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II. General Domains and Complete Boundaries
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Abstract. The asymptotic free energy of a planar wall with potentials W, cut in
scalar spin systems, with ferromagnetic interactions X, enclosed in general
domains subject to reasonable shape conditions, is shown (under conditions
used in Part I) to exist and to be equal to the unique limiting wall free energy,
/ x (K, W\ of simple rectangular or box domains. Similar results are found for
sets of walls forming the complete boundaries of domains for "subfree" walls
the total free energy of a box domain is proved to be asymptotically equal to a
bulk plus a uniquely-defined surface term. Some limited results for periodic
boundary conditions are reported.
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5. Recapitulation and Summary

In the first part of this paper [1], to be referred to below as I, we discussed the
definition and properties of wall or boundary free energies in a general way and
initiated a program to establish the existence and, as far as possible uniqueness of
wall free energies in lattice spin systems. Our overall strategy entailed the following
main steps: (i) the free energy per unit area, fx (K, W, W, Ω), of a finite planar wall
characterized by wall potentials W, in a system with bulk interaction potentials K, is
defined in terms of the incremental free energy produced by cutting the reference
domain, Ω, containing the system in d-dimensional Euclidean space, by a
d' = (d— l)-dimensional plane into two subdomains, Ωt and Ω2, so forming a pair
of matching walls; the additional potentials, W, represent the associated wall
potentials imposed on those boundaries of Ω (and, correspondingly, of Ωx and Ω2)
which do not form part of the wall: see Fig. 2 in I. (ii) For a standard sequence of
domains {Λ^k)}k^(X), specifically rectangular or box domains, Λh Nί + Nl, in which the
dimensions, L^\ L2

k\ ...,L^ } of the wall faces or cross-sections, L, and the subbox
lengths, N(k) and N(

2

k\ become infinite, the existence of a limiting wall free energy,
fx (K, W), is to be established the resulting standard wall free energy, fx (K, W),
should be independent of the associated wall potentials, W. (iii) The existence of the
limiting wall free energy for a planar wall cut in a general sequence of domains, is
then to be proved the result should be independent of the shapes of the reference
domains Ω (subject only to reasonable geometric conditions) and equal to the
standard value, fx(K, W). (iv) The total wall free energy of multiple planar walls cut
in large domains is to be shown, asymptotically, to equal simply the appropriately
weighted sum of the standard wall free energies for the corresponding single,
isolated walls i.e. interference terms between different walls are negligible. Finally,
(v) for a large domain Ω of volume F(Ω), bounded by planar faces of areas Aa(Ω)
(α = l,2,...), the total (reduced) free energy should have the form

F(Ω)= V(Ω)f(Ω) = V(Ω)fJK) + ΣAa(Ω)fx(K, WJ + o(AJ, (5.1)

in which fjjζ) is the limiting bulk free energy per unit volume, while W{a) denotes
the wall potentials of the wall α and fx (K, W{a)) is the corresponding standard wall
free energy [compare with (0.5) of I]. Note that in this expression the total external
perimeter or boundary of Ω is involved: there are no associated wall potentials
and the walls are not cut into a reference domain.

In addition, as observed in I, it is of interest to go on (vi) to consider walls cut in
a reference torus, Π (or box A with periodic boundary conditions) and (vii) to
show that the total free energy of a torus, J7, satisfies (5.1) with all the wall areas,
τ4α(/7), set identically to zero. From this one may, alternatively, define the
asymptotic wall free energy via

m
Λ->oo A(Λ)

that is, in terms of the difference between the free energy of the torus and the
corresponding box. [For simplicity in writing (5.2), we have assumed appropriate
lattice symmetries, supposed T^α )=J^(all α), and set YjAa(A)
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In I this strategy was implemented for systems with scalar, or Ising-like spin
variables, interacting through ferromagnetic (or positive) potentials K, subject to
the usual stability and tempering conditions [2, 3] however, somewhat stronger
conditions of spatial decrease of the bulk potentials and, similarly, of the wall
potentials, W, are essential to ensure the boundedness of the limiting wall free
energy [see conditions B, D, and F of I]. The definition of step (i) was transformed
to yield an expression for fx(Ω) in terms of spin correlation functions. The
assumed ferromagnetic character of the interactions then enabled us to use the
correlation inequalities of Griffiths, Kelly and Sherman [4, 5] as the principal tool
of analysis. In step (ii), results were thereby obtained for arbitrary bulk interaction
K, including those allowing the possibility of coexisting phases, and for arbitrary
wall potentials W [respecting the overall ferromagnetic character; see (2.3.6)].

