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The Third Law of Black Hole Mechanics:
A Counterexample
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Institute for Theoretical Physics, University of Berne, CH-3012 Berne, Switzerland

Abstract. The collapse of a spherically symmetric charged thin shell in a
Reissner-Nordstrom field can lead to an extreme black hole. No contradiction
to the assumption of Cosmic Censorship results.

1. Introduction

The third law of black hole mechanics is the conjecture, first formulated by
Bardeen et al. [1], that reads: "It is impossible by any procedure, no matter how
idealized, to reduce κ to zero by a finite sequence of operations."

Here

ym2 — a — e

2m2 — e2jr 2m ym2 — a2 — e2

is the so-called surface gravity of the black hole of total mass m, specific angular
momentum a and total charge e. Zero κ means that the hole is extreme, i.e.,

We devise a counterexample to this conjecture: a process that is capable of
producing an extreme black hole in a finite interval of advanced time. The process
can be described as follows. Consider asymptotic observers throwing a thin shell of
charged incoherent matter towards a Reissner-Nordstrom black hole in a
spherically symmetric way. In the past of the shell, the values of the mass and
charge parameters of the spacetime are mι and ev in its future, they are m2 and e2.
The shell starts with total injection energy E (energy with respect to the asymptotic
observers) and total charge e, which satisfy the conservation laws:

(see Sect. 2). The motion of such shells has been thoroughly studied [2-5]. One
particular result is that the shell implodes unless a minimal, or bounce radius, Rb, is
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reached, and then it explodes back to infinity, if the parameters ex 2, mx 2 are
chosen properly (see [3]). The shells of this sort can be divided into two classes:

(1) Rh<mί + ym\ — e\ .

That is, the shell crosses the horizon of the original black hole. In this case, the
equations of motion lead inevitably to m2>\e2\ (unless E is negative) and to

Thus, there is always a new, underextreme, horizon lying over the old one and the
third law as well as the law of cosmic censorship are satisfied [5].

(2) m1 + ]/m\-e\ <Rb.

The shell stops imploding over the old horizon. In this case, m2 can be larger, equal
or smaller than \e2\ and a new horizon can form over the shell not only for m2 > \e2\
but also for m2 = \e2l This has been recognized long ago by Kuchaf [2] in the
subcase mί=eί=0 (Minkowski-space inside the shell), where, for all values of e
and E satisfying e = E, an extreme horizon forms over the shell. (At the time
Kuchaf studied thin shells nobody ever dreamt about Black Hole
Thermodynamics, and Kuchaf was not aware of inventing an Interesting
Counterexample.)

The plan of the paper is as follows: In Sect. 2, we calculate those aspects of the
case (2) that are relevant to our goal, generalizing Kuchaf's result to any mi > | e j ,
whereas Sect. 3 contains a discussion.

An important discussion point can be made already here. Our counterexample
shows that black hole thermodynamics has peculiar features not encountered in
that of ordinary bodies. The generality and unity of the "generalized thermody-
namics" is thereby not destroyed, however: one only has to consider the third law
as a less general statement than the other laws.

2. The Model

The dynamics of a charged thin shell of incoherent matter in the field of a non-
extreme Reissner-Nordstrom black hole has been studied in [2-4]. We use the
results of these papers.

One word concerning the notation: the inner and outer spacetimes with
respect to the shell and the corresponding quantities are labelled by the indices 1
and 2, respectively. Thus, the metrics are

dsU2 = / i , 2( ri,2)^1,2 -2dri,2dυU2 -r2

U2dθ2

U2-r2

U2sm2θίt2dφ2

lt2, (1)

where

We assume that
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in order to have a generic black hole with the horizon Hx at r1=m1

inside the shell.
The trajectory of the shell is given by the functions

s denoting the proper time along the curves Θί2 = const, φ 1 > 2 = const. R{s\
and V2(s) are determined by the dynamical equations:

where

mΊ —mΛ

A —

m

(3)

2mm 2

(6)

and m is the total rest mass of the shell [2-4]. The functions Via(s) as given by (4)
remain regular at those Killing horizons through which the shell implodes (R <0)
and diverge at those Killing horizons through which it explodes (R>0). This is in
consonance with the meaning of υγ and v2 as advanced time coordinates.

In the absence of pressure, the total rest mass m of the shell remains constant
throughout the motion. The total charge e of the shell is also a constant, given by

e = e2-e, (7)

[2-4].
We assume that the shell starts from infinity (-R(— oo)=oo) with a non-zero

radial velocity u:

(8)

(9)

(10)

(11)

is the total injection energy of the shell.
Finally, let the outer metric deviate only slightly from an extremal one:

u-

Then,

A-

while

m:

E

= K(-oo)<0.

