) = min {Φμgλ(Q, α)|(ρ, α)e Θg}

(4.11)

Theorem 10. With the same specifications for λ0 and B0 as in Lemma 8, and for
arbitrary B>B0,

lim lim Fμg(λ, β, /) = min {ΦA(ρ,
μ-»oo 0-> oo My

(4.12)

Theorem 11.

lim FN(λ, β, I) = F(λ, β, /)Vμ| < λQ. (4.13)

5. Proof of the Theorems

As already noted, Theorem 1 follows directly from Lemma 2 and Theorems 3 and
4. Further, Theorem 3 is an immediate consequence of Theorems 10 and 11.
Hence, the only theorems for which proof is needed are Theorems 4, 9, 10 and 11.

Proof of Theorem 4. Assuming that Φ0 is minimised at ρ0, uniquely, it follows
from Lemma 5 that Φ is minimised at Θ0:=(ρ0,α0) uniquely; and that, as
Q0ELX(U) and as φQ is bounded on the compacts, then in view of Eq. (3.11),
I I Φ ° ^ o l l o o < 0 0 Let /l0eR+, let £0(eR) be specified as in Theorem 3 and choose B
to be some real number that exceeds both B0 and | |φ°0ol lα» thereby ensuring that
90eΘ(B} and that Eq. (3.8) is applicable for μ|</ί0. Thus, if θλ is an element of
Θ(B) at which Φλ is minimised, then

J (5.1)

and

(5.2)

Further since, by Eq. (3.7) and Lemma 6, one can find /c<oo such that
\Ψ(θ}\<k\λ\MθεΘ(B\ it follows from Eqs. (3.5), (5.1) and (5.2) that
|Φ(θλ)-Φ(00)|<2fcμ| and therefore

limΦ^HΦ^o). (5.3)
λ-» 00

On the other hand, as Θ(B} is a compact, metrisable space, by Lemma 6, one can
choose a sequence of positive numbers {λn}, tending to zero such that θλn

converges to an element 0'0, say, of Θ(B\ Hence, as Φ is lower semi-continuous, by
Lemma 7, it follows from Eq. (5.3) that Φ(θ'0) ̂  Φ(Θ0) and therefore θ'0 = Θ0, as Φ is
minimised at Θ0 uniquely. Thus

limθ λ =00. (5.4)
^ Λn v
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As FN is a concave function of λ, we see from Eq. (3.8) that so too is F. We
denote its left and right derivatives by F\ and F'r, respectively. By Eqs. (3.5), (5.1)
and (5.2),

from which it follows that

FJP^limsup^θJ. (5.5)
n->oo n

Moreover, it follows easily from Eq. (3.7) that the functional Ψ is continuous, and
therefore by (5.4) and (5.5),

F'r(Q)^Ψ(ΘJ (5.6)

Similarly by considering a sequence {θλn} of elements of <9(β) corresponding to
negative numbers {λn}, one finds that

F'1(Q)^Ψ(Θ0) (5.7)

Since F is concave, it follows immediately from (5.6) and (5.7) that this function is
differentiably at λ = 0, and that F(0) - Ψ(Θ0). D

Proof of Theorem 9. Let &N ρ be the system of N gravitating particles, whose
distribution among the cells Cl9...Cgis given by ρ(ePN). The normal states of &N ρ

g
correspond to density matrices in J^ ρ : = (X) 3ΊfNr(Cr), where jjfNr(Cr) is the Nr-

r= 1

particle subspace of the Fock space JΊ?(Cr)9 and Nr = NQr\Cr\. In formulating ̂ N ρ,
we shall generally use the same symbol to denote an operator in J^Nr(Cr) and its
canonical injection into JjfN Q.

The Hamiltonian HNμgρ(λ) for &N ρ, corresponding to the truncated in-
teractions vμg and hg specified in Sect. 4, is simply the restriction of HNμg(λ) to ̂ >ρ.
Thus

Σ vrsβrρs\Cr\\Cs\
r ,s=l

...|CJ, (5.8)
Π,. . . ,Γfc= 1

where Tr corresponds to the operator in j^Nr(Cr) representing the kinetic energy of
Nr particles of unit mass in Cr, i.e.

Tr = - i Σ ^ » (5 9)
J = l

where Dirichlet boundary conditions are imposed; A(

r

l) corresponds to the
operator in jjfN (Cr) given by

(5.10)

I5'11)
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and
hrι...rh = hg(cn,...,crk). (5.12)

Correspondingly, the specific free energy of ^N Q is

FNμgρW = - (NβΓ 1 In Tr exp( - βHNMQ(λ)) , (5. 13)

the trace being taken over 3Ί?Ntβ.
In order that we may apply standard thermodynamical limiting procedures to

this formula, we now cast it into a form that expresses FNμgρ(λ) as the specific free
energy of an Λf-particle system occupying a volume proportional to N. To this end,

we define C r: = N1/3CΓ, «^>ρ:= (X) ^Nr(Cr) and HNμge(λ) to be the operator in

&NtQ given by

HNμgβ(λ) : = U(N^, 0)- 1 HNμgQ(λ) U(N113, 0) , (5.14)

where U is defined in Eq. (2.6). Thus, by Eqs. (2.6), (5.8)-(5.10), and (5.14), it follows
that

= Σ ί + itf £ vraβrρ8
r = l r , s=l

Σ .̂..̂ - '̂ICJ...̂ ^ (5.15)
rι, ,Πc = 1

where Tr is the kinetic energy operator for Nr particles of unit-mass in Cr, with
Dirichlet boundary conditions,

A<f>: = \Cr\-* j d3x(τ(x))^V, (5.16)
cr^)

τ(l^3) is the group of automorphisms of j/ corresponding to space translations,
and C^ -TV1/3^. Thus, in view of Eq. (4.6),

lim|CΠ/|C r | = l . (5.17)
N-* 00

It follows immediately from Eqs. (5.13), (5.14) and the unitarity of U that

FNμgρW = - (Nβ) ~ 1 In f r exp( - βHNμgQ(λ)) , (5.18)

where fr denotes the trace over *&Niβ', and hence, by (4.9).

