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Abstract. In an arbitrary system of particles with central repulsive interactions,
right and left velocities exist at each moment of time, including infinity. An
arbitrary system of particles with finite-range interactions splits into inde-
pendent bounded clusters. The number of collisions in Sinai’s billiard is finite.

Professor Sinai has asked if a finite system of hard balls (spheres) in infinite space
has only a finite number of collisions over the infinite time interval; one assumes
that the spheres are homogeneous, and that momentum and kinetic energy are
conserved. There is a similar question for a finite time interval and Sinai’s billiard,
i.e., a system in the space with convex obstacles (walls).

Some results obtained by Sinai and other authors [1-4] led to the hope that
the above questions have a positive answer. This hope is confirmed in the present
paper.

The theorem asserting the finiteness of the number of collisions (including
reflections by the walls) does not extend to hard bodies with arbitrary shapes: even
between two convex bodies in the plane there can be infinitely many collisions in a
finite time interval. Also, the shape of the walls is essential: one ball in a convex
domain in the plane can hit the boundary an infinite number of times in a finite
amount of time [8] ; it is clear that in convex vessels (billiard tables) a ball can also
follow the boundary around at unit speed (in our vessel with convex walls this is
possible only along a straight line interval contained in the boundary). If we drop
the condition of conservation of energy it becomes possible to get an infinite
number of collisions between three balls on the line.

We obtain however, in the context of this paper, a number of results on general
systems of particles with finite-range or repulsive interactions. Apart from
continuity no smoothness condition is imposed a priori on the trajectories.

In Sect. 1 the existence of right and left velocities is established for all values of
the time, including infinity, for an arbitrary system of particles with central
repulsive interactions. Nothing is assumed about the energy in Sects. 1-4.
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In Sect. 2 it is shown that an arbitrary system of particles with finite-range
interactions splits into independent bounded clusters in a neighborhood of every
value of time, including infinity (cf. [6]).

Sect. 3 establishes, among other things, that, for an arbitrary system of particles
with repulsive interactions, which is bounded at time infinity, the integral over all
time of the inner kinetic energy converges.

In Sect. 4 we state results for the smooth case.

Finally, in Sect. 5 the finiteness of the number of collisions is proved for a
system of hard spheres in a vessel (container) with convex walls (obstacles).
Conservation of energy is assumed. The walls are not required to be smooth;
unique continuation of trajectories is not implied by our axioms (when, for
example, a multiple collision occurs or a ball goes into a corner).

Notation

Let N=1 be an integer, R¥ be N-dimensional Euclidean space. The length
(modulus) of a vector u in RY is denoted by |u|, and the scalar product of two
vectors by {u,v).

Let T be a positive number or + co. Numbers ¢ in the interval [0, T) will be
called time points or moments. We consider a finite system, indexed by I, of
particles in R", with positive masses m,(t), where iel, te[0, T). The trajectories
x;(t) of all particles are assumed to be continuous functions of the time t.

For any subsystem of particles, indexed by JCI, we let

my(t)= ijj(t), x,(t)= ijj(t) m;(1)/my (1)

JE JE

be the total mass and the center of mass of the subsystem.

1. System of Centrally Repulsing Particles in a “Directed” External Field
of Forces: The Existence of Velocities

In this section it is supposed that some convex closed cone V in RY without whole
straight lines is given and that
for every vector u from the conjugate cone

V¥={u:{u,v)=0 forall wveV},

for every number C, and every time te(0, T), there exists § >0 such that for the
subsystem

J={jel:{u,x;(t)y>C}

on the time interval (t — 9, ¢t + ) the mass m;,(t) is constant, and the projection

{u,x,(t)) of the mass center is a convex (downwards) function of time ¢.

The physical sense of the axiom is transparent: the particles repel each other
centrally and, besides, some exterior forces with directions in the cone V act on
them (Fig. 1). In the case V=0, there are no exterior forces and x; is linear.
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Theorem (1.1). For such a system, for each iel and each te(0,T) such that

lim_)itnf m; ()0, the following double limits exist and are finite :

x,(t") = x,(t)
lim lim ———— = Lx,(t);
t2t' >t >t -t
tl/
lim lim uﬁf(—) = :Rx,(t).
LSt <t'’-t t"—t

In particular, one has the following limits and equalities :

Lx,(t)= mﬂx(t) X(®) = lim Lx(d)= lim Rx,(0),
Rx; (”)*,Eﬁzw‘ﬁ?,“ (1= lim Lx(7).

Moreover, if ]iItn iTnf m;(t) %0 and max [Rx;(t)]+> + 00 when t— T, then the following
- e

finite limits exist and are equal :

o x () =x(
lim lim #‘—(l
T>t'>t'-T t—t

= th_)n% Rx;(t)= tanr% Lx;(t)=: Lx,(T).
To prove the theorem we will need the two following lemmas.

Lemma (1.2). (Convexity criterion for a function.) If ® is continuous function on an
interval [0, T), and for each te(0, T) there is 5,>0 such that 0=t —9,<t+,<T
and O(t+96)+ P(t—0)=2d(¢) for all 6€[0,6,], then @ is convex on [0, T).
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Proof. Take any ¢’ <t” in [0, T). The inequality
a@t)+(1—a) PV =P(ot’' +(1 —a)t"),
which is to be proved for all ae[0, 1], can be rewritten in terms of the function

¥ (1) =P(t) — D(t') — (1= ) (P(t") = P(EN/N" = 1))

as the equality %tn:;u% P(t)=0 [we have P(¢')=¥(t")=0]. Among te[t,t"], on

which the maximum is obtained, we choose the minimal number ¢. This t cannot
lie inside [¢,t"], because of the condition on ¢, [the inequality
D(t+0)+D(t—0)=2d(¢) is equivalent to inequality P(t+5)+ P (t—05)=2%(1)].
Thus, t=t¢, that is ¥ (t)<0 for all te[t,t"], as required.

Lemma (1.3). (An inequality.) Given an integer n= 1, and real numbers m, =0 and x;
(1<iZn). Let

Then S2 Y m?|x—x,|.

i=1
Proof. Let us proceed by induction on n. If n=1, both sides of the inequality
vanish, so let n=2. Without loss of generality one can assume that x, = x; for all i.

Let m' =m—m,, x'=(mx —m,x,)/m'. By induction

n—1 n—1 n—1
NEEED Z mmlx,—x, |2 Y. mix —x,.
i=1 j=1 i=1
Furthermore

S—8'=m,(m'x,—m'x)=m'(mx —m'x")—m, (mx —m,x,)
=m2x,—mmx —m'*x +m'mx
=m2(x,—x)+m'?*(x—x').