(3) and (2) imply

from (5) we have

, = m t + £ ,

= m l/l+w 2

. — \
m2

(12)
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In all equations, we ignore powers of ε higher than the first. We can then write

m^ (13)
m

B = 2mm2

Equation (3) becomes

m

, (15)
m

The discriminant A of the right-hand side of (15) can be brought to the form

A = \ m2(u2 - u2)2 + m2

2{u2 + u2)ε. (16)

Here, we have introduced the abbreviation

(17)

Distinguish the following cases: 1. uc<u<0, 2. u<uc, 3. u = uc. In cases 1 and 2,
there is a finite range of ε containing zero so that the second term in A is small
compared to the first:

m2(u2-u2)2

Then, also, A>0. Thus, (15) becomes

where Ra and Rb are the two roots of the right-hand side of (15), Rb being the
bigger root. The solution R(s) to this equation can be found readily (see, e.g. [6]),
but it is rather lengthy, which is why we do not reproduce it. We concentrate on
those properties of it that we shall need:

1) The function R(s) is analytic in the range Rb<R(s) < oo, where its derivative
satisfies R(s)<0.

2) lim i φ H + oo, lim R(s) = u.

3) ? b
The extension of the shell motion through 5 = 0 is given by time inversion,

R( — s\ so that Rb is a turning (or bounce) point (see [3]).
For case 3, we have with ε = 0:

2 = u2(R-m2)
2.
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Fig. 1. The plot of Rb and m2 against E for ε = 0. The i^-curve reaches its minimum at E = EC. Its
asymptotes are E = m and r = m1 + \m + \E, and it has a cusp at the minimum

This time, the solution R(s) has the properties:
1. The function R(s) is analytic in the range m2<R(s)< oo, where JR(S)<0.

2. lim R(s)= +oo, lim R(s) = u.

3. lim î (s) = m?, lim R(s) = 0.

Thus, the shell implodes forever, reaching the radius m2 only asymptotically.
In the first two cases, we calculate Rb and obtain:
1. m<E<Er

2. E<E<oo

m2u2 \

E-m

E + m

where K1 and X 2 are positive. Ec is defined by

(18)

(19)

This will henceforth be referred to as the critical injection energy.
For ε = 0, we plot # 5 and m2 (which is the radius of the horizon H2 for the outer

spacetime in this case) against E in Fig. 1. Notice that, for small injection energies,
m<E<Ec, the turning point Rb lies over the horizon at r2 = m2 so that no horizon
forms over the shell, and the state of the original black hole is not altered.
However, if we exceed the threshold at Ec, the shell goes through R — m2 and the
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part of the null hypersurface r2 = m2 which lies over the shell does appear in our
spacetime. It forms a part of a new event horizon (see, e.g., [7]), H2,

The situation is illustrated by Fig. 2. H2 is the event horizon with respect to the
observers who threw in the shell, because they move along a trajectory near , / j~
and J± . The local appearence of the old horizon, H1? is independent of whether
the shell is thrown in or not, at least in the past of the Cauchy horizon H3 (there
are arguments suggesting that the region in the future of H3 should not be taken
very seriously [8]). However, from the global point of view, its status changes to
that of an apparent horizon [9].

Fig. 2. Penrose diagram of our model. The shaded region is a hypothetical star from whose collapse
the original horizon H{ results

Notice that the Eqs. (3) and (4) are invariant under the transformation

R(s)-+R(s), V^-^V^sj + T,

V2(s)-+V2(s)9

where T is a constant. This transformation changes the time delay between the
collapse of a hypothetical star which forms the initial black hole under the shell
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and the collapse of the shell (see Fig. 2). Using this freedom we can make the
advanced time interval between the intersection of the star surface with Hι and
that of the shell with H2 arbitrarily large. Then, in a sense, H2 will come very close
to H^ and the biography of our black hole with horizon H2 can be sketched as
follows: It is born as a light cone of an event at the center of the star, growing
towards its surface. After crossing the surface, it coincides with H1 to a good
approximation for as long time as we wish (choosing our T), and imitates a static
state of a black hole with mass mλ and charge ev Then, it again begins to grow till
it reaches the point of intersection with the shell. From now on, it is an exactly
static black hole with mass m2 and charge e2 = m2.

It boils down to this: we have produced an extreme black hole by throwing in a
shell with an arbitrary total rest mass m, an injection energy E satisfying E>EC,
and a total charge e = mί—eί+E. This conclusion is at odds with the third law in
the formulation quoted above.

3. Discussion

The critical energy Ec can be written as follows

(20)

where Pc = muc is the critical momentum

(21)

Hence, the absolute lower bound for the energy of the shell that can bring the hole
to the extreme is

' (22)

as seen from (20) when m->Ό, w-> — oo. This energy can be made arbitrarily small, if
the original hole is taken sufficiently close to the extreme.