FNμg(λ, βj)=mmί- (Nβ) ~ 1 In f r exp( - βHNμgα(Xfϊ] . (5.19)

This formula will.be treated in Appendix 1, where it will be shown, by an extension
of the methods of [8], that the space-averaged observables A(^ occurring in the
formula for HNμgρ(λ) may be replaced by c-numbers satisfying a certain variational
principle in the formula for FNμg, in the limit Λf-»oo, with the result that

φter,αr)|Cr| + i Σ ^rβJCr||CJ
l r , s = l

(k}

(5.20)
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This effectively completes the proof of the theorem, since the definitions of Θg and
Φμgλ (in Sect. 4, Pt. 4) imply that the R.H.S. of (5.20) is equal to min{Φ λ(θ)|θe Θg}
while it follows from Eq. (4.10) that the L.H.S. of (5.20) is equal to

Proof of Theorem iO. It follows from Lemmas 6, 7 and Theorem 9 that for \λ\ <λ0

and £>£o> one can find elements θλ, θμλ, θμgλ of Θ(B\ Θ(B) and Θ(B}πΘg at which
Φλ, ΦμΛ, ΦμίM, respectively, are minimised. Since, by Theorem 9, Fμg(λ, β, I)
= Φμgλ(θμgλ\ it suffices for us to show that

(θμλ) = Φμλ(θ^ (5.21)

and that

JLmΦ^HΦ^). (5.22)

Let θ'μgλ be the element of Θg obtained by replacing θμλ in each cell Cr by its
mean value over that cell. Then it follows from the convexity of φ and our
definition of Θ(B} that 9^μgλεΘ(B)nΘg. Hence as Θμλ, Θμgλ are elements of Θ(B\
Θ(B}r\Θg at which ΦμA, Φμgλ, respectively, are minimised,

A) (5.23)

and

λ(θ'Mλ). (5.24)

Further, it follows from our definitions of Θ(B\ Φμλ, Φμgλ in Sect. 4 (iii) and (iv) that,
in view of the convexity of φ and the uniform boundedness of the elements of Θ(B}

(by Lemma 7)

) (5.25)
g— > oo

and

Φμgλ(θ)^Φμλ(θ\ uniformly w.r.t. θ in Θ(B\ as g->ao. (5.26)

Hence, by Eqs. (5.23)-(5.26),

Φμλ(θμλ)^ \immϊΦμλ(θμgλ)ί lim*upΦμλ(θμgλ)

= lim sup Φμgλ(θμgλ) ^ lim sup Φμgλ(θ'μgλ) = lim sup Φμλ(θ'μgλ) ^ Φμλ(θμλ) ,

from which it follows that (5.21) is valid.
Finally it follows from Lemma 6 and our definitions of Φλ, Φμλ and Θ(B} that,

for any θεΘ(B\

and therefore Φμλ(θ)^Φλ(θ), uniformly with respect to θeΘ(B\ as μ^oo. Equation
(5.22) follows immediately from this result and the definitions of Θλ, θμλ as elements
of <9(β) at which Φλ, Φμλ, respectively, are minimised.
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Proof of Theorem 11. Since h is bounded, one can easily infer from Eqs. (3.1), (3.2)
that FN(λ, β, I) is non-decreasing in β, non-increasing in / and uniformly continuous
in λ, for μ| <λ0. Hence, it follows from (4.2), (4.3), (4.7), (4.8) that, given δ, ε >0, then
for sufficiently large μ and g,

,ί,) (5.27)

where

lim lim lim c(N,μ,g) = 0. (5.28)
μ-»oo 0-»oo N-+OO

By Theorems 9, 10 and the boundedness conditions obtained from Lemmas 6-8, it
follows from (5.27) and (5.28) that

F(λ9 β, I) ̂  lim sup FN(λ, β, I) ̂  lim inf FN(λ, β, I) ̂  F(λ, β-δj + ε). (5.29)
N-+CQ N-+OO

Thus, as δ, ε are arbitrary positive numbers, it suffices for us to establish that

lim lim F(λ, β-δ,l + ε) = F(λ, β, I) , (5.30)
ε->0 <5->0

in order to infer the desired result from (5,29).
Now, as FNμg(λ,β, I) is concave in β"1, it follows from Theorems 9, 10 that the

same is true for F(λ,β,l). Further, by Lemma 6 and Theorem 10, F(λ9β,ΐ) is
bounded for finite β~ 1, and hence as it is concave in this variable, it is continuous
in β over bounded intervals that exclude the origin. Hence

