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Abstract. We introduce for lattice gauge theories an analogue of the Pontrjagin
index and a notion of "selfduality" and "antiselfduality". Selfdual and
antiselfdual configurations on the lattice have much of the same properties
(with some remarkable differences) as the corresponding configurations on the
continuum, to which they converge when the lattice spacing goes to zero.

1. Introduction

In the past few years much effort has been put on the study of the topological
properties of gauge fields. Particular emphasis has been placed on the use of
topological invariants and of relevant techniques from differential and algebraic
geometry to classify the solutions of the Yang-Mills equations which correspond
to absolute minima of the action functional [1-8].

The ultimate interest in gauge theories from the point of view of elementary
particle physics is of course the solution of the quantum Yang-Mills equations.
The hope to be able to use also for gauge theories an approach trough (an
Euclidean version of) path integral techniques makes it generally felt that one
could benefit from a thorough understanding of the set of classical solutions,
especially the absolute minima of the action, from a topological point of view.

The fact that the (yet to be constructed) measure on the space of connections
(Yang-Mills potentials) is expected to give measure zero to the set of differentiable
potentials (while the classical solutions are twice differentiable almost everywhere)
is probably not a serious objection as one can see from the analogous problem in
Quantum Mechanics.

On the other hand a mathematical theory of integration on function spaces
does not exist at present for gauge theories in view of the experience accumulated
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in the recent studies of scalar non linear field theories [9, 10], one is led to consider
as a suitable intermediate step the study of a "lattice" approximation of the
Euclidean version of the theory. By considering only points of a suitable (usually
cubic) lattice and functions with values in a (compact) Lie Group rather than in the
corresponding Algebra, this approximation exploits the advantage of working
with measures on compact sets, and has had some preliminary success [11-13].

These very approximations seem however at first sight to constitute a serious
drawback from a geometric point of view. One seems to have lost the topological
and differential-geometrical structure which had been most useful in the treatment
of the classical Yang-Mills fields in the continuum.

In this note, we want to suggest a possible partial remedy to this situation, by
introducing in the lattice approximation some structures which are "gauge
invariant" and reproduce, in the continuum limit, the topological invariants of the
continuum case. In particular, we shall define a "Pontrjagin density" in the lattice
and a notion of selfduality and antiselfduality.

It will turn out that these entities can be defined in a rather natural way, and
have many of the properties of the corresponding quantities defined for fiber
bundles over manifolds - to which they converge when the lattice spacing goes to
zero - although they lack of course their "intrinsic" meaning.

We expect that the quantities we introduce here will be useful to study the
leading contributions of lattice quantum gauge theories in the strong coupling
limit, and possibly also to study the convergence to the continuum limit.

We shall not pursue the latter aspect in this paper.

2. A Brief Review of the Continuum Case

We shall recall briefly some well known results of Yang-Mills theories on E4

(Euclidean four dimensional space) to establish our notation and to provide
motivation for our approach on the lattice.

Let G be a simple, compact, non abelian Lie group (G will be taken to be SU(rc),
SO(n) or Sp(n) in most of what follows) and g be the corresponding Lie algebra.

In this paper, when there is no danger of confusion we shall denote by the same
symbols G, cj any unitary finite dimensional faithful representation of the group
and the corresponding representation of the Lie algebra.

We recall that, if B and C are matrix-valued forms on a manifold M, which can
be written as B = 0S®f, C = Ή®g with $,<€ complex matrices and f,ge(T*M),
then by definition:

BΛC= :(

These definitions extend to all matrix-valued forms by linearity.
Suppose now that M is the one-point compactification of £ 4 , and let P(M, G)

be a Principal Fibre bundle over M with group G, connection form ω and
curvature form Ω = dω + ̂ [ω,ω~].

In local coordinates we set A= : φ*ω and F= : φ*Ω, where φ is a (local) cross
section φ:M-^P. A is called the Yang-Mills potential, F is the Yang-Mills Field
and φ is called also a "gauge".
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Ω is an horizontal 2-form of type Ad G, so it determines a unique 2-form
on M taking its values in the bundle Px G g associated to P and to the adjoint
representation. Then, if * is the Hodge operator, Tr(*F Λ F) and Tr(F Λ F) can be
considered as ordinary 4-forms on M.

The Pontrjagin index (i.e. minus the integral of the 2nd Chern class) is defined
by:

f F ) , (2.1)
δπ M

while the "action" (i.e. the square of the norm of the curvature) is:

S = - i jTr(*FΛF). (2.2)
M

Since M is the one point compactification of £ 4 , one can view £ 4 as a chart for
M (with the identification map). In the local coordinates of this chart one has:

f = i Σ Σ F«v(χ)rfχ"Λdxχ,
α μ, v = 1

^ = Σ Σ A'μ(x)dx"ea,
a μ = 1

where ea is a basis in g.

Setting Fμv = ]Γ Fa

μvea, Aμ = £ 4£eα, we have the usual relation:
α α

Fμv(x) = dμAv(x) - dvAμ(x) + \_Aμ{x\ Av(x)-] . (2.3)

We shall consider only Yang-Mills fields with finite action integral (2.2), but
remark that this restriction was already hidden in the statement that Tΐ(*F ΛF)
can be defined as a form on M.

We have (with the Einstein convention):

S = - i j Tr(FμvFnd4x = : f S(x)d4x (2.4)
£4 £4

(2.5)
l o π

where εμvβσ is the completely antisymmetric symbol.
Using the antisymmetry of Fμv and the identity Tr(^4£) = Tr(lL4) one obtains:

4χ (2.6)
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3. Lattice Approximation: Preliminaries

We follow essentially the notation of [13]. Denote by Z4 the cubic lattice in E4

centered at the origin and with elementary linear lattice size ε A will denote a
bounded hypercube contained in Z4.