From this, using the inequality

I = x 2 = x| — (x— ),

we get:
S=8"+m?(x,—x)+m?(x—x')

n—1
m2|x' — x;| +m?|x, — x| +m'*(x —x)

v
g

i=1
n n—1
mix—x;|— Y, mi(x—x)+m?(x—x)

i=1 i=1

I
g
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Having these two general lemmas, let us prove the theorem. The condition on
the cone ¥ means that the conjugate cone V* contains a basis of R¥ as vector
space. So, projecting our system on rays from V*, we see that it is enough to check
the theorem in one-dimensional case N =1. Choosing a basis on the line, we will
consider x;(t) as real functions. These continuous functions have the following
properties :

for each time moment te(0, T) and each number C there is 6 >0 such that, for

the subsystem J={jel:x;(t)>C} on time interval (t—J, t+J), the mass m;, is

constant and the function x; is convex.

Physically, “acceleration” of every “right” subsystem is directed to the right, as
it is caused by repulsion from particles on the left and by external forces directed
from the left.

Lemma (1.4). Let p; be real numbers such that |u,| <m;(t)* for all i and t. Then the
function

0= Y 3 m(m, (0 -x(0

+mix O+ Y px,(0)
=1

i=

is convex on [0, T).

Proof. Because of Lemma (1.2) it is enough to show that for any te(0, T) there is
0,>0 such that 0=t—0J,<t+06,<T and P(t+0)+P(t—35)=2d(t) for all
0€[0,0,]

Fix t and choose J,>0 such that 6, <t, 6, < T—t, and such that x;(t) % x;(7) for
all te[t—4,, t+J,] whenever x;(t) +x;(t) [we used the continuity of x;(t) and the
finiteness of I]. Take a positive § <J,. We want to check that

A*®(t): =D(t+6)+ P(t—6)—2P(t) =0
[the same notation 42 will be used later for other functions on [0, T)].
Case 1. x{t)=x¢) for all i,j [then D(t)=mix,(t)+ Zux(t)]. Using twice the
inequality of Lemma (1.3) we get:

A0 (my(t— 8, (t— 8)— x,(t — 3)| + A2x,m?

iel

+ 2 (my(t40)*x;(E+6) — x, (¢ + )| + ) wAx;

iel iel

ZA%xmi + ) wAd?x, = (mf +2 ﬂi) A%x;
iel iel
[the inequalities m;(t 4 8)* = |u;| have been used]. Now it is enough to note that

mi+ 3 1, 20.

iel
General Case. Let J be the set of particles with minimal coordinate at ¢, and let K

be the complement of J in I: J = {jel:xj(t)= min xi(t)}, K =1I—J. Since Case 1 is
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already considered, one can suppose that K is non-empty. Let ¢, and @ be the
functions for subsystems J and K, analogous to the function ¢ =@, for whole
system I =J K. Then

(1) =D 4(1) + P(0) + M (T)mg(T)(xx(T) — x5(0)) + M (T)mg(T)(x,(7) + x (7))
=@ (1) + D7) + 2m (1) (T)x k(7).
By induction, the theorem is valid for system K (with the number of particles

smaller than in I), so 4°®, 20. It was shown in the above consideration of Case 1
that (in fact without assumption on convexity of @)

A2, 2y +my()*) 4x,
where

pyi=73 p;. Thus A*®22mymeA’xy+(u;+mj)A%x; .

jeJ

If A%x; 20, then 42 =2m;mA*x, 20, because the function x, is convex on
the segment [t —0J,, t+0,].

If, on the contrary, 42x; <0, then 4°® =2m7A%x; + 2mmpA*x =2mgA*x, 20,
because x; is convex on [0, T).

Hence, Lemma (1.4) is proved. This implies that, for any pair (i, t) such that
lirglqitnf m,(t)=%0, in a neighborhood of time ¢ the function x; can be represented as

a difference of two convex functions, so that it has right and left derivatives at ¢.
Thus, the first part of Theorem (1.1) is proved. If lim iTnf my(t)#+=0 and
t—

liItn iTnf mallexj(t)l=!:+oo, then, in some neighborhood of T, the function x;
ST e

can be represented as the difference of the two convex functions with bounded
derivative and consequently has a finite left derivative at T, and the left derivative
is continuous from the left at T. Hence, Theorem (1.1) is proved.

Besides Theorem (1.1) one can obtain from Lemma (1.4):

Corollary (1.5). If all |x,(t) are bounded when t—T, then for any i with

lirtn iTnf my(t)£0 there is a finite lim x,(t) = :x,(T).

Proof. Indeed, by Lemma (1.4) x,(t) can be represented as the difference of two
convex functions bounded at T, in the case N =1; this implies the assertion for
any N.

In the next section the following lemma (with N =1) will be useful:

Lemma (1.6). The function f(t):= max X;(t) is convex on all intervall [0, T).

Proof. We take arbitrary te(0, T) and will show that there exists §,>0 such that
2f) = f(t—0)+ f(t+9) for all 6€[0,J,] [see Lemma (1.2)]. Consider the subset
J={jel:x(t)=f(1)}. By the above condition of repulsion, there exists J, >0 such
that function x, is convex on (t—4,t+9d). Since f(tr)=x;(r) for all i and all 7,
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f(©)=x,(z) for all . So, for 6€[0, J,], we have:
2f(1)=2x,(0) S x,(t = 0) +x,(t + O) = f(t = 6) + f(t +6) ,

as required.

In the remaining part of this section we consider some examples. In all these
examples our system consists of three particles (I ={1, 2, 3}) interacting only at
moments of collisions (coincidences) and V is empty, that is the function x; in the
axiom of repulsion is not only convex but linear.

Let ty<t,<... be the following sequence: t,=k in the case T=+ 0;

=T(1—-27% in the case T+ + co. We have: t,—T. In the examples below, we
assume that on every segment [f,, 1, ] all three particles move with constant
velocities. To give such system it is therefore enough to indicate numbers x,(t,)
where i=1,2,3;k=1,2,.... We leave to the reader the checking of the axiom of
repulsion.

Example (1.7). Let T=1, g=(3— }/7)/2;

x, ()= —(1+3+(=1)94"/2)/2%,

X,(t) =1 +g9/(=2),

x3(t) =1+~ (= 1))q"/2)/2 ;

my(O)=1+¢*/2+3¢*) for te[t,,_ vlar)s

my(0)=(1+q* " N2+3¢* 1) for te[ty_,.15),

my(t)=1—m (t)—m4(t) forall t.
Then x,—0 for all i when t—1; m, and m, tend to ; m,—0; Rx, —>1, Rx;—>—1,
and Rx, oscillates between —1 and 1 when t—1. This example shows that the
condition lim inf m,(¢)==0 is essential in Theorem (1.1); note that in this example

we can continue the trajectories for all time [0, + co) with preservation of the
axiom of repulsivity, puting, for example, x,(t)=0 and m,(t)=1/3 for all i and t = 1.