\imF(λ,β-δJ + ε) = F(λ,βJ + ε) (5.31)
<5->0

In order to pass to the limit ε->0, we first note that, for g>0, a treatment,
parallel to that leading to Theorem 10, yields the result that

lim lim lim ~(q~ ^NβΓ ^ In Tr exp( - β H N ( λ ) )
- > o - > o r - > oo μy

= mmίΦΛ(ρ,α)|ρeL00(Ω);α6L00(Ω) ί£;ρ>0; $d

The L.H.S. of this equation may be seen from Theorems 9, 10, and our definition of
FNμg to be qF(λ,β,l). Hence it follows from Eq. (4.12) that

if ρeL00(ί2),αeL00(ί2)fc,ρ>0, I d 3 x ρ ( x ) = q. (5.32)

Now let Ωε(D Ω) be a cube of side ί + ε, and let Φ(

λ

ε) be the Thomas-Fermi functional
obtained by replacing Ω by Ωε in the definition of Φλ. Then, by Theorem 10,

Φί>(ρλfβ,αλie), (5.33)

where (ρA ε, αΛ ε) minimises Φ(

A

ε). Let

qλ,ε=$d*xρλ>ε(x) (5.34)
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and let (ρλ ε, αλ ε) be the restriction of (ρλ ε, αA ε) to Ω. Then it follows from (5.32) and
(5.34) that'

λ^λ>ε), (5.35)

and hence, by^Eqs. (3.5)-(3.7), (5.29). (5.31). (5.33) and (5.35), together with our
definitions of Φ^\ ρλ ε and αλ ε,

0 ̂  F(λ, β, I) - F(λ, β, I + ε) ̂  (1 - qλJF(λ, β, I)

+ J d3xφ(ρλίε(x),<x,λfε(x)) + f d*xd3yv(x,y)ρλtε(x)ρλtε(y)
Ωε\Ω

.M*!,..,*^*!).̂ '̂ ). (5-36)

In view of the uniform boundedness conditions given by Lemmas 7-9, it follows
easily from (5.35) and (5.36) that

and hence, by (5.31), we see that the formula (5.30) is valid. Π

6. Proof of Lemmas

Proof of Lemma 5. In view of Eqs. (1.1) and (3.6), it suffices for us to prove that, for

us to prove that, for ρ 0

eR+ and &Q = (

(6.1)

and

φfeo>αι)><Pofeo) for ^Φαo. (6 2)

Let us first prove (6.1). By Eqs. (2.8) and (3.4),

. (6.3)

Since φ is the closure of φ, we can find a sequence {(ρn, απ) in the interior of Donκp,
the region where φ is finite, such that (ρn,αj->(ρ0,α0) and φ(ρn,αj-»φ(ρ0,α0) as
rc->oo [13, p. 52]. Hence, as φ(ρn, αj^φ0(ρπ), by Eqs. (2.8) and (3.4), it follows that

and therefore, in view of the continuity of φ0,

(6.4)

On the other hand, φ rg φ, by definition of the closure of a convex function and
therefore, by (6.3) and (6.4), Eq. (6.1) is valid.

We shall prove the inequality (6.2) firstly for the case where k = 1 and then for
arbitrary /ceZ + . For the former case, we start by assuming that, contrary to (6.2),
there exists α'0φα0, in R, such that

Φfe(Xo)^<?o(£o) (6 5)

For definiteness we shall assume that α'0>α0: the case α'0<α0 can be treated
analogously.
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It follows immediately from (6.5) that 0'0 : = (ρ0, α'0)eDomφ. Let ̂  be the curve
α = a(ρ) : = ώQ(A\ which is continuous because of the w*-continuity of ώρ in ρ. Since
φ(ρ,a(ρ)) = φ0(ρ) [cf. (6.1)] it follows that ^ also lies in Domφ. Let ρ1 ?ρ2 be two
positive numbers such that ρ1 < ρ0 < ρ2, and let 0. : = (ρ., α(ρf)) for i = 1, 2. We define
K to be the interior of the domain bounded by the curve ^ and the lines
connecting 0'0 to 01 and 02 : thus, as we are taking α'0 to be greater than α0,

* - (ρ. «)|α > α(ρ) α < a(Qi) + ° (ρ - ρ f) for i=l,2
I Qo~Qi

Since 0'0 and ̂  lie in Dom φ, it follows from the convexity of φ that K C Int Dom φ
and therefore φ and φ coincide in K [13, Theorem 7.4]. Hence as

t follows that

φ(ρ0, i(α0 + α'0)) - <p(ρ0, ̂ (α0 + α'0) . (6.6)

Further, as φ is jointly convex in its arguments,

2 (^0 + α/θ)) ̂  2 Φfoθ?

 αθ) + 2 Φ

^φ(ρ0,α0), by (6.3) and (6.4)

and consequently, by (6.6),

φ(ρ0, ̂ (α0 + α'0)) ̂  φ(ρ0, α0). (6.7)

However, as the free energy density functional for the ideal Fermi gas at given
density is minimised at the unique state ώρ (cf. Appendix 2, Theorem A2.1), it
follows from Eq. (3.10) that (6.7) cannot be valid when α'0 φα0. In other words, we
have established that the assumption of (6.5) cannot be valid with α'0φα0, and
thereby proved the inequality (6.2) for the case when fc = l.

In the case where fc>l, we define φt :R+ xR-»Ru{oo}, for i=l, ...,/c, by the
formula

(. _ ίinf{/(ω)In(ω) = ρ ω(A(ί)] = α(ί)} if 3ωeSe(d)

'--''Λ ρ, ω(A(l}) = α(l) and =00 otherwise.