If x is a generic lattice site, there exist integers w , i = l , ...,4 such that x = (nίε,
n2ε, n3ε, n4ε) where nkε is the component of x along the feth axis.

We shall denote by x±k the element of Z4 which has components (n^δ^ε,
i = l,...,4.

Let Λμ(x) a Yang-Mills potential which we assume to behave at |x|->oo as a
pure gauge [i.e. Fμv(x)->0 when |x|-*oo, sufficiently fast]. The segment (of length ε)
[x, x + fc] is by definition the (oriented) elementary link from x to x + k we shall
denote it by (x fc). To each elementary link we associate an element of G, defined
as follows:

f A : ( x ; k)-+fΛ(x ;k)=: exp(ε.4 f c(x)). (3.1)

Define a plaquette as an elementary square in Z4, enclosed by four elementary
links. We denote by (x μ, v) the plaquette in the μ, v plane, having x as smallest
point (in the natural order induced on Z4 by the direction of the four orthogonal
axes). Plaquettes are oriented, so (x μ, v) Φ (x v, μ). To each elementary plaquette,
we associate an element of G according to the following rule:

gΛ:(x;μ,v)->gΛ(x;μ9v)

= :fA(x;μ)fA(x + μ;v)(fA(x + v;μ)y1(fA(x;v)r1. (3.2)

Since we deal only with finite-dimensional representations of G, one can easily
check that TrgΛ is an analytic function of ε at zero moreover, since Tr^4 = QNAe g,
one can compute:

ΊτgA{x μ, v) = Tr i + | ε 4 Tr Fμv(x) + O(ε5). (3.3)

It follows that, at least if Fμv(x) is uniformly bounded in E4 and decreases fast
enough:

Σ (Trt-ΊV(P))= Σ Σ Tr(-ϊε4F
Plaquettes xeZj μ,v = 1,..., 4

c = S. (3.4)

In (3.4) we have therefore a natural candidate for the role of the action on the
lattice.

We shall now introduce a lattice analogue of the Pontrjagin index. Notice that
in the expression (2.7) for K(x) one has terms of the form F 1 2(x)F 3 4(x). This points
to a structure in which one has a correlation between complementary planes
(recall that we are in E4). There is a natural way to introduce such correlation in a
lattice.

We define biplaquette at x a (unordered) pair of complementary plaquettes
based at x (i.e. such that for each of them x is the lowest point).

For each xeZ4 there are three distinct biplaquettes, which we shall denote
BPfa) i = l , 2 , 3 . Each BPt(x) is made of two plaquettes P[(x) and P((x). The
orientation of the plaquettes is indicated in Fig. 1.
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Fig. 1.

To each biplaquette we associate an element of G according to the rule:

P'!(x)). (3.5)

Note that hA plays a role similar to that of a form of maximal degree. A
straightforward computation leads to:

(3.6)

and similar expressions for hΛ(BP2(x)\ hΛ(BP3(x)).
One has therefore:

ί = l

From (3.7) it follows, if F is sufficiently smooth,

Σ

(3.7)

(3.8)

In view of (3.1), (3.4), (3.8) it is reasonable to introduce the following definitions
of action and Pontrjagin density of the lattice gauge configurations.

A configuration of a lattice gauge theory with local gauge group G is a function
/ from the elementary ordered links in Z^ to G.

The map / satisfies the identity:

The function / induces a map g on the (oriented) plaquettes based at x, defined by:

g(x ίj) =/(x ί)f(x + Ϊ J)(f(x +j; Q)"' (f(x;/))-'. (3.9)

We shall consider always any plaquette P as "based" at its lowest point. On a
Biplaquette BP(x) composed of the two plaquettes P'(x) and P"(x), the map /
induces a map h through:

h(BP(x))=:g(P'(x))g(P"(x))- (3.10)
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The order in which P'(x) and P"(x) appear is the partial order induced on the pair
of the plaquettes by the chosen lexicographic order of the orthogonal axes.

We define the action density SL(x) [13] and the Pontrjagin density KL(x) of a
given configuration, in the following way:

S L (x)=: Σ (Trί-ReTr0(P(x))), (3.11)
Plaquettes
based at x

KL(x) = : - L Σ ( T r l ~ R e Tr Λ(AP(x)))
^ ^ Biplaquettes

based at x

- A Σ (Tri-ReTr0(P(x))). (3.12)
^iL Plaquettes

based at x

The action will then be SL =: Σ SL(x) and the Pontrjagin index
xeZi

KL
 = '• Σ ^ L ( X )

xeZi

We shall only consider configurations such that these sums are absolutely
convergent.

Following [13] we define a gauge transformation as a map y from the lattice
points into the group G.

Associated with a gauge transformation there is a transformation of the
function / : f->fy with fγ(x fc) = : y(x)f(x ;k)y~1(x + ίή.

It is obvious that both SL(x) and i£L(x) are "gauge independent". We shall also
call a gauge transformation a 0-cochain on the lattice, a gauge configuration a
1-cochain on the lattice and a function which assign to every plaquette an element
of G a 2-cochain.

If we have a 0-cochain y we can construct a 1-cochain defining:
f(x fc) = : y(x)y~ *(x + fc) and we shall write / = dLy.

If we have a 1-cochain/the function g defined on the plaquettes by the (3.9) is a
2-cochain and we shall write g = dLf.