Example (1.8). Let g=2— ]/§ in the case T=+4 o0, g=(3— ]/7)/2 in the case
T<+00;
my () =(1-¢*/2-3¢*) for te[ty_,.t5),
my(O)=(1—g***1))2-3¢***Y) for telty_istmyii)
m,(t)=1—m,(t)—m,(t) forall ¢,
X t)=31=(=19¢""" =1,  x,(t)=(=DHg""' = 1),
x3(t)=1—=3(1+(=1)5q*"*.

Then x,(t)— — 1, x4(t)—1, x, oscillates between x, and x;; Rx, and Rx, tend
to 0, the velocity Rx, oscillates between — co and + co in the case T'< + co and
between —2 and 2 in the case T= + oo (when t—T); m, and m, tend to 3, m,—0.
This example shows that the condition lim infm,(t)+0 is essential in Corollary
(1.5).
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Example (1.9). Let mft)=1 for all i,t; qg=2+ [/§ in the case T=+ o0,
g=03+ W)/Z in the case T< + o0

xl(tk)=—%qk+i(—11)k, xz(tk)z—%(—q)k’ x3(tk):%q,‘+i("'qyc~

Then Rx;, (t)— — o0, Rx3— + 00, Rx, oscillates between — oo and + oo when t—T.
This example shows that the condition lim sup|Rx;| < + oo is essential for the
existence of lim Rx;.

Example (1.10). Let m,(t)=1 for all i, t; g is the same as in Example (1.8);

X (t)=(—af=3¢", x,(t)=-2—a)", x3(t)=3¢"+(—q).

Then x; and Rx; tend to 0 for i=1,2,3 when t—T. This example shows that,
without conservation of energy, three equal particles on the line can have an
infinite number of collisions in finite of infinite interval of time [0, T'), momentum
being conservated.

Remark. If the cone V above contained a whole line, then, evidently, the assertion
of Theorem (1.1) would be false.

2. System of Particles with Finite-Range Interactions:
Splitting into Bounded Independent Clusters

Let r; ;(t) be non-negative functions on [0, T), where i, je I. Two particles i, j will be
called remote enough at t if |x,(t)—x;(t)|>r; ,(t). A subsystem of particles will be
called independent at t if every one of its particles is remote enough at ¢ from every
particle outside the subsystem.

Our axiom (hypothesis) of finite-range interaction is as follows:

for each time moment ¢ (0, T) and each subsystem J C I independent at ¢ there

must exist 6 >0 such that on the time interval (t — 9, ¢t + ) the total mass m, of

the subsystem is constant and the function x; is linear.

Thus, in this section we assume that the mass of a subsystem is conserved and
its center of mass moves with constant velocity vector when this subsystem is
independent, i.e., its particles are remote enough from other particles.

Theorem (2.1). Suppose miIn littn ;nf m,(t)=0 and
max lim sup r; j(£)/(m(t) +m,())= 10 < + o0

Then there is tye(0, T) and there is a splitting of the particles into subsystems
(clusters) such that every cluster J is independent at any t Zt, and it has one of the
following two properties :

a) for any C>0 there exists t.€(ty, T) such that, for any te(tc, T), a subsystem
K CJ, independent at t, can be found with the modulus of the velocity of x, at t
greater than C;

b) the distance |x (1) — x,(t)| from the cluster center of mass to any particle je J is
bounded when t—T by (my(t,)— Iirtll iTnf m(1)e.
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Thus, speaking informally, if the diameter of an independent cluster is not
bounded, then its energy tends to + oo, whatever is meant by energy [we will not
give any formal definition of energy because in this section particles are not bound
to have velocities, see Example (2.2) below].

An example of a system with finite-range interactions in the sense of this
section (with bounded r; ;) is a system of mass centers of bounded bodies moving in
infinite space with conservation of momentum and interacting at moments of
collisions only.

If all r; ,(t) above are identically equal to O then the hypothesis of finite-range
interaction with such r; ; implies the hypothesis of Sect. 1 with cone V'=0. The
examples of Sect. 1 show that the case a), or b), or both can occur in a cluster.

Proof of Theorem (2.1). Two particles i,j will be called remote enough at T if
there is t,€(0, T) such that they are remote enough at all £>t,. We place i, j in the
same cluster if and only if there is an integer k=1 and there are particles p, ..., p,
such that p, =i, p,=j, and p,_,, p, are not remote enough at T for s=1, ..., k.

Since the number of all particles is finite there exists a moment of time ¢,€(0, T)
such that every cluster is independent at all ¢t =t,, and therefore there will be no
interactions between the clusters for ¢ >¢,. Hence each cluster can be considered
separately.

We take a cluster J and forget the other clusters. We want to prove that if the
property a) does not hold, then the property b) of the theorem holds. This property
can be reformulated as follows: for every £>0 and every line in RY there is
T,e(ty, T) such that the distance between the projections of x,(t) and x;(t) on this
(straight) line does not surpass (m,(t,) —m;(t))(¢ + 2¢) for all jeJ and t=T,.

Fixing the line we are reduced to the case N=1. Choosing a basis (an
orientation and the origin) on the line, connected with the center of mass of J, we
will assume that x(¢) are real functions and that x,(t)=0 for all t>t¢,.

We surround now every point x,(t) on the line by the segment

[x;(6) —m(t)(e +¢), x,(t) + m,(t)(e +¢)]

of the length 2m,(t)(0+¢). A subsystem of particles and the corresponding
subsystem of segments are called tight if the diameter of the union of the segments
is not greater than the sum of the lengths of the segments. It is clear that if two
tight subsystems of segments have a common point then their union will be a tight
subsystem too. In particular, if a particle belongs to two tight subsystems, then the
union of these subsystems is also a tight subsystem.

So, in every instant, the whole system (the cluster under consideration) of
particles on the line splits uniquely into maximal tight subsystems which will be
called accumulations.

Taking greater ¢, if necessary, we can assume that

D Sm)+my0)(e+e) forall t=t,

and all i, je J. Then particles are remote enough at ¢t > ¢, whenever the correspond-
ing segments have no intersection. In particular, in each instant t=t,, every
accumulation is an independent subsystem at .
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In each moment of time, we surround the mass center of every accumulation by
the segment whose length is the sum of the lengths of all segments in the
accumulation. This segment will be called a spindle. The obtained spindles cover
all our segments, every spindle covers an independent subsystem, its length is
proportional to the mass of the subsystem. The sum of the lengths of all spindles is
equal to the sum of the lengths of all segments, and is equal to 2(¢ +&)m;, where

my=my(ty)=myt) for tz=t,.