Hence by Eqs. (3.4) and (6.8)

φ(Q, °0 ̂  <p£(ρ, α(ί)) α = (α(1),..., α(/c)). (6.9)

In order to reduce our proof of (6.2) to the one we have already carried out for
fc = 1, it suffices to show that

φ(ρ, α) ̂  φ^ρ, α(l)), (6.10)

where φ. is the closure of φ.. This we now do as follows. In the non-trivial case
where the L.H.S. of (6.10) is finite, we may choose a sequence (ρn,αn)EDomφ such
that (ρn,αj^(ρ,α) and φ(ρn,απ)^φ(ρ,oc) as n^co. Hence

φ(ρ, α) = lim φ(ρn, αn) ̂  lim sup φ.(ρn, α^) (by (6.9))
n-+<x> n->co

^ lim sup φ^(ρπ, α^) (as φi ̂  φ.)

^ φf(ρ, α(l)) (by lower semicontinuity of φ.). Π
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Proof of Lemma 6. It follows from the lower semicontinuity of φ that φ~ 1(— oo, £]
is closed, and hence that Θ(B} is a closed subset of Θ. Let (ρ, α)e <9(B). Then by Eqs.
(6.1), (6.2) and the definition of Θ(B\

Φo to (*)) ̂  Φfe(x), Φ)) ̂  5 for x a.e. in Ω . (6.11)

Since the function φ0 :R+-»R is bounded on the compacts, continuous, lower-
bounded and tending to oo at oo, it follows from (6.11) that 3ρβeR+ such that
ρ(x)^B for x a.e. in Ω, i.e. H ρ H ^ ̂ ρβ. It also follows from (6.11) that, for x a.e. in Ω,
(ρ(x), α(x))eDomφ and hence belongs to the closure of Domφ. Therefore, by Eq.
(3.4), l lα^H^IIX^II for i=l, . . . , fc. Thus, we have proved that Θ(B} is a closed
subset of the compact metrisable space

= {0 = (ρ;α<1>,...,α<->)eθ|| |ρ| |0 0^βB; | |αW||o ogμ(')| | for i=l,...,k],

and is therefore itself compact and metrisable. Π

Proof of Lemma 7. Φλ is defined by Eqs. (3.5)-(3.7). It follows from the uniform
boundedness of the elements of <9(β) (cf. Lemma 7), together with the fact that
t eL^Ω2) and h is bounded, that the contributions to Φλ given by λΨ and by the
last term on the R.H.S. of (3.6) are both continuous. Hence, in order to establish
the lower semicontinuity of Φλ, and likewise of Φμλ, it suffices for us to prove that

the mapping θ(ε(9(β))— » j d3xφ(θ(x)) possesses this property.
Ω

For this purpose, we resolve Ω into cells, C1? . . ., Cg and, for θe Θ(E\ we define
θg to be the element of Θ(B} obtained by replacing θ in each cell Cr by its mean
value, θ , over Cr We then define

G(θ)= j^3xφ((9(x)) (6.12)
Ω

and

Gg(θ)= $d3xφ(θg(x)) Ξ £ φ(θr) \Cr\ . (6.13)

Since the elements of Θ(B} are uniformly bounded (cf. Lemma 7), it follows that the
mapping θ-*θr is continuous. Hence, by (6.13), as φ is lower semicontinuous, so
too is Gg.

By Lusin's theorem, θg(x) converges pointwise to θ(x), except on a set of
arbitrarily small measure, as #-»oo. Hence, as φ is bounded and lower semicon-
tinuous, it follows from Eqs. (6.12), (6.13), together with Fatou's lemma, that

liminfG.(0) = G(0) (6.14)
- y

On the other hand, as φ is convex, we see from (6.12), (6.13) that Gg(θ)^G(θ).
Therefore, Eq. (6.14) implies that G is the supremum of a family {GJ of lower
semicontinuous functions on Θ(B} and is therefore itself lower semicontinuous. Π

Proof of Lemma 8. Our method here is an extension of that used in Ref. [5] for the
proof of the uniform boundedness of the density.

We shall employ the following notation: σ : = (μ, g, λ, /?, /), with |/1|</10,
βe(β1,β2\ /e(/ 1 ? / 2 ) ; (ρσ,ΰσ) denotes an element of Θg at which Φμgλ is minimised;
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(@σr> ΰσr) denotes the value of (ρσ, άσ) in the cell Cr and vrs, hr^ ^k are as defined by
Eqs. (5.11), (5.12). Thus, the increment Δt in the value of Φμgλ when its argument is
changed from (ρff, άσ) due to increments |C rJ~ 1 1 and — |Cr2|~

 1 1 in the densities in
Crι, Cr2, respectively, is non-negative. Hence, it follows from the definition of Φμgλ9

in Sect2.4(iv), together with the convexity of φ and Eqs. (3.5)-(3.7), (5.11), (5.12),

that the inequality lim At/t^.O yields the following result:

^'^HΣ^JCL (6.15)
s ύ

where φ(

ρ

±) denote the right and left derivatives, respectively, of φ w.r.t. ρ. Since this
result is valid for all pairs of cells CΓ1, CΓ2, it follows that

^ max [φ-ρσr,xσr) + ϋ«ftJCJ] >

and hence, there exists a quantity ήσ, independent of r, such that

^Φ(ΐ\Q^*Qr), for r = l,...,0, (6.16)

where

^r^σ-Σ^ίks (6-17)
s

Likewise, by considering the increments in Φμgλ when α is changed from ασr to
ασr ± ί in the cell Cr only, and leaving ρ unchanged at ρσ, we find that