However, a technical limitation on the results of I, arising from this approach,
concerns the dependence on the associated wall potentials W; these must be
predominantly either: (a) subfree - formed by removing or weakening the bulk
ferromagnetic interaction potentials [see (2.3.7)] or, for bulk interactions of
strictly finite range, (b) superferromagnetic - corresponding to the imposition of
positively infinite boundary magnetic fields and strengthened ferromagnetic
interactions near the boundary. These two situations yield standard, limiting free
energies, f°(K, W) and f*(K, W), respectively, which, although both independent
of the details of the associated wall potentials, W, cannot be proved to be equal.
Indeed, it was argued in Sect. 2.7 (of I), that complete independence of Wcannot be
expected in situations in which more than one thermodynamic phase might be
present. Nevertheless, for 'most' interactions K, we expect the equality/° Ξ / J , for
reasonable ^respecting the ferromagnetic character. This can in fact be proved on
the basis of further assumptions which imply that only one phase can exist -
specifically the decay of correlations with distance [6]. Indeed correlation decay
assumptions enable one to deal with arbitrary boundary conditions and even to
dispense with the restriction to ferromagnetic interactions. For the present,
however, we refrain from invoking such comparatively strong assumptions thus
the distinction between subfree and superferromagnetic associated boundary
conditions must be retained, and some of our results below will be restricted
correspondingly.

As regards step (iii), the consideration of walls in domains of general shape,
some progress was made in I since it was proved that the limiting wall free energy
for box domains AL>N (defined explicitly in Sect. 4.2 of I) was unique and
independent of the way in which the dimensions {Lβ}, Nx and N2 became infinite.
The full task, however, is taken up here in the following section (Sect. 6). First, we
consider cylinders, ΓL iV, of general cross-section, L, so that the faces of the
corresponding walls have general shapes. Subject to appropriate restrictions on
these shapes, analogous to those used in proving the shape-independence of the
bulk thermodynamic limit [2], we establish in Theorems 6.2.1 and 6.2.2, the
existence and uniqueness of the corresponding wall free energies. In the statement
of these and other theorems we utilize the decomposition

fx(Ω) = f:(Ω)-f-(Ω), (5.3)
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of the total surface free energy into positive terms, / * and / " , associated with the
positive and negative parts of the wall potentials (see Sect. 3.1) in all cases both/^
and / " separately achieve thermodynamic limits.

To allow for more general shapes of domain Ω, as well as of wall face L, we
introduce in Sect. 6.3, doubly conical domains, ΔLtN, or, for short, cones, and
doubled frustrated cones, SL>N, or frustrums (see Fig. 10 below). A wide class of
sequences of domains, {Ωk}k_^O0, can be filled efficiently with cones which becomes
indefinitely large, and can be contained within minimal frustrums (satisfying
modest conditions). On this basis, Theorems 6.5.1 and 6.5.2 establish the existence
and uniqueness of the wall free energies for general domains.

The question of multiple walls cut in a domain Ώ, step (iv) above, is addressed
in Sect. 7. The desired results, however, are achieved only for wall potentials, W,
which are subfree (although otherwise general): see Theorem 7.2. The crucial
expression for the asymptotic behavior of the total surface free energy [step (v)],
namely (5.1) above, is established for box (or parallelepiped) domains with,
likewise, subfree wall potentials, in Theorem 7.3. Some observations concerning
wall potentials which are truncated at a finite range R are present in Sect. 7.4. (Note
it is not feasible to truncate the bulk interactions, as in [7,8] since one must
normalize by the boundary area rather than by the volume.)