Now we contract the spindles into points as follows. For every te(t,, T) and
ieJ, let y,(t) denote the middle of the corresponding spindle (i.e. the mass center of
the corresponding accumulation). We set

Zi(t)=yi(t)+(9+8)( Y m- Y m,-(t))-

() > yu(t) y5(@) <yilt)

According to this formula, the distance between neighbouring points z,(t) and
z,(t) is equal to the distance between the corresponding spindles. Particles i, j from
the same accumulation and only such particles correspond to the same z,(t) =z ().
We have

Y m(0)z,(t) =Y. m(0)y,(0)= Y, my(t)x,(t)=0 forall t.

ieJ ieJ ieJ

Although the functions y,(t) are discontinuous, the functions z,(t) are con-
tinuous on (ty, 7). We can consider the system J of the particles with the masses
m,(t) and the trajectories z,(t). For this system, the hypothesis of finite-range
interaction holds with r; ;=0. Hence, the hypothesis of repulsivity (see Sect. 1)
holds with empty V.

Therefore, we can apply the results of Sect. 1 for z,(t). Since the maximum of the
moduli of the velocities of the mass centers of the independent subsystems does not
tend to + oo (as it was assumed above) and since lim inf m,(t)+0 for all i (see the
condition of the theorem) there exist right Rz,(t) and left Lz,(t) velocities in some
neighborhood of T, and there are }1_,11% Rz,.(t)=t1i_{r% Lz(t)=:Lz,(T)% + 0.

In the case T+ + oo it follows that there are the finite limits lin% z,(t)y=z,(T). If
i Ed

particles i,j are not remote enough at T, then, obviously, z,(T)=z,(T). By our
definition of the splitting into clusters, we get z,(T)=0 for all ieJ, so

lim sup x;(1) <(¢ +#) ( m;— lim infm j(t)) for any jelJ,

as required.
In the case T= + oo we have Lz,(T)=0 for all ieJ by our definition of cluster.
It follows, by Lemma (1.6), that the left and right derivatives of the function

max z;(t) tend to 0 when t— T and hence this function does not increase for ¢ > t,.

Je

Analogously, miJn z,(t) does not decrease for t>1,. In view of Corollary (1.5) there
Jje

exist finite limits z,(T): = tllll% z,(¢). It follows, as in the case T= + oo, that z,(T)=0

for all i, that implies the assertion b) of Theorem (2.1), as required (Fig. 2).
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Example (2.2). Let m(t) be a positive constant function on [0, T), x,(t) be a
continuous function on [0, T), N=1, I={1,2};

my(0):=my(t), xy(8):=—x,(t), 1y ,(O):=7,,(8):=2]x,(t)]

on [0, T). Then the hypothesis of finite-range interaction holds. The trajectory x,
may have velocity nowhere.

Example (2.3). Change in Example (1.10) x,(¢) to x,(t)+d and x(¢) to x,(t)—d for
all t, where d 20 is a real number. Then the hypothesis of finite-range interaction
holds with r; ,(1)=d for all , j, t. This example shows that, without conservation of
energy, three equal hard spheres (of any diameter d) on the line can have an infinite
number of collisions in finite or infinite interval of time [0, T), momentum being
conserved (the particles are the centers of the spheres).

Theorem (2.1) and Corollary (1.5) imply

Theorem (2.4). Under the condition of Theorem (2.1), suppose the axiom of
repulsivity of Sect. 1, and suppose that max | Lx(t)]4— + oo when t—T. Then, for

each i€, there exists a finite lin% (x(6) = Lx,(T)e).
t—
In some particular cases this was proved in [5, 7].

Remark. In the case when masses m,(t)=m, are constant the hypothesis of this
section is equivalent to the following axiom:
for any ¢, <t, <t from (0, T) there are vectors P, ; in R" such that

P,.,J.—i—Pj’i:O forall i,jel;

Z Pi = (X,’(t3)'_xi(tz) _ xi(tZ)—xi(tl)) m, for all iel :
’ I3—t, =t

jel

if [x;(1) = x (1) >, (¢) for all te[t,,t,], then P; ;=0.
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3. System of Non-Attracting Particles: Above Estimation
of the Integral of Kinetic Energy

In this section we consider a system of particles where repulsivity prevails over
attraction. An exact formulation of this hypothesis is rather cumbersome because
the existence of velocities is not assumed.

Namely, in Theorem (3.1) below we suppose that all masses m,(t)=m, are
constant and

for every te(0, T) and every ¢>0 there is § >0 such that for any t,,¢,, ¢4
satisfying

max(0,t—9)=t, <t, <ty<min(T, t+0)
there exist vectors P; ; in RY with the following properties :
a) Pi’j+Pj,i=0 forall i,jel;

(xi(t3)_xi(t2) _ x;(t) = x(t4)

t3—t, ty—t

b) Y P, =

jel
©) (P ;s xi(ty)—x(t,)> 2 —e(t;—t,) forall ijel.

)mi forall iel;

These P; ; have the physical meaning of impulses received by the particle i from
the particle j.

Note, that conditions a), b) imply that the mass center x(t) of the whole system
moves with constant velocity, i.e. the system is a closed one. Changing x,(t) to
x;(t)—x,(t), we can assume that this center remains at 0.

The hypothesis above holds naturally in the following example: a system of
mass centers of hard bodies, which are star-shaped with respect to their centers,
interacting without friction at moments of collisions.

Theorem (3.1). The function D(t)= )" x,(t)*m,/2 is convex on the whole of [0, T). In
iel

particular, there exist the left derivative LD(t) on (0, T] and the right derivative

RD(t) on [0, T). For any strictly increasing sequence t,<t, < ... <t, on [0, T) we

have

}’: z Ixi(tk)—x,-(tk_l)l 2mi éLD(ll)—RD(to) .

K=1 icl L
Proof. Let 6(t, &) denote the § >0 which exists by the hypothesis on interaction of
this section. It is enough to prove the assertion of the theorem for ¢, 0.

Using the compactness of [¢,, ;] we can find ¢ >0 such that every segment of
the length <26 in [t,, t,] belongs to some segment of the form

[t—0(t,e), t+0(t,e)] where te[ty,t,].