^ Φί"^ άffr) , (6.18)

where φ.(±) denote the right and left derivatives, respectively, of φ w.r.t. α(l), and

i£=* Σ ^A.-.^Π^Icj. (6.19)
ri,.. .,r k j Φ ί

Since φ0 and therefore φ is lower-bounded [cf. Eq. (6.2)], and since (ρσ, ασ)
minimises Φμgλ, it follows that (ρσκ,άσf.)eDomφcC/(Domφ), and consequently, by
(3.4), |α^| ̂  || A(ί)||. Hence, in view of the boundedness of h and λ, it follows from
(6.19) that one can find a finite constant b, independent of σ, ί and r, such that

|ja<6. (6.20)

Let ψ, ψ0 be the real-valued functions on R+ x Rk and Rk, respectively given by
the equations

k

ιp(η,y)=inf[φ(Q,<x)-ηρ-y.ai]'9 y.α= Σ 3^(ί)α(ί) (6 21)
β,α ί = 1

and

ψ0(η) = inf [φ0(ρ) - ι/ρ] . (6.22)
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It follows easily from these definitions that ψ is jointly concave in its arguments
and that ψQ, which is the Gibbs free energy for the ideal Fermi gas at chemical
potential η, is a concave function. Further,

Vofa) = V>fa,0) (6.23)

since, by (6.1) and (6.2), φQ(ρ) = mfφ(ρ, α) and, as the infinum in (6.21) is unaffected
α

by the restriction that (α, ρ)eDomφ, and thus that |α(ί)|^||^4(!)||, it follows from
(6.21H6.23) that

( l ) l i (6.24)

In view of (6.18) and (6.19), it follows from the convexity of φ that, when (η,y)
= (ησr,yσr\ the infinum on the R.H.S. of (6.21) is attained for (ρ, α) = (ρσr, ΰσr) and
that

ψ(η, y) - ιp(ήσr, yσr) ^-(η- ησr)Qσr ~(y~ yσr\ ΰσr .

Hence, as ip is jointly concave in its arguments, ( — ρσr, — ασr) is tangent to ψ at
farrJσrλ and therefore

^ -ψ( + \ησr,yσr), (6.25)

where ψ(

η

±} are the right and left derivatives, respectively, of ψ w.r.t. η.
Now, by (6.20) and (6.24), one can find a finite constant c, independent of σ and

r, such that

Thus, choosing p to be some positive constant,

, yσr) - v(n> yj
p P P

and hence, in view of the convexity of ψ and φ0, as well as the differentiability of

(6.26)

where ψ'0 is the derivative of ψ0. Similarly,

<Λ~ \n, yj < Ψv(n - p) + 2c/P . (6.2?)
Therefore, by (6.25)-(6.27),

Qσr<-y>'o(l + P) + 2c/P (6 28)

and

(6.29)

It may now be seen that one can adapt the argument of [5, Sect. 4] to infer
from Eqs. (6.17), (6.28), (6.29) and the behaviour oίψ'0(η) ( -- η 3 / 2 ) for large η, that
ρσr is uniformly bounded w.r.t. σ and r. Specifically, one can do this by using the
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arguments of that article to show first that (6.17) and (6.29) imply that ήσ has a
finite upper bound; and then inferring from this result and Eqs. (6.17), (6.28) that
ρσr is uniformly bounded.

In order to establish a similar result for φ(ρσr, ασr), we note that Φμgλ cannot be
decreased if its argument is altered from (ρσ, ασ) by changing aσr to ώβσj(A). Hence,
it follows from the definition of Φμgλ, as given in Sect. 4(iv) together with Eqs.
(3.5)-(3.7), that, in view of (6.1),

<Po(Qσr) ^ Φ(Qσn ΰj + yσr - (ασr - ω-σr(A}}.

Thus, in view of the uniform boundedness of yσr [cf. (6.20)] and ασr, we can find a
constant d, independent of σ and r, such that φ(ρσr, ΰσr) < φQ(ρσr) + d and therefore,
as φ0 is bounded on the compacts and ρσr is uniformly bounded, it follows that
φ(ρσr, ocσr) is uniformly upper bounded. Π

Appendix 1 : Mean Field Theory

In order to avoid inessential notational complications, we confine our derivation
of the formula (5.20) to the case where g = 2 and hrιf2=Q except when r1=l,r2=2.
The full proof of (5.20) for the general case can be carried out analogously.

Thus, we replace the formula (5.15) by the following simpler one:

HNtβ = f1®ϊ2 + ϊ1®f2 + NA™®Ά™ + Nυρ1ρ29 (Al.l)

where v = υ^2, |C1| = |C2| = 1 and λ is absorbed into A(^®A(

2

). Equation (4.9) can
now be expressed in the form

where PN is as defined in Sect. 4(iv), DN Q denotes the set of density matrices in
^>ρ, β is taken to be equal to 1 and the parameters μ, / are omitted. We define F(£}

to be the corresponding quantity when the density matrices are restricted to those
without intercellular correlations, i.e.