Lastly, in Sect. 8, walls cut in a torus, 17, or partial torus or tube, Π\ (with
periodic boundary conditions imposed only for some directions) are discussed.
Owing to the geometrical properties of a tube or torus the correlation inequality
technique is not very effective: some limited results are embodied in
Propositions 8.2.1 to 8.2.4. Specifically the free energy/f(K, W), of a subfree wall
defined on a sequence of tori is bounded above by f®(K, W) and below by
f*(K, W). When /J? = / * , as generally expected, walls in a torus have the standard
limiting free energy and, furthermore, Proposition 8.2.5 then shows that the total
free energy of a torus satisfies (5.1) with Aa = 0 (all α). As indicated above, more
powerful results can be established on the basis of decay of correlation assump-
tions [6]. It is hoped to present these, and extensions to vector spins with two
components [6], in a future publication.

The proofs of the various lemmas, propositions and theorems given below rely
heavily on the techniques developed in I likewise, we utilize in full the various
definitions and basic inequalities on compound domains, Propositions 3.3.1 and
3.3.2, etc. presented in I. For this reason the present paper is written as a direct
continuation of I. Thus Figs. 1 to 9, Sects. 0 to 4, and Eqs. (0.1) to (4.4.23) are to be
found in I; only the references are numbered afresh here. In addition we have sup-
pressed details of various proofs that follow closely analyses presented fully in I.

6. The Boundary Free Energy for General Domains

We are interested in establishing existence and uniqueness theorems for the
boundary free energies defined on general sequences of domains Ωk subject to free,
and more general associated boundary conditions. In Sect. 2.2 we showed how a
given ^-dimensional lattice if can be decomposed relative to a chosen lattice plane
έP, into disjoint blocks I = (/0, lv ..., ld) with d' = d—l, which specify translations by
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block vectors R, with components b 0, b 1 ? ...,bd. Recall that blocks with / 0 = 0 lie
adjacent to the wall on the S£γ side of Φ blocks with /0 = — 1 lie adjacent to the
wall on the jSf2 side. The area of the wall, |LJ or |L 2 | with | L | Ξ ^ ( | L 1 | + | L 2 | ) , is
defined (see Sect. 2.2) as the number of blocks in Ωί = Ω n ^ or Ω2 = Ωn£p

2 which
are adjacent to the wall. In I we proved various theorems about box (or
rectangular) domains, ΛLtNί+N2, with cross-sectional area \L\ = L1L2 ... Ld, and
length N = Nί+ iV2, where Nx is the length in if 1 and JV2in Jίf2. Using the results for
box domains, we will here show that a rather general class of shapes yield the same
thermodynamic limit for the boundary free energy.

6.1. Thermodynamic Limit for Cylindrical Domains

As a first step in considering more general domain shapes, we generalize the
notion of a box domain by relaxing the restriction that the blocks be assembled in
a rectangular array. The cross-section L relative to the plane & is then allowed to
assume a general d'-dimensional shape while the array still extends N1 and N2

blocks in the directions of b ± and -b± respectively. Thus we introduce:

Definition 6.ί.ί. A cylindrical domain ΓL N(=ΓL.Ni + N2,Nι-\~N2 = N) of cross-
sectional area |L| and length N is a set of |L|iV blocks satisfying 0 < l0 ^ N, while

d'

labels lβ for l^Lβ^d', are specified so that the set of cell vectors R[ != ]Γ lβbβ

consists of all cell corners of a connected <f-dimensional domain L with origin OL.

In taking the thermodynamic limit lim Γk, where Γk = ΓL k Nk, the

<f-dimensional cross-sections or faces, {LJ, must satisfy shape conditions of the
sort required for d-dimensional domains (see Sect. 1.4) if the boundary free energy
is to be unique. Such conditions will be listed explicitly below after we have
established the essential inequalities for the partial boundary free energies of
arbitrary domains. Consider first subfree associated boundary conditions. As a
direct application of Proposition 3.3.1 (compare with the proof of Lemma 4.2.1)
we have:

Lemma 6.1.1. The partial boundary free energies f^(ΓLN) = f^(h;NvN2) for
cylinders with (a) subfree associated wall potentials [see (2.3.7), (2.4.5)7 and (b)
ferromagnetic bulk and wall potentials, K and W9 satisfy the inegualities

(i) (|L'| + |L"D/χ±(L'uL")^|L'|/x

±(L') + |L"|/x

±(L"), (6.1.1)

where U and L" are disjoint cross-sections, and

fϊςL N^NJ,
^fi(L;NvN2).