For each 0-cochain y we have: dLdLy — e (i.e. the function which assign to every
plaquette the identity of G).

It is also true that if a 1-cochain / is such that dLf = #, then there exists a 0-
cochain y such that f = dLy. That is every gauge configuration for which g{P) = # V
plaquette P is gauge equivalent to the configuration which assign to every link the
identity element of G.

To prove this statement choose with a suitable gauge transformation, equal to
£ all the elements /(/) if / is contained in the line x2 = x3 = x 4 = 0 (see [13]). Then
with a gauge transformation concentrated on the points of the two lines x3=x4

= 0; x2— +ε, fix equal to e all the elements /(/); where I is one of the links
((x l5 0,0,0); ±2).

Since g(P) = ei plaquette P, also the group elements associated to 'the links
lying in the two lines x3=x4 = 0; x2= ±ε must be equal to e.

Proceding further we can fix the group element equal to e for all the links of the
plane x3 = x4 = 0 then successively for all the links of the three dimensional space
x4 = 0 and at last for all the links of Z*.
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So we can say that every 1-cocycle is a 1-coboundary (called also "trivial" or
"pure gauge" configuration on the lattice).

Since G is not abelian we are not able to extend the operator dL to the 2-
cochains, so in general we have no 2-cocycles.

But we can in any case ask the question if a 2-cochain g is a coboundary,
that is if there exists a 1-cochain / such that g = dLf.

This problem will be discussed in Sect. 8.
At the moment we note that if g is a coboundary, then the 1-cochain / such

that g = dLf is unique (up to a gauge transformation).
More precisely if/ and / ' are two 1-cochains such that dLf — dLf=g, then as

before, we can construct a gauge transformation x-»y(x) which transforms f(x k)
in f\x\k\ but now y(x) will also satisfy the condition y(x)g(P(x))y~1(x) = g(P(x))
for every plaquette P(x) based at x and for every x which "often" will imply that
y(x) belongs to the center of G.

We will also use the word "gauge configuration" for 2-coboundaries.
As a concluding remark for this section, observe that for two gauge equivalent

2-coboundaries g and g' we have conj. class(#(P)) = conj. class(g'(P)) V plaquette P,
but the converse is not true, in the sense that conj. class(#(P)) = conj. class(#'(P))VP
does not imply that g is gauge equivalent to g' unless g(P) belongs to the center of
G, VP (or unless we consider configurations with values in an abelian group).

4. Selfduality and Antiselfduality on the Lattice

We recall that the Pontrjagin number defined on continuum configurations is
useful in the study of quantum gauge theories for the following reasons, which are
of course at the present moment of heuristic nature at most, once one has not
found yet a convenient measure space.

In the (path space integral) euclidean formulation of quantum gauge theories
one is led to write expressions of the form:

<?(#-) = expf- jS(A))nΛ)μ(dΛ), (4.1)

where the measure μ is on a "suitable" space Jt of Potentials, 3F: ,/#->• IR is a gauge
invariant functional, S'.Ji-^Ήk* is the action functional, λ is a parameter which
will be taken sufficiently small.

One expects that the measure μ is carried by nowhere differentiable "poten-
tials" A, so that the definition (2.4) for the action functional becomes meaningless,

and a suitable definition should be given to exp — - S(A) μ(dA).
\ A )

In spite of this, on the basis of the formal analogy with the quantum
mechanical case and more generally with the treatment of some scalar (quantum)
field theories in two or three space-time dimensions, one is led to believe that the
leading (in λ) contribution to (4.1) comes from a neighborhood in Jί of those
smooth potentials A at which S(A) reaches a minimum [recall that S(A)^0 for
smooth 4's].
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In particular, to the leading order in λ, for sufficiently small, the integral
1

is expected to be given by the sum (or integral) of exp — - S(A) over those
\ λ /

smooth configurations which minimize S. These "fields" are of course, at least
formally, a solution of the Euler-Lagrange equations for the functional S.

The Pontrjagin index (2.5) takes only integer values. Moreover since

Tr[(F ± *F) A (*F ± F)] ύ 0 (4.2)

one has:

S{x)^2π2\K(x)\\ίxeE4. (4.3)

From (4.2) and (4.3) it follows that S^2π2\K\ and equality holds only at these
configurations for which F(x)= ±*F(x)\/xeE4.

This gives an intrinsic way to classify the minima of S and to characterize them
as selfdual (F = *F) for antiselfdual (F = — *F).

Conversely, any selfdual (or antiselfdual) F is a solution of the free Yang-Mills
equations (D*F = 0) and is a minimum for S in view of (4.2), (4.3).

We plan in this section to prove that on the lattice the inequality SL^2π2\KL\
still holds, with the definitions (3.11), (3.12) for SL and KL. We shall also
characterize on the lattice the "selfdual" and "antiselfdual" solutions.

There will be two major differences, as compared with the continuum case:
a) with the definition (3.12), the Pontrjagin index KL can take any real value;
b) while SL = 2π2\KL\ precisely on "antiselfdual" configurations when KL^0,

the minimum of SL(x) over the configurations with fixed KL(x) > 0(Vx) is attained
for SU(2) and under suitable conditions, precisely on "selfdual" configurations, but
the value of this minimum is strictly larger than 2π2KL(x). For a generic G, it is
moreover much harder to relate "selfdual" configurations with minima of SL.