J^0) = min{ΛΓ 1fr(σlnσ + ̂  (A1.3)

the trace in this expression attaining its infinum, as it corresponds to a lower
semicontinuous function on a compact set (cf. [12]). We shall now establish (5.20),
for the model treated here, in two stages. In the first of these, we shall prove that

Um(FN-F<N

0>) = 0; (A 1.4)

and in the second we shall show that

Jim FJv°
)-mi

with

Φ(ρ1,ρ2;α1,α2)-φ(ρ1,α1) + φ(ρ2,α2) + α1α2 + ι;ρ1ρ2. (A 1.6)

Equations (A1.4)-(A1.6) imply the desired result, corresponding to (5.22).
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Stage 1. It follows immediately from (A 1.2) and (A 1.3) that

FN^F%>. (A 1.7)

In order to obtain an upper bound for F^ — FN9 we first note that the values of σ,
ρ, for which the minimum in (A 1.2) is achieved, satisfy the relation

σ = exp( - tf^yf r(idem) . (A 1.8)

Let

where

and Tr is the partial trace over j^( : = Jt?Nβ .(Q). It follows from (A !.!)-( A 1.3) that

F(V ^N~ l f r(ff ' l

L i = l

^ JV ~1 Tr(σ In σ + σ' HN ρ) (subadditivity of entropy)

i.e.

In order to utilise the techniques of [8], we introduce the "perturbed Hamiltonian"

) ; x = (x1,x2)eR2;

and we define FN(x\ F(^(x), σ(x), σ'(x\ σ^x) to be_ the quantities obtained on
replacement of HN ρ by HN ρ(x) in the formulae for FN, F(°\ σ, σ', σί? respectively.
Hence, by (Al.l), (Άl.7) and (A1.9)-(A1.12),

) - FN(x) £ r((σ'(x) - σ(

- ~ Kα^ - ̂ l̂ ^ W)® Λ2)

Therefore, as Eq. (5.16) implies that | | ° | | ̂  \\A(i>\\, we see that

i = l , 2

where c is a constant, chosen to exceed ^(||,4(1)|| + M(2)||). In view of Eq. (5.16), one
can easily find a subset j/0 of s$2 that is dense in j^, such that {^(/}} satisfy the
conditions corresponding to [8; Eq. 7] for all A(l\ A(2)e^/0. Consequently for
such A(1\ A(2\ Eq. (A 1.12) is amenable to the same treatment as a similar formula
in [8], and may thus be shown to imply that

-1^^
where y l 5 y2 are finite positive constants, and Δ is the two-dimensional Laplacian;
and thence that Eq. (A 1.4) is valid. This result is extended by continuity to
arbitrary A(1\A(2)e^L.
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Stage 2. Let σ1®σ2 and ρ(N) correspond to the values of the density matrix and
particle distribution, respectively, at which the Trace in (A 1.3) is minimised. Then,
if σ\ is any other density matrix in J^ , the replacement of σt by σ cannot decrease
the value of that Trace. Hence, using (A 1.1)

where

(A 1.14) constitutes a variational principle, from which it follows that

σ. - exp - (η + y^ Af)/Ί r .(idem) . (A 1. 17)

Thus, by (A 1.1), (A 1.3) and (A 1.16),

0)- Σ (ψM^^-Φ^+ΦΦ+vΰP^ (A1 18)
i = l , 2

where

and

Sf^fr. tσ^). (A 1.20)

It follows from these last two equations that ψN is concave in y{ and that

ΨN(Q?\ yϊ - ΨN(Q?\ y\N}} £ to - PW0 (A 1.21)
By (5.16), (A 1.20) and (A 1.21), the sequences {ρ\N >}, {ά^} and {y^} are uniformly
bounded, as N runs through Z + , and therefore have accumulation points ρ , α and
y, , respectively. Correspondingly (cf. [10 Proposition 3.5. 10]), (ι/)N(ρ|N), 3?ίN))} has an
accumulation point ψ(ρi,yί\ where ψ is the thermodynamic potential defined by
the formula

φίft^^ ϋmφ^ρί^,^; (A 1.22)

or equivalently [12],

V>(ft, ̂ ) - min{/(ω) + yt ω(A^) | ωe ̂ (̂ ) n(ω) = ρ,} ,

i.e., by Eq. (3.4),

ψ(Qi,yi) = ™n{φ(Qi><*i) + yi<Xi\<*ieR}. (A1.23)

It follows from (A 1.21), (A 1.22) that

ψ(Qi> Λ ) - ^fe ίi) ̂  CVf ~ ίiOάf , (A 1.24)

and from (A1.18) and (A 1.22) that {F^} has an accumulation point, namely

)= Σ (ψ^yJ-^ + Wz + vρ^. (A 1.25)
i = l , 2

It now remains for us to prove that F(0) is equal to the R.H.S. of (A 1.5).
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Let A{ be the convex set given by {oίiER\ψ(ρί,yi)-ψ(ρi,yί)^(yi-yi)ai^yίeR}
corresponding to the set of tangents to ψ(ρ., •) at 3;.; and let S'(A ) be the set of
extremal elements of A{. Then since by (A 1.24), ά fe^ ί ? we may write

j

Further, by [9; Theorem 1], as ΰ^e^A^ there exist sequences {yijn}, {ocίjn},
converging to y^ α^ , respectively, such that ψ(ρi9 y f) is differentiable w.r.t. yi at yijn

and that the resultant differential coefficient is oίijn. On the other hand, one may
infer from (A 1.23) and the concavity of ψ that when 3^ = 3;̂ , the term on the
R.H.S. of that equation is minimised at ψ (ρi,yijn): = aijn, where ιpy denotes the
derivative of ψ w.r.t. its second argument. Hence, by (A 1.23)

ψ(Qϊ «,>) = ψ(ρi9 yijn) - yijnάίjn, (A 1.27)

and therefore, by (A 1.26), (A 1.27)