In particular, if m1 =e1 = 0 (flat spacetime inside the shell), an arbitrarily small
injection energy E and charge e = E suffice (in our idealized model) to produce an
extremal Reissner-Nordstr0m black hole. The assumption of incoherent matter,
however, will not be justified for small £, because the corresponding
Schwarzschild radius r2 = m2 = E will be extremely small and the densities in the
shell high. Real matter cannot be considered as incoherent all the way down to it.
Nevertheless, for large E this poses no problem.

We should mention that we are not the first to conjure up an extreme black
hole from the flat spacetime this has been essentially done already by Kuchaf [2],

Our example shows the relation between the third law and the cosmic
censorship in a new light. Sometimes it has been felt that the former follows from
the latter [1]. This is not the case here. For consider E>EC and let ε increase from
small negative to small positive values. All quantities change continuously and
there is nothing exceptional in our equations at the point ε = 0. Hence, by a small
change in the charge e of the shell, we can produce an underextreme, extreme, or
overextreme Reissner-Nordstrom spacetime outside the shell so that, for ε^O,
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there is a new horizon, H2, and, for ε>0, there is none. On the one hand, the
minimal radius Rb of the shell is at any rate larger than mί ~f \/m\ — e\ and the
singularity of the outer metric (which is located at r 2 = 0 ) will not appear in our
spacetime. On the other hand, the singularity of the inner metric (at rx=0) remains
always safely hidden under the old Horizon Hί (see Fig. 2).

Many things militate against our model having direct astrophysical impli-
cations. To mention but one: it is difficult to find a highly charged black hole [10]
and for neutral black holes the necessary injection energies are enormous. Let us
discuss the role of some other idealizations we indulged in.

a) Infinitely Thin Shell

This is just a simplifying assumption, not crucial to the feasibility of the construct.
To see this, at least qualitatively, consider a model consisting of two shells, both
being undercritical with respect to the original black hole and only the second
capable of bringing the hole to the extreme. The only conceivable difficulty is that
the first shell would remain too far from the hole so that the mass of the second
shell would have to be enormous in order to produce a horizon outside the first
one. However, Fig. 1 shows that the subcritical shells probe as deep into the
spacetime as the overcritical ones do. The upshot of the detailed, but rather
tedious calculation (which we spare the reader) is that it confirms the hunch that
the two shell model also works.

b) Incoherent Matter

This assumption can be satisfied by real matter to a good approximation,
provided the required densities are not too high. The largest energy density which
is necessary for our model to work is reached in the shell as it crosses the horizon
H2. Suppose that the shell has a finite thickness {. (The thin shell approximation is
good, if ί<ξmv) For the density ρ of the shell energy at the horizon H2, we have

lm\ l(n x

Thus, ρ can be made arbitrarily small by chosing E and/or mί sufficiently large.

c) Neglect of Quantum Effects

As is shown in [10], the charge losses of a Reissner-Nordstrom black hole of
mass m2 by the electron-positron pair creation are low, if m2 > 105 M Θ . We assume
that this also holds for shells which collapse to such holes in spite of their motion.
This seems fair, because the pairs are created by the field and not by the matter of
the shell itself. Thus, we need not worry about pair creation in the event that m1

and/or E are big enough.

d) Spherical Symmetry

The import of the exact spherical symmetry for our counterexample can be
adequately estimated, e.g., by investigating small nonspherical perturbations of the
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model. Slight rotation of the hole, small deformations of the shell and weak
electromagnetic and gravitational radiation come then into play. Stability of our
model, at least in its observable regions, remains a problem which deserves further
study.

Acknowledgements. The authors are grateful to W. Israel for the suggestion to use thin shells, and to A.
Held for critical reading of the manuscript.

References

1. Bardeen, J.M., Carter, B, Hawking, S.W.: Commun. Math. Phys. 31, 162 (1973)
2. Kuchaf, K.: Czech. J. Phys. B 18, 435 (1968)
3. de la Cruz, V., Israel, W.: Nuovo Cim. 51 A, 744 (1967)
4. Chase, J.E.: Nuovo Cim. 57B, 136 (1970)
5. Boulware, D.: Phys. Rev. D 8, 2363 (1973)
6. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, pp. 81, 83. New York:

Academic Press 1965
7. Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge: Cambridge

University Press 1973
8. Simpson, M., Penrose, R.: Int. J. Theor. Phys. 7, 183 (1973)
9. Hawking, S.W.: In: Black holes. Proceeding of the Summer School, Les Houches, 1972 (eds. C.

DeWitt, B. S. DeWitt). New York: Gordon and Breach 1973
10. Gibbons, G.W.: Commun. Math. Phys. 44, 245 (1975)

Communicated by R. Geroch

Received March 15, 1979