Lemma 4.1. For any pair P', P", of complementary plaquettes based at x and for any
configuration g we have :

Re(2 Tr 1 - Ύvg(F) - Ίτg(F')) ^ |Re( - Tr ί - Ίτ{g{P')g{P"))

The equality holds if and only if g(P') = (g(P"))~ι.

(Recall that we use the same symbols for elements of the group and for
representatives in the specific representation which one consider. We shall often
write 1 instead of s)

Proof Let (,)σ be the inner product of Hubert-Schmidt in the space of the m x m
matrixes (m is the dimension of the representation of the group G).

Then we have:

and

- Tr 1 - Ίx{g{P')g{P")) + Ίτg{P') + Ίxg{P")
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Now for any pair of vectors x, y in an inner product space we have:

So the inequality of the lemma is proved. The equality holds if and only if we have
simultaneously:

1 - (g(F)) ~ι = λ(ί - g(P")) for some complex λ

\\i-g(P')\\σ=\\ί-g(P")\\σ

That is:

But if we choose the sign minus, then it will be: 2(g(P') + (g(P'))~ x) = 41, which
implies g(F) = 1 so the lemma is proved.

Lemma 4.2. For any configuration g and any point xeZ* we have: SL(x)
^2π2\KL(x)\. The equality holds if and only ifg(F(x)) = (g{P'f{x)))~1 for any pair of
complementary plaquettes based at x. If the equality holds KL(x) must be ^ 0 .

Proof It is an immediate consequence of Lemma 4.1.

Definition. We shall say that a configuration g on the lattice is antiselfdual at x if
g(F(x)) = (g(F'(x)))~λ for each pair of complementary plaquettes P'(x), P"(x) based
at x. We shall call selfdual at x a configuration g if g{P'{x)) = g{P"{x)) for each pair
of complementary plaquettes P'(x), P"{x) based at x. A configuration is called
(anti)selfdual if it is (anti)selfdual at each xeZ*.

Remarks, a) Lemma 4.2 says exactly that SL(x) = 2π2\KL(x)\ if and only if the
configuration is antiselfdual at x.

b) For antiselfdual g we have KL(x) ^ 0, while it is not true that KL(x) ^ 0 for all
selfdual configurations.

c) In the continuum case for selfdual (or antiselfdual) F, K = 0 implies F = 0. On
the lattice we may have KL = 0 also for selfdual configurations which are not
trivial. Take for example G = SU(2) and assume that, for the three biplaquettes
based at xeZ*, g{P'(x)) = g(P"(x))=iop where σ7- is one of the Pauli matrices. Then
KL{x) is zero.

d) Unlike the continuum case, in the lattice there may exist configurations
which are both selfdual and antiselfdual at a certain point x, without being trivial
at x. [e.g. if g(P(x)= —1) for each plaquette based at x].

e) The definitions of KL(x), SL(x), selfduality and antiselfduality can be
extended also, with no change in terminology, to all 2-cochains on the lattice with
values in G.

(Recall that in our notation a configuration is a coboundary.)
ί) Since 2-cochains can be defined by choosing independently the values of

g(x ij) at different points x e Z^5 it is obvious that selfdual and antiselfdual
cochains will exist for any prefixed value of the Pontrjagin density KL(x) and a
fortiori for any fixed value of KL.
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That this is possible also within the set of coboundaries is not at all obvious,
since a coboundary cannot be constructed assigning the group elements g(P(x))
independently at different points in Z\. We shall come back to this problem in
Sect. 8.

Obviously Lemmas 4.1 and 4.2 hold also for 2-cochains.
g) If we have an antiselfdual (or selfdual) configuration A on the continuum,

and we construct a lattice gauge configuration gA via (3.1) and (3.2), we obtain (for
ε small enough):

gΛ(x ϊj) ~ gΛ(x ;ij)= : exp(ε2F /x)).

Now the 2-cochain gA is selfdual or antiselfdual depending on whether A is
selfdual or antiselfdual.

Proposition 4.3. The action SL considered as a functional on 2-cochains with fixed
Pontrjagin number KL^0, attains its minimum on antiselfdual cochains. The
minimum value is S™m = — 2π2KL.

Proof. Consider a 2-cochain g and let T±(g) = : {x\Kg

L(x)%0}. If T+(g) is empty, one
can find a 2-cochain g' such that g' is antiselfdual and

If T+(g) is not empty, let xeT+(g).
We construct now a 2-cochain g' which is antiselfdual at T_(g)κj{x], has the

same Pontrjagin index as g and is such that

An induction procedure on the points of T+(g) will then complete the proof.
To construct such g\ notice that from the definition (3.12) one can find a one

parameter family of 2-cochains: ga O ^ α g 1, gx =g, go(P(x)) = ί\f plaquette based
at x, such that \K9^(x)\ is a decreasing function of a [with K£°(x) = 0]. Since

£ K9

L(x)< —K9

L{x), one can then construct a cochain g' such that
xeT-(g)

and such that:

Σ K£'(x)= Σ K£(x).
xeT-(g)v{x} xeT-(g)v{x}

Proposition 4.4. The action SL considered as a functional on 2-cochains with fixed
Pontrjagin number KL^0 satisfies the inequality SL^2π2KL and the equality holds
if and only if SL = KL = 0 (that is only for trivial configurations).

Proof Immediate from Lemma 4.2.

In the next section we will study the minima of the action functional for fixed
KL>0.
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Remark that the definitions of SL(x), KL(x\ (anti)selfduality on the lattice can
extend also to 2-cochains with values in U(n): all the results of this section still
hold for this extension.