ψ(Qi>yi)-yΛ= Jim ^Cjφ(ρ i ,ά i j n )

^ lim sup φ (ρ., ̂  cfiΛ (convexity of φ)
\ j I

^ lim sup φ (ρί? Σ cjΰίjn\ (as φ ̂  φ)
I j /

^φ(ρί? ά f) [by (A 1.26) and lower semicontinuity of φ]

Hence, by (A 1.6) and (A 1.25),

ρ 2 ;ά 1 ? α 2 ) . (A 1.28)

Let φ' :R+ x R->Ru{oo} be defined so that, for fixed ρ, φ'(ρ, •) is the closure of
φ(ρ, ) and let Φ, Φ' be the function obtained by replacing φ by φ, φ' in the definition
of Φ in (A1.6). It follows easily from these definitions that Φ^Φ'^Φ and that the
minimum of Φ may be replaced by the infinum of Φ, and thus also by the infimum of
Φ7, in (A1.6). Hence, in view of (A1.28), we see that the desired result will be established
if we prove that, for arbitrary fixed ρ l 5 ρ2 >0, with ρί + ρ2 = 1,

(A 1.29)

Let Φ r(ρ1 ?ρ2; •) attain its minimum at (ά1?ά2). Then, defining

j> i : =a 2 ; j)2 = ά l 9 (A 1.30)

it follows from our definition of Φ' that φ^ρ^α^ + ̂ α^ is minimised at ά;. Thus

= Vto ί,Λ)9 by (A 1.23).

Hence the L.H.S. of (A 1.29) is equal to

Σ (^fe,3)

l )-})^i) + α 1ά 2 + ί;ρ1ρ2 (A 1.31)
i = l , 2
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Again we use [9 Theorem 1] and approximate j>ί? άf arbitrarily closely by yik,

ΣCΛ> with aίk = ψj{ρi9yik), cί/c>0, £c i k=l. Thus,
k k

ψ(Qί, j>i) ~ ΛA ̂  Σ cikl>(ft > 3>/fc) - «*£• J - ^ > (A ί 32)

where ε may be made arbitrarily small by choosing {yik} sufficiently close to yt.
Further [cf. (A 1.22)]

ip(Qi,yik) = l imφ N (ρWj> i k ); with lim ρ^> = ρ4 . (A 1.33)
JV -» oo / V — > oo

Hence, as φ(ρ ί5 ) is differentiable at yik and ψN(ρ^\ - ) is differentiable at all points,
it follows (by Lemma 3) that

KmάW==ά ί f c (A 1.34)

with

C-vUe,,^)- (A 1.35)
Consequently, by (A1.19) and (A1.32)-(A1.35),

φίρi.W-PΛ^UmN-^Cttfr^ln^ + ̂ ηj-e, (A1.36)

where

σίt = exp-(fί + j)ίkif
))/Tri(idem), (A 1.37)

and thus

fr^^f^ά^, (A 1.38)

where Tr is the Trace over the NQ*-N) particle subspace of ^(C^. Putting σt

= Σcikσίk, it follows from (A 1.36), together with the convexity of fr^σjnσ^ in σί?
k

that

ψfeJ^lim^supAΓ-^r^ln^ + ̂ ^-ε. (A 1.39)

Thus, by (A 1.1), (A 1.38) and (A 1.39), the expression (A 1.31) is not less than

limsup N~l Ύr(σ\nσ + σHN ) — ε, with σ = σ1®σ2N^ cc

Consequently, by (A 1.3) and our definition of F(0} as a limit point of {F(°}}, the
expression (A1.31) cannot be less than F(0) — ε; and, as ε is arbitrary, this means
that (A 1.29) is valid. Π

Appendix 2

For ρeR + , we define Jρ: = {ωe^(j/)|/(ω) = φ0(ρ); n(ω) = ρ}, corresponding to
the set of translationally invariant equilibrium states of the ideal Fermi gas. We
shall prove the following theorem.
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Theorem A 2.1. ΔQ consists of a single element, and this satisfies the K.M.S.
conditions with respect to the free evolution of the ideal Fermi gas.

Our proof of this theorem will be based on constructions, analogous to those
made for lattice systems in [9]. Thus, we first resolve R3 into (half-open) cubes,
whose centres are the sites of the lattice Z3, and define ®J to be the set of bounded
subsets {Y} of R3, formed by unions of finite numbers of these cubes. We then
define J* to be the set of mappings b from ®J into the self-adjoint elements of s$
such that (i) b(Y)e^/(Y)VYe(Wι (ii) b is co variant w.r.t. space translations, i.e.
b(Y+n) = τ(n)b(Y)VYe<3f, rceZ3, where τ(R3) is the group of automorphisms of #f
corresponding to space translations and (iii)

\φ\:= Σ IW)ll<°o. (All)
OeY

The set ̂ , equipped with the norm | |, is thus a separable Banach space. For
we define H(Y) to be the operator in ^f(Y) corresponding to the Hamiltonian for
an ideal Fermi gas in Y, with Dirichlet boundary conditions and we denote the N-
particle component of H(Y) by HN(Y). We define the local perturbative
Hamiltonian, Ub(Y) (ej/(Y))> corresponding to the "potential" b, by the formula

Ub(Y)= Σ b(Y')9 (A2.2)
Y'CY

and define the free energy density functional J^ : ̂ ->R by the following formula,
of standard type :