The corresponding result for superferromagnetic associated wall potentials is:

Lemma 6.1.2. The partial boundary free energies f^(ΓhN) = f^(L;N\,N2) for
cylinders in saturating spin systems with (a) superferromagnetic associated boundary
conditions satisfying Λ 0 ^ | m a x {JR

0O,i^x} (see Proposition 3.3.2) and (b) fer-
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romagnetic bulk and wall potentials of finite range and finite degree p, satisfy

(i) (|L'| + lU'D/ίίL'uL")^ |L'|/±(L') + |L"|/±(L") + c0P(L',L"), (6.1.3)

where L' and L" are disjoint and where P(L', L") is the block length of the common
perimeter ofU and L" along Θ>, i.e. the mean of the number of blocks in L' adjacent to
blocks in L" and vice versa furthermore

ZfϊϊLNNJ

Proof. With the obvious decomposition of ΓL N, application of Proposition 3.3.2
yields

+ YHΓ^Γ^ N)+ YHΓv,κ,Γ^ N), (6.1.5)

where Yf and Y} are given by (3.3.8) and (3.3.9). A bound on \Yf\ is easily
established by writing, with the notation of Fig. 6 (of I)

+
Γ2 Γ'ί

IW^IIIsll1 1*1 1

L"). {6 A.6)

Here [ 5 ] " is the set of all collections B^S£X which are inequivalent under
translations R|', parallel to the wall, and the final step follows by condition F(ii).
Similarly we have

1=1 Σ ^W^IIs^H^^P^L"), (6.1.7)
AeΓ'

where Γ' denotes the set of collections linking at least three of Γ'v Γ'2, Γ'[ and T"2

while AWA = WA—WA. This establishes (6.1.3) with co = c1+c2. The inequalities
(6.1.4) follow directly from Proposition 3.3.2 as in the proof of Lemma 4.2.3. D

We must now introduce shape conditions that will suffice to ensure the
uniqueness of the boundary free energy. Although we are dealing with a lattice
system of discrete sites, it will be helpful, in discussing the geometry, to use a
language appropriate to a continuum. Accordingly, we associate with each site a
unit volume (so that a cell has a volume q), and the volume of a domain Ω is then
F(Ω) = |Ω| (see Sect. 1.1). With no loss of generality we will also suppose that the
Euclidean space within which the lattice if resides has been subjected to an affine
transformation so that the block edge vectors b 0, b l 5 ...,bd, have become mutually
orthogonal vectors of unit length 1̂ 1 = 1. Then each block is a cube and larger cubes
may be assembled from blocks. Following [2], we now introduce the surface volume
of a general domain through:
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Definition 6.1.2. The surface volume Vσ(h Ω) is the number of sites which lie within
a distance h of any boundary site of Ω and which are in Ω if h > 0 but outside Ω if
/ι<0. (Recall, from Sect. 1.1, that the boundary dΩ consists of all sites in Ω which
belong to cells which either contain, or are adjacent to cells containing sites not in
Ω furthermore Ω is always supposed to be cell-connected.)

It is then convenient, again after [2], to describe the shape of a large domain
via:

Definition 6.13. The shape function σ(oc,Ω) is the fraction of the volume within a
distance /ί = α[F(Ω)]1 / d of dΩ, explicitly,

σ(h/H;Ω)=Vσ(h;Ω)/V{Ω) with Hd = V(Ω). (6.1.8)

In taking the thermodynamic limit through a sequence of domains, {Ωk}k_^a0,
we will finally require:

J. Asymptotic shape regularity

(i) Given {Ωk} with \Ωk\—> co as /c->oo, there exists a fixed a and a shape function
σo(α)->0 as |α|->Ό, such that for all fc= 1,2,3 ... and α ^ α ' we have

σ(α;Ω f c)^σ0(α). (6.1.9)

(ii) If A* is the smallest box domain containing Ωk, then there is a δ > 0 such
that