5. Analysis of the Selfdual Case: SU(2)

For any 2-cochain g and any biplaquette BP(x) based at x and composed by the
two plaquettes P'(x) and P"(x) we shall write :

SL(BP(x)) = 2 Tr 1 - Re(Tr g(F(x)) + Tτg(F'(x)))

KL(BP(x)) = ^ Re[Trg(F(x)) + Tτg(P"(x)) - Tr 1 - Ύτ(g{F(x))g{F'(x)))] .

In this section we want to prove the following:

Proposition 5.1. Let G be SU(2) in the spίnor or vector representation (dimrepres.
= 2 or 3) and B any finite subset of Z*, then:

a) Assign to each xeB three real numbers O^kpc)^ 1/2 i = 1, 2, 3 and consider

the set ofl-cochains such that KL(BPi(x)) = -3fc£(x)Vi and Vxe£, and KL(BP(x))

= 0\fxφB.
The action functional defined on this set of 2-cochains attains its minimum at

selfdual cochains more precisely, given fcf(x) as before there exist a unique 2-cochain
on which the action reaches the minimum: this cochain must be selfdual.

b) Consider the set Jί{K°L, B) of2-cochains which are trivial outside ofB and have
Pontrjagin number KL = K^>0.

(We assume K^^^Nβπ2 where N is the number of points of B.) The action
functional reaches its minimum value on Jt{K^, B) at selfdual cochains for which
KL{BP(x)) is independent of x and BP(x). The minimum value for the action is:

3-min = Smin^O) = g ^ j _ ^ _ 2π2K°J3N)1!2) .

c) Consider the set Ji{K°j) of cochains which have a prefixed Pontrjagin number
K°L>0.

The action functional has on this set of cochains, 2π2K°L as the lower bound. The
value 2π2K°L is not attained on Ji{K^), i.e. it is not a minimum for SL.

Remark. The statement a) says that only a certain subset of the selfdual cochains is
the set which minimize the action, once the Pontrjagin index is locally given.

Note that KL(BP(x)) cannot be strictly larger than \π2 as we shall see in the
proof of Proposition 5.1.

Before passing to the proof of Proposition 5.1 we need one preliminary lemma.

Lemma 5.2. Consider for ^k^O the set βkClR3 defined by:

Qk=:{a,b,t\-l^a,b,tSl;

-l-ab + t(l-a2)1/2(l-b2)1/2 + a + b = k}.
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The function s(a, b, t) = : 2 — a — b attains its minimum on Qk at a point which satisfies
the conditions a = b; ί = l .

s(fe)= :InϊQks(a,b,t) is given by:

l-(l-2k)1/2. (5.1)

(5.2)

Proof of the Lemma. Setting p = (l — a)(ί — b); s = 2 — a — b one has:

with the constraints:

Moreover, since k is ^ 0 one has also ί^O.
Taking p and t as coordinates in Qk, the function s becomes:

s = sk(p, t) = 2 + p/2 - (k2p- '+p + 2/c)/2ί2. (5.3)

We draw now, in the plane t — t the allowed region for the parameters s and p and
the graph of the curve (5.3) for F=t= 1 (Fig. 2) and for t = 1 (Fig. 3).

Since — 1 — ab + a + b is :gθ5 it follows that ί^ίo(fc) for some to(k): an easy
calculation shows that to(k) is equal to (/c + (/c2 + 4/c)1/2)/2. From the two graphs it
is evident that, for fixed ί, the minimum of 5 is attained on the curve 5 = 2 ]/p i.e.
a = b the value of this minimum is:

for (5.4)

Hence the absolute minimum s(k) on Qk is attained at a point which satisfies the
conditions ί = l , α = fc and (5.1) holds.

Remark. From the condition t^ 1 / 2 )/2 we deduce also that for fc> 1/2,

rk=2-k/t2-p(l/2(l/t2-l))

Fig. 2

tk(p,tJ

2

2-k

• = sk(p,l)

Fig. 3



Selfduality in Lattice Gauge Theories 87

It is also evident that in Qk there exist two points with a = b and t= 1. One of
these points satisfies the condition αrgl/2, while the other has α^ l/2 and is the
point where 5 reaches its minimum. For the latter point we have
α = (l + (l-2/e)1/2)/2 (which goes to 1 as /c^O).

Observe also that when /c^O, s(k) - k = O(k2).
Now we come back to the proof of Proposition 5.1.
Let Πm be an irreducibile m+1-dimensional representation of SU(2);

VweSU(2) there exist an angle θ(u) and a unit vector η(t/)eIR3 such that:

7 I » = exp[*0(«)Σ η(u)], (5.5)

where Σi i = l, 2, 3 are hermitean matrices which satisfy the relations:

The eigenvalues of each Σt and of Σ η are (Vη) the numbers:

One has therefore: Tr(Σ η)π= £ (-m/2 + p)",
p = 0

and, using (5.5):

ΊvΠm(u)= Σ

= Σ cos(θ(M)(-w/2 + p)). (5.6)
p = 0

For every irreducible representation one has moreover:

expίlΛΊθ^Σ η.Wex^/^T^Σ.η^-expίl/^I^^ίΣ.η^)), (5.7)

where, setting t= : η 1 η 2

COS{Θ12I2) = c o s ^ ! ^ ) cos(02/2) - ί sin(V2) sin(θ2/2). (5.8)

If we have now on the lattice Z* a 2-cochain with values in I7m(SU(2)), the action
and the Pontrjagin number calculated at any biplaquette BP(x) are given by:

p = 0

(5.9)

(5.10)
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If m = l , that is if we have the spinor representation, (5.6)-(5.10) together with
Lemma 5.2 give immediately the proof of the Part a) of Proposition 5.1.