Let 5o <s; < ... <s, be a sequence, containing all £, such that s,=t,, s,=t,, and
Sp— 8,1 <0 for all p.
Then there exist vectors P; (p) such that

(P fP) xi(5,) =X (5,00 2= — &S5 1 —Sp—1)
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and

P, (p)+P;(p)=0 forall ijel,

forall iel,

Z Pi,j(p)=

(xi(sp+ 1)—xi(sp) _ xi(sp)“xi(sp— 1)) m.

p+1 7 5p Sp™Sp-1
where p=1,...,q—1.
We consider the sum

q—1
S= Z Z <Pi,j(p)a xi(sp)>‘
p=11i,jel
Since P; j(p)= — P; /(p), this sum can be rewritten as
14zl
S=3 2 X <Pyp) xi(s,) = x,(s,)>
p=11i,jel
whence S= —e(t,—t,).
On the other hand,

o qil 5 <xi(sp+1)—xi(sp) B x"(s”)_x"(s”*1),mixi(sp)>

p=1 iel Sp+175p Sp~Sp-1
_ D(Sq)_-D(Sq—l) _ D(s;)—D(s,)
S, =41 S;—So

_ qiz z |xi(Sp+ 1)_xi(sp)|2mi

p=1 icl Sp+1—5p
_ Z m; (Ixi(sq)—xi(sq—l)lz _ Ixi(s1)_xi(so)|2)
i1 2 Sg—8;-1 S1—= 9%
Thus,

qi2 |xi(Sp+ 1)_xi(Sp)l2mi

p=1 iel Sp+1 7 5p
(3.2)
< D(Sq)_D(Sq—-l) _ D(s,)—D(s,) et —t,).
Sg=Sg—1 5, =5,
First of all, from (3.2) we get
D(s)—D(s,—1) D(s;)—D(so) > —e(t—t,).
Sg = Sq-1 5, —Sg

Since here s, =1, s,=t,, and, for an ¢ as small as we please, s, and s,_, can be
chose freely in some neighborhoods of t, and ¢, accordingly, we have

lim inf D(t)—D(s,1) > lim sup M‘L).

t>sqg+170 tl—sq—l to>s1 1o Sl_tO
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Since here ¢, and t, can be arbitrary under the condition 0 <t,<t,<T, we have
obtained the first assertion of the theorem (convexity of D).

Hence, the right part of inequality (3.2) is not greater than LD(t;)— RD(t,)
+e&(t,—t,). On the other hand, note that [ul*/o+ [v]*/f 2= |u+v|*/(x+p) for
any vectors u, v and positive numbers o, f (it follows from the inequality
[Bu— ow]? 2 0).

Therefore the left part of (3.2) is not less than

Z (Ixi(t1)~xi(sl)lz n 'xi(sq—1)“xi(t1—1)|2)

Ly =5 g1 li-1

m.

13

iel

-1 2
+y y i (t) = x; (6 I *my
iel k=2 b= b1
(without loss of generality, we can assume that s, <t, and s,_, >t, ;). Since in

(3.2) we can take ¢ as small as we please, and s, s, ; as close to t,, t, respectively as
we please, we obtained the second assertion of Theorem (3.1).

Corollary (3.3). If T= + co and the diameter of the system does not tend to + o
when t— + oo, then, for any sequence t,<t, <... we have

y 3 POmX O

K=1 iel b=l y

Proof. Indeed, then RD(t)<0 for all ¢.

Corollary (3.4). Suppose that the right derivatives Rx;(t) of the trajectories exist and
are integrable in the sense of Riemann. Then, for the energy E(t)
=3 Y |Rx,(t)— Rx(t)>m; and for any t, <t, in the segment [0, T, we have

thI(t) dt < 3(LD(t,)—RD(t,)).

Suppose now, in addition, the condition of Theorem (2.1) on the locality of

interaction, and let T= + co. Then there is a t,e(0, T) and there is a splitting of the

system into independent at t=t, clusters such that, for the inner energy

E,(t)=1% ) IRx(t)—Rx,(t)*m;of every cluster J, either E,(t)— + oo whent— + oo, or
Jjed

[ E,(t)dt < + co.
to

Proof. Indeed, the first assertion follows directly from Theorem (3.1). To prove the
second assertion we have Theorem (2.1) and Corollary (1.3) to apply.

Remarks. The hypothesis of this section does not imply the existence of velocities, if
NZz2.

If N =1, this hypothesis is equivalent to the hypothesis of Sect. 1 with N=1,
V=0, and constant masses m,.
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4. Smooth Case

Here the results of Sects. 1-3 are formulated in the case of smooth trajectories.
Namely, in this section we suppose that all masses m;(t) =m; are constant, and that
all functions x,(¢) have continuous first and second derivatives (velocities and
accelerations) dx,(t)/dt, d*x,(t)/dt*. Let some continuous vector functions (forces)
F, ;(t) and F(t) be given, satisfying the following Newton laws:

a) F,;(0+F; (=0 forall ijel, te[0,T);

b) F,(0)+ Z F, ()=md*x,(1)/dt* for all iel,te[0,T).
From leizorems (1.1) and (2.4) we get

Theorem (4.1). Suppose that
CF (), x,(8) = x(6)) =|F, ;()]]x,(2) — x (0]

for alli,jel, te(0, T) and that the closure of the convex cone generated by all F(t),

where iel, te(0, T), does not contain straight lines. Then, either there exist finite

limits Lx(T): = thn} dx(t)/dt for all icl, or the energy Y. |dx,(t)/dt|*m;/2 tends to
- iel

+ oo when t—T.
If the energy does not tend to + oo, all F;=0, and, for some r=0, we have
F, ;()=0  whenever |x,(t)—x;(t)|>r, then there exist finite  limits

}in% (x;(t)— Lx;(T)t) where icl.

In some particular cases this was proved in [5,7].
From Theorem (2.1) we get

Theorem (4.2). Suppose that, for some non-negative functions r, ;(t), forces

F; ;()=0 whenever |x,(t)—x;(®)|>r; ;(t), and external forces Fi(t)=0 for all i, t.

Then, if max lim supr, ;(¢)/(m;+m;)=: 0=+ + o0, there is t,€(0,T) and there is a
ie t>T ’

splitting of the system into clusters such that |x,(t)—x;(t)| >, ;(t) for t=t, and i,j

from different clusters, and for each cluster J either its inner kinetic energy

d
Ef0:= T |5 050 —x,0)"

—x,(t) S(m;~m)e for all jeJ.

m;/2 tends to +oo when t—T, or limsup|xt)
t—-T

Compare this with a splitting into clusters in a system of attracting particles

(6].

From Theorem (3.1) we get

Theorem (4.3). Suppose that {F, ;(t), x;(t)—x;(t)y =0 for all i, jel, te(0,T), and
F,;=0 for all i. Then dzD(t)/dt2>2E(t) for all t, where

D(t): = Z b (6) = x, (8)*my/2,

iel

Zm,/2.

E@®):=), di

iel
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Fig. 3

5. Sinai’s Billiard: The Finiteness of the Number of Collisions

Let a finite collection W of non-empty closed convex sets in R be given, and let Q
be the intersection of the closures in RY of the complements in R" of these sets.