V{Ωk)/V(Λ*)^δ, all fc. (6.1.10)

The first condition merely ensures a vanishing surface-to-volume ratio in the limit
fc->oo. The second condition is not best possible but suffices for all practical
purposes; it rules out certain filamentary domains that fail to fill out some
d-dimensional volume. These conditions are modeled closely on Fisher's analysis
[2] for particle systems and we may use his various packing lemmas, namely:

Lemma 6.1.3. If a domain Ω is maximally filled with disjoint cubes A of side I (blocks
along an edge) which are entirely contained in Ω, then the volume, ΔV+(Ω),
remaining is less than Vσ(dll2l;Ω).

Lemma 6.1.4. If a domain Ω is contained in a cube Λo, the difference domain A0\Ω
may be filled with cubes A of edge I in such a way that the unfilled volume, AV~(Ω),
adjacent to Ω is less than Vσ( — dll2l;Ω).

Lemma 6.1.5. With no loss in generality the smallest box Ak in J(ii) may be taken to
be a cube.

Now if {LJ is the sequence (of pairs) of plane wall faces corresponding to {Ωk}
and a given plane .^, it is clear that to discuss the limiting wall free energy and to
control the edge free energies associated with the wall perimeters δLfc, one requires
appropriate shape restrictions on the domains Lfe, which may be regarded as
d' = (d— l)-dimensional. We may, in fact, utilize precisely the same Conditions J
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but in one lower dimension. Thus, we replace Ω by L, d by d\ δ by δ\ ̂ -dimensional
cubes by square plaques of thickness one block, and V(Ω) and Vσ(h Ω) by Λ(h) — |L|
and Aσ{h;L), respectively, where Aσ is defined in appropriate analogy to
Definition 6.1.2. With this understanding we will suppose that both sequences {Lk}
and {Ωk} satisfy J. We may now state and prove the simplest theorem for cylinder
domains.

Theorem 6.1.1. Cylinders with free associated wall potentials. Let
{Γk} ~{ΓLk.Nιk Nik} be a sequence of cylindrical domains with wall faces {Lk}, both
sequences satisfying the shape Conditions J as k, Nlk, JV2/c->oo. If the {Γk} are
subject to (a) free associated wall potentials, W = 0, and (b) ferromagnetic bulk and
wall potentials, K and W, which satisfy the defining Conditions D and E (Sects. 2.2
and 23) and the boundedness Conditions A and F (Sects. 1.4 and 2.3), then the
boundary free energies verify

lim fx{K,W,W=O;Γk) = fUK,W), (6.1.11)
/c->oo

where f®(K, W) is the standard boundary free energy for box domains with free
associated boundary conditions as defined in Theorem 4.4.1, and similarly for the
partial boundary free energies.

Proof. We present only a sketch of the proof, as the method involves a maximal
filling of the d'-dimensional region Lfc with square plaques of side /, in direct
analogy with Fisher's proof of the shape independence of the bulk free energy [2].
On each plaque of side /, we may construct a box domain ΛKk = Λ(ld\Nlk, N2k),
and the union of these box domains forms the filling cylinder Γ'k = ΓLk.Nιk NlkCΓk.
The cylinder domains Γk, Γ'k, Δk = Γk\Γk, and ΛlΛ satisfy the conditions of
Lemma 6.1.1. Hence, if we consider corresponding systems with the specified bulk
and wall potentials, K and W, and free associated walls, W=0, we have the
inequality

for the partial boundary free energies. The last term is non-negative, so that
discarding it preserves the inequality, which, with Λ(Lk) = |Lfc|, etc., we can write as

fHΓk) ^ lA(lu>k)/A(Lk)-]fϊ(Γk). (6.1.13)

Since Γ'k consists of box domains AlΛ, we can apply Lemma 6.1.3 and, again,
Lemma 6.1.1 repeatedly to obtain

where the face filling ratio is

1 / 2 . (6.1.15)

On taking the limit fc-> GO at fixed /, we see from J(i) (in d! dimensions) that Rι>k-+l.
Thus, on following this with the limit Z-»oo we obtain, through Theorem 4.4.1, a
lower bound