[We set a = cos(0(P'(x))/2) b = cos(0(P"(x))/2) s = SL(BP(x))/2 k = π2KL(BP(x))
and t defined as in (5.8).]

If m = 2 (vector representation):

KL(BP(x)) = -2 {-1 + cos 0(P'(x)) + cos 0(P"(x))
π
-cosθu(BP(x))},

SL(BP(x)) = 2(2 - cos 0(P'(x)) - cos 0(P"(x))).

Setting once again:

s = SL{BP(x))/2 a - cos 0(P'(x)); b = cos 0(P"(x)),

p = (1 - a) (1 - b) k = π2KL(BP(x))

t defined as in (5.8), one has 1 :

k= —p(l +12)/2 +1 j/p(4 + p — 2s), (5.11)

that is:

(5.12)

Now we can repeat the discussion of Lemma 5.2, show that all conclusions still
hold [including Eq. (5.1)] and hence prove the Part a) of Proposition 5.1 also for
vector representations of SU(2), provided that dtsk(p, ή>0 for s given by (5.12). But
this is obviously true, since:

dts = (k + (1 + t2)p/2) (k + (1 - t2)p/2)/pt3 > 0.

It should be possible to prove in the same way something like Part a) of
Proposition 5.1 for any representation of SU(2).

To prove statements b) and c) of Proposition (5.1), observe firstly that from Eq.
(5.1) we have:

/2 for any l/2^kvk2^0.

That is if we have two 2-cochains g and g' which minimize the action in the sense of
Part a) of Proposition 5.1 and are such that for some biplaquettes BP(x) and
BP(y):

Kί{BP(x)) = KiiβPiy)) = (Kl(BP(x)) + Kl(BP(y)))/2,

then:

Sί(BP{x)) + Sί(BP{y)) £ Sl(BP(x)) + Sl(BP(y)).

Now considering the fact that s(k) is an increasing function of fe, we can repeat
arguments similar to those used in Proposition 4.3 and obtain b).

Statement c) is an easy consequence of b) and Proposition 4.4.

1 We use the identity:

2 = c o s 0 1 c o s θ 2 - ί s i n 0 1 s i n θ 2 - 2 ( l - ί 2 ) ( l - c o s 2 θ 1 / 2 ) ( l - c o s 2 ( ? 2 / 2 )
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6. Self dual Case; General Results for any
(Non Abelian, Simple, Compact Lie) Group G

For a general group G we are not able to find results similar to those obtained in
Sect. 5 for SU(2).

We can only show that, if we consider 2-cochains with values in a suitable
neighborhood of the identity of G, then selfdual cochains minimize the action in an
approximate sense, for (locally) fixed Pontrjagin index.

For simplicity we shall consider only representations with real character. Let
now g be a 2-cochain and m be the dimension of the considered representation of
G; we set for each biplaquette BP(x)={P'(x),P"(x)}:

a = (I, g(P'))Jm an = -,(Λ> 9(P'))Jm112

b = (1, g{P"))Jm bn = -<(An9 g(P"))Jrn112,

where (,)σ is the Hilbert-Schmidt inner product, An n = 1,..., m2 — 1 are hermitean,
form an orthonormal system and satisfy the condition TrAn = 0Vn.

In this notation, the action and the Pontrjagin number relative to the
biplaquette BP(x) are:

SL(BP(x)) = ms, where we have set s = 2 — a — b (6.2)

KL(BP(x)) = mk/2π2, where we have set k = l-ab + t(l-a2)ll2(l-b2)112

-(2-a-b) (6.3)

with:

m 2 - l

t= Σ αA(l-a 2Γ 1 / 2(l-fcT 1 / 2. (6.4)

Since we are dealing only with representations with real character, a, b91 are real
and moreover | ί | ^ l .

We assume k fixed >0.
If q is the dimension of c$2, we can choose the An in (6.1) in such a way that

{tAn} for n = 1,..., q is a basis for (the representation we are considering of) g. This
is possible since, if m is the dimension of the representation we are considering,
then g is a linear subspace of the Lie algebra of SU(m).

In this case an, bn are real for 1 ̂  n ̂  q indeed for such n we have:

= -Tr\img(P>)(g"(a)-iyu)/m1'2

α->0

= - lim Ύr(g"(a)g(P')-g(P'))/am^2, (6.5)
α->0

where α->#"(α) is the one parameter subgroup generated by An.

Now from Lemma 5.2 we have:

t^to(k) for some ίo(fe); (6.6)

2 As a vector space
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moreover, since not all an, bn are (in general) real, we have also:

ί^ί m a x (/c)^l (6.7)

where fmax(fc) is the l.u.b. of all t expressed by (6.4) when we consider all 2-cochains
subjected to the condition that KL(BP(x)) satisfies the (6.3) (remember that k is
fixed).

If we take now a selfdual assignment (i.e. a = b an = b^ri) we have, for such
g(F(x)):

m 2 - l Im2-1

ί=ί,.d.= Σ K)2 Σ KI2 (6.8)

From the discussion in Lemma 5.2 it follows that the minimum for s should be
attained, once k> 0 is fixed, when a = b and t is the largest value compatible with
(6.7).

Actually we do not know even if there exist a cochain which satisfies (6.3) and
verifies the conditions t = ίmax(/c), a = b.