(A2.3)

where ΎrN denotes the trace over the JV-particle subspace of ffl (Y). Let
denote the set of Z3-invariant states on j/, / the free energy density functional on
&(£/) - defined analogously with/- for the ideal Fermi gas and, for be B, let/b be
the "perturbed" free energy density functional on 5^(j/) given by

Λ(ω) =/(«,)+ Σ ~Γ (A2.4)
o e y 1 * 1

It follows from arguments parallel to those of [9] that 2?Q(b) is the minimal value of
/b, and that the (convex compact) set of states ΔQib at which fb attains this minimum
are those elements, ω, of ά?(j/) corresponding to tangent planes to </ρ at fc, i.e.
those for which

2?Q(b + b'}-^Q(b}^ X ί^lvb'e^. (A2.5)
o ey l r l

Let j/0 be the subalgebra of si on which lim [_H(Y\ ] exists. Then the time

evolution of the ideal Fermi gas corresponds to a group y(R) of automorphisms of
j/, whose generator δ has j/0 as a core and is given by (cf. [15]):

δ(A)= lim3ί[H(y),^]V^ej^0. (A2.6)
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Correspondingly, the KMS conditions for a state ω of the ideal Fermi gas may be
expressed in the following form [16] :

- iω(A*δA) ^ g(ω(A*A), ω(AA*)) , (A2.7)

where
ίulnu — ulnv for u, v^.Q:u

for „ = , = <). (A18)

Proof of Theorem A 2.1. Let J*0 be the subset of elements of J* at which J^ has a
unique tangent plane. Then (cf. [9]), ̂ 0 is dense in ̂ , and the extremal tangent
planes at 0 are given by limits of those for sequences of elements fr(e^0) that
converge to 0. Further, for i>e^0, the unique element ώb of ΔQb is given by the
formula

ώb(A)= lim ω(

γ

N)

b(Άγ)VAe^2, (A2.9)
b^ ' Y'b^ Ύ) 2 ^ '

where

<i = TrN(( - )exp- )8(//(Y)+ t/b(y)))/TrN(exp- )S(ίί(y)+ C/b(y))), (A2.10)

(A2.ll)

and 7 is the set of elements / of Z3 such that τ(ΐ)Aes#(Y). Since ω(^ is a Gibbs
state on j/(7), it satisfies the KMS condition w.r.t. the automorphisms of that
algebra, for which the generator is

(A2.12)

Thus

- iωW(A*δYtbA)^g(ω™(A*A)9 ω™(AA*)) . (A2.13)

It follows from (A 2.2) that, for Ae<s/(Y0),

) if 7nΓ=0)

OeF'

= 2|yo |M|| |6|, by (All);

and hence, by (A2.6) and (A2.12),

lim Hm3δYίb(A) = δ(A)\/Ae^Q. (A2.14)

Thus, as δ commutes with τ(/)5 it follows from Eqs. (A2.9), (A2.14) that if ώ is the
w*-limit of ώb, as b-+Q, then

lim lim (y|-ι Tωψl(A*δYbAl) = cό(A*δA)^Aej!f0. (A2.15)
fo^° Y R 3 N Y ^ ' ' Y'b^ l Y>b U V h ° ^ }

Hence, by (A2.13) and (A2.15),

*δA}^ lim lim sup | Y\ ~1 Σ 9(ω(Ύ\(A*A^

(A2.16)
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Now as Iini3 1 Ϋ\/\ Y\ = 1, and as the function g is jointly convex in its arguments and

possesses the property that, for un-^u and vn-+v, liminf g(un,vn)^ιg(u,v), it follows
from (A2.9)-(A2.11) and (A 2. 16) that

-iω(A*δA)^g(ώ(A*A),ω(AA*))VAes/0,

and therefore ώ satisfies the KMS conditions.
Let j/( 3 j/) be the gauge-dependent C*-algebra of the CAR over I?(R3), and

let ώμ be the unique (cf. [17] KMS state on stf corresponding to chemical potential
μ. Then, as ώ is a KMS state on j/, it follows [18] that we may express it in the form

ώ=$dm(μ)ώμ (A 2. 17)

where m is some measure over R. Thus, as ώμ is R3-translationally invariant (cf.
[17]), then so too is ώ. Since the functionals n and /are affine, it follows from the
definition of φ0(ρ) as the minimal value of / for translationally invariant states of
particle density ρ that

ρ=$dm(μ)n0(μ) (A2.18)

and

φQ(ρ)=\dm(μ)ιpQ(μ) (A2.19)

where the functions n0, ψ0 represent the densities of particle number and free
energy, respectively, and are given by the standard formulae

n0(μ) = - J J3fe[expAέfe2 - μ) + 1] ~ 1 (A 2.20)

and

(A2.21)

From (A 1.20), one infers easily that the function n0 is single-valued and invertible
and thus, in view of the equivalence of ensembles [10],

φ0(Q) = Ψo(*o\Q)) (A2.22)

Hence, by (A2.19),

ρ') (A2.23)

where

dv(n0(μ)) = dm(μ). (A 2.24)

Further, one can infer easily from (A2.20)-(A2.22) that φ0 is strictly convex in ρ;
and consequently, by (A2.23), v must be the Dirac measure, with support at ρ.
Hence, by (A2.17) and (A2.24), ώ = ώn-ί(ργ Thus, we have proved that ώn-ι(ρ) is the
unique extremal element, and hence the unique element of Aρ 0. Therefore as this
state is also R3-translationally invariant, it follows that it is the unique element of
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