We will call Q a “vessel” with convex “walls” we W, although ©Q may be
unbounded and its complement in R¥ may be unconnected. In particular, Q can
coincide with all RY (for empty W) or with arbitrary, not necessarily convex,
polyhedron (for suitable W). In the vessel Q (i.e., in the space R" outside the
obstacles we W) we will consider a system of hard spheres (balls) moving with
conservation of energy, centrally repulsing at moments of collisions between
themselves, and normally repulsing from the walls at moments of collisions with
them (Fig. 3).

Before giving exact axioms, we introduce some notation. For xeR", we W, let
(x—w)*: ={u:{u,x—y>=0 for all yew}. For any two subsets 4, B in RV let
d(A, B) be the infinum of the distances |a— b| between points ac A, be B.

In Theorem (5.3) below, besides constancy of the masses m;(t) =m,, we assume
that, for some non-negative numbers r; (radius of spheres), the following hy-
potheses hold:

(5.1) there is E =0 (energy) such that for any open subinterval of (0, T) on which

all x; are linear we must have Y’ |dx,(t)/dt|*m;/2=E;

iel

(5.2) for any t,, t,, t5 satisfying 0=<t, <t, <t; <T, there are vectors P;, where

iel, keI LW such that

a) P,;+P;;=0 for all i,jel;
3 pae(HoH s,

t3—1, L=ty

keluW

for all iel,

c) for any i,jel either r,=r;=0 and x,(t)=x(t) for some te[t,,t,], or P, ;
belongs to the convex cone generated by the vectors x;(f)—x;(f) with
[x;(©)—x;@O|=r;+71} telty,t31;
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d) for any ie I, we W, the vector P, , belongs to the convex cone generated : by
the vectors x;(t)— y with yew, |x;(t) — y| =r;=d(x;(t),w), te[t,,t;] in the case r,%0;
and by the cones (x;(t)—w)* with x,(t)ew, te[t,,t;] in the case r;=0.

The condition (5.1) means the conservation of kinetic energy; nothing is
supposed about the existence or conservation of energy in moments of interaction.

The condition (5.2) means the absence of friction. The vector P, , in this axiom
have the sense of some mean impulse which the ball i receives from the ball or the
wall k in the interval [¢,,¢,]. The condition (5.2a) means the equality of the action
to the reaction. The condition (5.2b) means that balls interact only when they are
in contact, and the centrally repulse each other (without friction) at such moments
of time. The condition (5.2¢c) means that interaction of a ball with a wall occurs
only in moments of contact and it is directed at each such moment along a normal
to the wall going through the center of the ball; such normal is unique in the case
r;+0.

We will not suppose that balls and walls are impenetrable, i.e., that
|x;—x;| 27r;+7;,x;€Q, d(x;, w) 271;, because this condition is not necessary to prove
that the number of collisions is finite. So, balls can, for example, go through each
other without interaction at all, if they please.

We will say that there is no interaction in the system at ¢ if in some
neighborhood of ¢ all particles (i.e., the centers of balls) move with constant
velocity vectors, that is, all x; are linear. Other ¢, which will be called moments of
interaction in the system, are, obviously, a closed subset in [0, T). Such ¢ is
characterized as follows: there is no neighborhood of ¢, in which all x; are linear.

Theorem (5.3). Suppose that either T + o0, or there is xeRYN such that
d(x,w)=< miIn r; for all we W (for example, W is empty). Then there exists only a

Sfinite number of moments of interaction in the system during the whole [0, T).

Proof. First of all, going to the configuration space, we reduce to the situation with
one ball of mass 1 of radius 0. Namely, in the space RM we introduce an Euclidean
scalar product of vectors u=(u),, v=(v),,; according to the formula

(u,vy =3 Cuy v,

iel

We will consider in R¥ the convex subsets

A = {x=(X e d(x, WS}, where iel,weW,

and the convex subsets

A; j={x=0her: ;= x| Sri+7;},  where i jeli%].

The set of these non-empty closed subsets (walls) we denote by W,
We consider a particle (ball with the radius 0) with trajectory x(t)=(x;(?));.;»
with mass 1. The condition (5.1) is equivalent to
(5.4) there is E=0 such that |dx(t)/dt|= ]/2—171 at any t when there is no
interaction at t, i.e., x is linear in some neighborhood of .
The axiom (5.2) takes the following form:
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x(t3)—x(t,) _ x(t,)—x(t,)
3 b L=t
cone generated by the cones of the form

(5.5) for every t, <t, <t, the vector belongs to the

(x(@®)—w")*, where weW telt,,t;], x()ew'.

The moments of interaction in RY and RM are the same. The assumption

mli‘g max d(x, w) < miIn r; of Theorem (5.3) is equivalent to the following: the

intersection of all w'e W'is notempty [if W’ isempty,ie., Wisemptyand Card(l)=1,
then the intersection is the whole RNT by definition].

We want to prove that under the conditions of Theorem (5.3), which are now
rewritten in terms of configuration space as the conditions (5.4), (5.5), and the
assumption : either T'# + oo, or the intersection of all walls w'e W' is non-empty, —
there is only a finite number of moments of interaction in the system, i.e., whole
[0, T) can be divided into a finite number of subintervals (semisegments) on each of
which x being linear.

Case 1. x(t)e ﬂ w'=:4 for all te[0,T). We will show that then there is no
weW’
moments of interaction at all, i.e., x is linear on (0, T). It is enough to show that for
each time ¢,e(0,7) there is 0>0 such that 6=t,, 6<T—t, and
x(t3)—x(t;) x(t,)—x(t;)
ty—t, L=l

It is clear from the definition of (y — A)* that for any point ye A close enough to
x(t,) and any vector ve(y— A)* with |v]=1, we have d(v, (x(t,) — 4)*) < 3. [Indeed,
otherwise we could find a sequence y, € A4, a sequence v,e(y, — A)*, and a vector v
such that y,—x(t,), v,—v, and |u|=1, d(v,(x(t,)—A)*)=1 for all k, hence,
d(v,(x(t,)—A)*)=3. On the other hand, for each point zed we have
(v, x(ty)—zy= klim 0 V—2y 20, le, ve(x(t)—A)*, ie, d(,(x(t,)—A%*)=0.]

We choose >0 such that §<t,, S T—t,, and d(u, (x(t,)— A)*) <3 for all
te[t,—d,t+0] and all ve(x(t)— A)* with |v|=1. Then this inequality holds for all
vectors v with |v|=1 from the convex cone V generated by the cones (x(t)— A4)*
with |t—t,|<0, hence, for any veV, there is ue(x(t,)—A)* such that

Cuy vy =l fo] 1/3/2.