In any case we shall call Qk the subset of IR3 defined as in Lemma 5.2 with the
additional restriction (6.7) and:

s(fc) = :Infgks(a,b,t) with, as usual s(α,b,t)=:2 — a — b. (6.9)

We conjecture also that (in general) ίmax(/c) is not of the form (6.8). But the
situation is more favorable if we consider only cochains with values in a suitable
neighborhood of the identity of G (the size of this neighborhood depends on G and
on the representation considered).

Then we have:

Proposition 6.1. Let s(k) be defined as in (6.9). Then if we have a selfdual cochain g

which satisfies (6.3) it must be:

ssd - s(k) = O(s(k)2), where we have set ssd = : S9

L{BP(x))/2.

Proof For small s(k) (and hence for small k), we can consider only 2-cochains g
such that g(P') and g(P") are in a suitable neighborhood Uk of the identity of G.

That is we can set:

with \\A(P')\\σ^l9 \\A(P")\\σ^l (αk represents the size of Uh).

Since sup {s}~αj^, we can assume α^~s(/c).
g(P'),g(P")eUk

For §(F), g(P")eUk we have:

ί = Σ α A ( l - f l 2 ) " 1 / 2 ( l - 6 2 ) " 1 / 2 + OK2)

and for our selfdual g: ίs d = 1 + O(α^), therefore it must be ίmax(/c) = 1 + O(α^), but
this implies: tsd —tmax(k) = O(s{k)\ so, taking into account (5.4), one has:
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therefore:

*s.d. - s(k) = fc/ί,d. - k/t™\k) + O(s(k)2)

=k(t™\k) - tsA)/tSmdm rax(fc)+o(s(k)2)=o(s(k)2).

7. A Possible New Definition of the "Pontrjagin Index" on the Lattice

Let .xeZ*, x = (n1ε,n2ε,n3ε,n^ε) and let σ 1 2 :Z^->Z^ be defined as follows:

σ12(x)= '.{n^n^n^n^ε). (7.1)

The mapping σ 1 2 corresponds to the inversion of the coordinated axes ϊ and 2,
and can easily extend to 1- and 2-cochains (with values in any non abelian, simple,
compact Lie group G):

σ12(f(x;j))^:f(σί2x;σ12(j)) (7.2)

σ12(g(x;ϊj)= :g(σί2x;σί2(ϊ)9σί2(j))9 (7.3)

where we have set:

σ 1 2(ί) = 2; σ12(2) = ί σ12(3) = 3; σ12(4) = 4.

In the same way we can consider mappings σt for any pair of directions i and j .
For mappings σtj we have the following properties:
a) σtj transforms selfdual 2-cochains (or configurations) in antiselfdual 2-

cochains (or configurations) and viceversa.
In particular this implies that in Z^ we have as many selfdual configurations as

antiselfdual configurations.
b) for any 2-cochain g with action SL(g\ we have:

SL(g) = SL(σίjg). (7.4)

c) Let g be any 2-cochain with Pontrjagin index KL(g); in general it is not true
th<HKL(g)=-KL(σijg).

Indeed consider a 2-cochain which is selfdual at some BP(x) and for which
KL(BP(x))<0 [e.g. if g(P'(x)~]=g(P"(x))= -ί). The mapping σtj transforms the
biplaquette BP(x) in another biplaquette σι;(5P(x)) the configuration σ^g) is
antiselfdual at σ^BPix)) and so KL(σιJ(^)) calculated at σij(BP(x)) is also negative.
This example shows also that in general it is not even true that KL(g)^0 implies

d) For any 2-cochain g and any σy, σmn we have:

KL<ig). (7.5)

This can be easily proved, using the fact that for unitary matrices U, V ΎΐUV
= ΎτVU and ReTrί7 = ReTrί7~1.

Now define for any 2-cochain g
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We may consider the possibility of assuming KL as a new definition of the
"Pontrjagin index" on the lattice.

Observe that:
a) The definition (7.6) is independent of the choice of atj. This is a direct

consequence of (7.5).

b) KL(g) is in general different from — KL(σl7g). Indeed KL(g) is different from
— KL(σ 7g) for all 2-cochains which satisfy the condition KL(g) < 0 and KL(σijg)<^).

On the continuum, if we change the orientation of the base manifold, the
Pontrjagin index is transformed in its opposite, so we can deduce that the
asymmetry we have discovered is, in a certain sense, "intrinsic" of the lattice.

c) KL{g) = 0 does not imply KL(σijg) = 0. Take once again for example, a 2-
cochain with values in SU(2) such that for every biplaquette it is g(P') = g(P")=i
times one of the three Pauli matrices.

This shows also that KL considered as a function from the space of all 2-
cochains (with support contained in a fixed finite hypercubical lattice) into IR is not
continuous the points of discontinuity are 2-cochains with zero Pontrjagin index.

d) Let A be a configuration on the continuum (with Pontrjagin index K) and let
Λσ be the configuration obtained changing the orientation of the base manifold
(e.g. Aμ-+Aσi2μ FμtV^>Fσi2μtσi2V). Then if gA is the lattice configuration obtained as
in (3.1), (3.2), we have gA = σl2{gAσ\ so we can say that also KL-^K when the lattice
spacing goes to zero.

This is an immediate consequence of (7.4).

ί) SL(g) =_— 2π2KL(g) if and only if the 2-cochain g is antiselfdual.
Indeed KL(g) is negative either when KL(g) is negative, or when KL(g) and

KL(σi}g) are both positive.
But if there exist non trivial cochains which satisfy the second condition, then

by (7.4) and Proposition 4.4 they cannot satisfy the equality SL = — 2π2KL.

g) SL(g) — 2π2KL(g) if and only if the 2-cochain g is selfdual and satisfy the
condition KL(g)>0 (unless g is trivial).

Remark that a selfdual cochain with values in SU(2) (spinor representation)
satisfies the required condition if Ύvg(P)>0 for each plaquette P.

More generally if we have a selfdual 2-cochain with values in a suitable
α2

neighborhood of the identity of G, then, setting: g(P)= : t + α,4(P) + γA2(P)

+ O(α3) with A(P)e& \\A(P)\\σSU we have:

2π2KL(BP) = -a2ΎrA2(P) + O((x3)>0

for sufficiently small α (e.g. α < 1/2).

h) We can also define a new "Pontrjagin density" setting MxeZ* and for each
cochain g

K ί { x ) i f K L { 9 )

~KΪ"(σ12x) if KL(g) is (globally) > 0 .
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8. On the Existence of (Anti)selfdual Configurations

If we have a 2-cochain g, the problem of determining whether g is a coboundary or
not is in general a very difficult problem: we have to solve (an infinite number of)
equations in which the group element associated to a link which belongs to a
plaquette based at x = (nίε, n2ε, n3ε, rc4ε) depends on all the group elements
associated to the links which belong to the plaquettes based at each y = (k1ε, fc2ε,
/c3ε, k4ε) with k^n^i.

Remark that also in the continuum case if we have a 2-form F on the base
manifold M with values in the Lie algebra g, the problem of determining whether
F essentially arises from the curvature form of a G-principal bundle over M with a
suitable connection form ω or not, is a problem which is far from being solved.

On the lattice, if we consider cochains with values in an abelian group, then the
problem can be dealt with in the context of cubical cohomology ([14, 15]). Since
this cohomology is equivalent to the singular cohomology and since we deal with
£ 4 , then a 2-cochain is a coboundary if and only if it is a cocycle.

For non abelian groups, we start considering a fixed (finite) hypercubical
sublattice A of Z 4 with JV4 points and we proceed as follows: we fix the origin of
the coordinated axes at the "lowest" point of A, and, starting from the point
(0,0,0,0), we assign to each point xeA the group elements associated to the 16
links drawn in Fig. 1.

Let An be the hypercube {{m^jlmax^m.^rc}; we assign elements of G to the
links of the biplaquettes based at {m ε} in an order for which points in An\An_1

come before points in An+1\An. At the point {m ε} make arbitrary assignments to
the links not previously marked, and guarantee (anti)selfduality by a proper choice
of g({pfi} +k; s), sφ/c if pfc^pfVi (so that {piε}eApk\Apk_1). To prove consistency,
one checks that the latter three links were not already marked. Indeed,
+ keApk+ι, and on the other hand if {qiε}eAqh\Aqh_1 is such that {qiε} + h =
+ fc, then h = k and p. = g Vi.

It is easy to see that for large N the space of all configurations which are (anti)-
selfdual at each point of A (but not on the boundary of A) is GN\ while the space of
all configurations and of all 2-cochains defined on A is, respectively G 4 i y 4 and G6N\

So, on a finite lattice, we are not able to find general conditions under which a
(anti)selfdual 2-cochain is a coboundary, but we can say that there exist
(sufficiently many) configurations which are (anti)selfdual everywhere except the
boundary.

The situation is much more difficult on a infinite lattice: it is hard to give a
general procedure to construct (anti)selfdual configurations with finite action.

Anyway the following considerations may be useful.
Let ΞN be the set of points of Z 4 whose coordinates are (π1ε, n2ε, rc3ε, n4ε) with

nt > N and for any 2-cochain g defined on Z 4 let SN(g) = : £ Sg

L(x) and

KN(g)='. Σ Kl(x).
x<=ΞN

If g has finite action SN^^—>0 and we can choose N large enough to set

VxeΞN and V plaquette (x;μ,v);

(x)) with AJx)eQ. (8.1)
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If we are able to assign to every link (x μ), μ = 1,2,3,4, xeΞN an element Aμ(x)eq
such that:

Aμv(x) = Λμ(x) + Av(x + μ) - Λμ(x + v) - Λv(x), (8.2)

then if / is defined by:

/:(x;/i)->expμμ(x)), (8.3)

the coboundary g' = : dL/ defined on ΞN satisfies the conditions:

SN(g) - SN(g') = o(SN(g)) KN(g) - KN(g') = o(SN(g)).

So if we have a 2-cochain g with finite action, the problem of finding a coboundary
which is a good approximation of g outside a suitable hypercube is a problem of
abelian cohomology.

In particular if g is selfdual, then we can construct a 2-coboundary g' = dLf,
where / is given by (8.3) and (8.4), if and only if \ίxeΞN we have:

+A12{x)

A13(x) + Aί2(x) + ^ 1 4 ( x + 3) = ̂ 1 3 ( x + 4) + ̂ [14(x) +A12(x +

A12{x) + A13(x)

8.5)

where Aμv(x) are defined as in (8.1).
In conclusion, given a finite hypercubical lattice, we are able to construct all

the configurations which are selfdual or antiselfdual at all the points of the
hypercube, except the boundary outside we are able to construct "quasi-selfdual"
or "quasi-antiselfdual" configurations which are good approximations of any
(anti)selfdual 2-cochain g, provided that:

a) g has finite action (or more precisely SN(g) decreases fast enough)
b) g satisfies conditions (8.5)3.
The problem which is still open is obviously the problem of doing a right

soldering at the boundary, i.e. the problem of controlling the behaviour of our
configurations at the edge of the chosen hypercube: we plan to come back to this
argument in a future publication.
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