In view of the axiom (5.5) we can take here

for all ¢, t, satisfying t,— 0 <t, <t, <t; <t,+0.

. x(t3)—x(t,) B x(t,)—x(t;)
Ly—1, ly— 1ty

(it is clear that (x(t)—A)*D(x(t)—w)* for all weW’) with t,, t, satisfying
t,—0=t, <t,<ty<t,+0. On the other hand, in view of the definition of
(x(t,)— A)*, we have (v,u) =<0 for this v. Hence v=0, as required.

To consider the further cases, the following lemma will be useful.

Lemma (5.6). Let B be a convex closed non-empty subset in the intersection of all
walls w'e W'. Then the function f(t): =d(x(t), B)* is convex on the whole interval
(0, 7).
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Proof of the Lemma. We take any te(0, T) and set d,: = min(t, T—t)>0. We want
to show that f(t+8)+f (t — 6)—2f (t) = 0 for any positive 6 =J, [see Lemma (1.2)].

Let y,, ¥,, ¥ be the points in B nearest to x(t — ), x(t), x(t + J) respectively. We
set y:=(y, +y3)/2€B, u;: =x({t—90)—y,, u,: =x(t)—y, uy: =x(t+06)—y;. Then
fe=8)=lu,|?, f(t+0)=1us|*, f(O)=|u,/*

From the condition (5.5) we have

x(t+90)—x(t) x(@)—x(—9)
< 5 B B

,X(t)—y> 20,
ie.

{x(t+0)+x(t—06)—2x(t),x(t)— y> =0,
Le.

{uy +uy—2uy,u,) 20,
ie.

luy 2+l | = 2] = uy —u,]/2— |uy —u,]?/220,
S0

fE+0)+f(t—0)=2f (O =[uy > + |us]* = 2fu,|?

2 (g —uy|® +Juy —u,]?)/220.

We continue now the proof of Theorem (5.3).

Case 2. T+ + oo and there is a sequence 0 <t, <t, <...<T such that t,—T when
k— oo and the trajectory x(t) is linear on each segment [t,,¢,, ,;]. We show then
that, for some t, < T, there is no interaction in the system during (t,, 7).

Let v, =(x(t, o ) —x(EN/t, 1 —1t) for k=1, 2,.... From the condition (5.4)

lv.|=1/2E. Let x(T): = lirrTl x(t). We denote by Wi the set of walls w’ such that
£

x(t,)ew for infinitely many. k, and choose [ such that x(t,)¢w’ for k=1, w'¢W,.

In view of Lemma (5.6) the function d(x(t), x(T)) is convex for t =¢,, when the
walls outside W, have no influence on the trajectory. It follows, using the
convexity near t,, , that {u,,; —u, x(t,,)—x(T)> =0 for k=1 Consequently,
the distance d, from x(T) to the ray, going from the point x, in the direction v, (i.e.,
towards the point x, , ;) does not decrease (the trivial case E =0 is excluded). Since
x(t,)—x(T), d,—0. Hence d, =0 for k =I. Therefore v, =v,, , for k=1, as required
(Fig. 4).

Case 3. T+ + co. If we had infinitely many moments of interaction, then we could
find a time moment ¢,e[0, T] such that in every left or in every right neigh-
borhood of ¢, there are infinitely many such moments. Taking into account the
possibility to reverse time, we can, without loss of generality, assume that in every
neighborhood of t,= T there are infinitely many moments of interaction.

Using induction on the number of the walls in W’, we can assume that, for each
time ¢ such that x(¢) does not belong to the intersection A of all walls from W/,
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/1’3\ &2
'X(t3)~'X“2H
[x(tyl-yl 2 Ny
Ixity)<y1 Ix(t)=x ()]
Ly V)
x-f3 A

Ix(ty)-y|

Fig. 4. For Case 2 of Theorem (5.3) and for Lemma (5.7)

there is some neighborhood of ¢ without moments of interaction besides, perhaps, ¢
itself. According to the Case 2, we get that as close to T as we please we can find ¢
such that x(f)e A. Applying Lemma (5.6) with B=A, we get: x(t)e A in some
neighborhood of T, which contradicts Case 1.

Lemma (5.7). Let a point y belong to all w'e W', and let x(t)+y for all t. Then
rox()—y

var ———— <7

=0 [x() =yl

Proof of the Lemma. Since the set of moments of interaction is discrete (see Case
3), we can find a sequence ¢; <t,... such that t; =0, t,— T, and x(¢) is linear on every
segment [t ,] Let v, =0x(t,, )—x)/(t,,,—t). By the axiom (5.4),
o = ]/ﬁ (the case E=0 is trivial, so that let E>0). From the convexity of
|x(t)—y|* [see Lemma (5.6)] in some neighborhood of t,, where k=2, it follows
that {v,_,x(t,)—y) =, x(t,)—y), i.e. o _, = B,, where

_ = arceos (o, x(6) = y)/ 1/ 2E Ix(t) — ),
Bi: = arccos (v, x(6,)— >/ |/ 2E |x(t,)— .

Thus,

I x(—-y & " x(f)—y
T var

o xO—yl & w x(O)—yl

Xy ) = Y5 X(5)D
X (84 1) = YIIx (@)l

( ﬁk)<Z(ﬁk+1 =By

arccos

=

Il
IIMS

—-

TMS

—Bi=n—p,=n (Fig. 4).

I
3"»—
M=

m

Lemma (5.8). Under condition (5.7), d(x(t), B) is convex.

Proof of the Lemma. At first we will show that d(x(t), B) is convex on every
interval, in which x(t) is linear. Let t — 9, ¢, t + 6 belong to such an interval, and let
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V1is V2» V3, Y=(¥; +¥3)/2 be as in the proof of Lemma (5.6). Then
d(x(t+9), B)+d(x(t— ), B)—2d(x(t), B)
Z[x(t—0)—yi[+Ix(t+8)—y;sl—2[x(t)—y[ 20
since now
x(t—0)—y, +x(t+6)—y;—2(x(t)—y)=0.
In view of the discretness of the moments of interaction, it remains now to
prove that Ld(x(t), B)< Rd(x(t), B) for each isolated moment of interaction ¢. This

is obvious in the case d(x(t), B)=0 because the function d(x(t), B) is non-negative.
When d(x(t), B)+0 it remains to use the inequality

Lf(¢)=2d(x(z), B) Ld(x(t), B)
<Rf(t)=2d(x(t), B)RA(x(2), B)

which follows from Lemma (5.6).
We continue the proof of Theorem (5.3).

Case 4. T= 4+ oo, the intersection A of all w'e W’ is non-empty, and there is a
sequence 0=t, <t,<..,, such that t,— 400 and x is linear on each segment
[twtis 1] We want to show that x(t) is linear for ¢ large enough.

Now, the function d(x(t), A) is convex by Lemma (5.8). If it is constant on some
interval (t,, T), then, as it can be seen from the proof of Lemma (5.6), x is linear for
121,

Otherwise there are C >0, ¢>0 such that

d(x(t),A)>et—C forall t.

Using induction on the number of the walls in W', we see that it is enough to
consider the case when there are infinitely many k with x(t,)ew’, for any given
weW.

We choose now a point y in A. Since d(x(t), A)>et—C, x(t)+y for t large
enough. By Lemma (5.7) there exists

x()—y .
e x(O)—y

(5.9)

For any w'e W', we have x(t)ew’ for infinitely many k. So, taking in account
(5.9) and the fact that |x(t) — y|]— + oo, we get that w' contains the ray V, going from
y in direction e. Consequently, this ray belongs to A.

It is clear from (5.9) that d(V, x(¢))/|x(t) — y]—0 when t— + co. But, on the other
hand,

d(V, x (1) 2d(4, x(1)) 2 et — C, |x(t) - y|
Ix(t)—yl £1x(0)—yl+ |/2E 1,
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}O/dl i

AV, x(@)/x(6) =yl = (et = O)/(1x(0) - y|
2E t)—»s/]/ﬁ>0 when t—+00.

Thus, in the case of a non-constant d(x(t), A) we get a contradiction with the
assumed infiniteness, for every w’, of the number of k such that x(t,)ew".
Theorem (5.3) is proved. It follows

Corollary (5.10). In the case T+ + o0, the trajectories X; can be continued on all time
interval [0, + o0) with conservation of the axioms of this section.

Such continuation is not necessary unique. It can be shown that the assertion
(5.10) holds also under the additional axiom of impenetrability. In our context the
statement about unique continuation for almost all trajectories makes sense.

In [1-4] the authors did not formulate exact axioms for the systems under
consideration ; in fact, excluding multiple collisions, and prohibiting to balls to go
into corners, they assumed a priori the finiteness of the number of the collisions in
a finite time (more exactly, in every closed subsegment of [0, T)). Modulo this,
Theorem (5.3) is proved: in [2] — in the case N=1, W empty; in [1] — in the case,
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Fig. 7

when every we W is an impenetrable hyperplane going through 0 and Card(l)=1
(in fact, [1] covers [2]); in [3] — in the case N =2=Card(W), Card(I)=1. In [4],
the maximal number of collisions between 3 equal balls is computed in the case
N=3. A result of [3] leads to the conjecture, that in the condition
mxin max d(x, w) < miin r; of Theorem (5.3), the first min could be replaced by inf.

Sinai asked if it is possible to get some estimation on the number of collisions
in his billiards. To get it we have to introduce some new conditions on the system,
and we intend to do this in a future publication. For some illustrations of the
difficulties see Examples (5.11), (5.12) below.

Example (5.11). Let I1={1,2}, m,=m,=1, r;+r,=1, E=1, N=2,
Q={(a,b)eR?:|a| <1, |b| <1} [such Q can be realized with Card(W)=4]. Then, for
any T>0 and any real C, there exist trajectories x;(¢) with a number of moments of
interaction during [0, T) greater than C (Fig. 5).

Example (5.12). Let f be a non-negative convex function on [0, + ), f+0,
f(0)=0. Let I={1}, m =1, r, =0, E=1, N=2, W={w;,w,}, where
w, ={(a,b)eR?*:b <0}, w,={(a, b)eR*:a20,b = f(a)} (Fig. 6).

One can show that, when Rf(0)%0, the number M of the reflections of the
particle by the walls (i.e. the number of moments of interaction in the system) is
less than m/arctg(Rf(0))+ 1 for any trajectory and any T. If Rf (0)=0, then for any
T>0 and any real C there exists a trajectory with M > C reflections.

However, this number M can be estimated via the distance d from 0 =(0, 0)e R?
to the ray x,(t;)+Rx,(t;)R", where ¢, is the instant of the first reflection, as
follows: M <r/arctg(f (a)/a)+ 1, where a* +f(a)?=d? and T can be + oo ; if d=0,
then M =1.

Example (5.13). 2 heterogeneous balls on the plane rolling round each other.
Let a point («(t), y(t)) moves in the plane (¢, y) along the curve y=2—cosa at
unit speed from the point («(0)=0, y(0)=1) to the point ((T)==r/2, y(T)=1) (Fig. 7).
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We take a 2-dimensional ball of radius 2, of mass 1, of moment of gyration 1,
with the distance 1 between the center of mass x, and the geometric center c,
(Fig. 8).

We put the ball on the plane (g, b) so that x, (t)=(y(¢),0), ¢, (t) = (y(¢) + cos(x(¢)),
sin(a(t))), and put another equal ball on the same plane so that x,(t)= —x, (t),
¢y (t)=(—y(t) —cos(a(?)), sin(x(1)).

Then these hard balls interact at each moment te[0,T); the forces
d*x, (t)/dt* = —d*x,(t)/dt* 0 are directed from the point of contact (0, sin(a(t)))
along the radiuses of the circles; the kinetic energy |dx;(¢)/dt|*/2 + |do(t)/dt|?/2 of
each ball is constant.

Example (5.14). Infinitely many collisions between 2 convex hard bodies in the
plane.

Let o, =1—3%* for k=0,1,...; y be the function on [0, 1) which is linear on
every [oy, o, . ;] and y(o,)=2—cosa, for all k=0; z be a convex function on [0, 27]
such that z(e,) = y(o) =2 —cosa, for all k=0, Lz(a,) < (Ly(oy,) + Ry(e,))/2 < Rz(ey,)
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for all k=1, and z(a)=2—coso for ae[1, 2n]. (We can take z=y on [0, 1), or
choose an infinitely smooth z under this condition.)

Let a point (a(t), y(«(2))) move along the curve y=y(a) at unit speed from the
point («(0)=0, y(0)=1) to the point («(T)=1, y(1)=2—cos1) (Fig. 9).

We consider a hard convex body on the plane, of mass 1, of moment of
gyration 1, with the center of mass x,(¢)=(y(o(t)), 0), with the initial position (at
t=0, see Fig. 10)

{(a,b)eR?*:(1 —a)cosa+bsina<z(x) forall «e[0,2n)},

and the angle coordinate ot). We take another copy of the body symmetric with
the first body relative to the line a=0.

Then the kinetic energy of each body is constant ; the moments of interaction in
the system are ¢, such that a(t,) =a, ; the moments of contact between the bodies
are t such that y(o(t)) = z(o(2)).
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