Γ^f^iK, W). (6.1.16)
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To obtain the complementary inequality, let A% = Λ(L% N lk, N 2k) be the
smallest box domain containing Γk. By Lemma 6.1.5, we may assume that its face
L* is a square plaque. Applying Lemma 6.1.1 to the domains Ak, Γk, and

k> we find

A(ψ^fHΛt). (6.1.17)

Now we may fill Δ% with the standard box domains ΛlΛ to obtain

Lfc) f±(Λ x ί6118ϊ
)ΛΛUk). (6.1.18)

Then we may rewrite (6.1.17) as

σ k k / x

± ( y l u ) , (6.1.19)

where condition J(ii) has been used to bound A(L^\Lk)/A(Lk). Now we may take
fc-κx) at fixed /, whereupon the last term on the second line vanishes by J(i) and
/ί(Λ*)->/x(£ 5 W) while f±(At k)-+fHA J . Finally on taking l-+oo we have, by
Theorem 4.4.1, fHAtJ-+f%(K9 W) so that

U m s u p / ί ί Γ ^ ^ / J ί K , WO, (6.1.20)

which, with (6.1.16) proves the theorem. •
The corresponding result for systems with superferromagnetic conditions on

the associated walls is:

Theorem 6.1.2. Cylinders with simple superferromagnetic associated potentials. Let
{Γk} be a sequence of cylindrical domains with wall faces {Lk} as in Theorem 6.1.1.
For a system of saturating spins of modulus \\s\\ and ferromagnetic bulk and wall
potentials of finite ranges, R00 and Rx, respectively, of finite degree p, and subject to
simple ferromagnetic boundary conditions, W* [see Sect. 23], of range R°, the
boundary free energy verifies

lim fx (K, W, W* Γk) = /*(X, W), (6.1.21)
fc-> GO

where f*{K, W) is the limiting boundary free energy for box domains with simple
superferromagnetic associated wall conditions [see Theorem 4.4.3], and similarly for
the partial boundary free energies.

Proof We will not present the details since they follow closely those of
Theorem 6.1.1. However, allowance must be made for the common perimeter
term, c0P(L ;, L")? which enters the basic inequality in Lemma 6.1.2. The resulting
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contributions to the boundary free energy inequalities, however, vary as |δLk |/|Lk |
which vanishes as k-^oo by J(i), or, for the wall faces of the standard boxes Ahk, as
\/l which vanishes when one finally takes l—>co. •

6.2. Uniqueness for Cylindrical Domains

Having established the thermodynamic limit of the boundary free energy for
cylinders of general cross-section but subject only to free (or simple super-
ferromagnetic) associated wall potentials we now consider more general boundary
conditions. As for box domains, it is fairly straightforward to prove that cylinders
with subfree associated boundary conditions satisfying the tempering Condition
Cτ have the same limiting boundary free energy as those with free associated walls
the analogous result holds also for general superferromagnetic associated con-
ditions. Specifically we have:

Theorem 6.2.1. Cylinders with subfree associated walls. For a sequence of cylinders,
{ΓLk Nίk Nik} with ferromagnetic bulk and wall potentials satisfying the conditions of
Theorem 6.1.1 and with subfree associated wall potentials W which satisfy the
tempering condition Cτ [Sect. 1.4] with τ > 0 , the limiting boundary free energy and
partial boundary free energies, as k, Nlk and N2k approach oo in any way, exist and
are equal to f®(K, W), andf^iK, W), respectively [Theorem 4.4.1].

Proof Aside from geometric considerations, the proof is essentially the same as in
Theorem 4.4.2 for box domains hence we discuss only those points arising from
the geometric aspects. We compare the partial boundary free energies,
f*(K, W, W',Γh Ni Ni), with those of the corresponding cylinder with free associat-
ed walls. As in the case of box domains, we immediately have

limsup/ίlK, W, W ΓJ^fϊHK, W) (6-2.1)
k-> oo

Corresponding to the reduced box domains, A' = AUiN>uN>2, we now define the
reduced cylinders, Tf — Γh, N> N>, where

and N'2 + R^N29 (6.2.2)

and L' C L is the maximal face such that

d(i,dL)>R, for icL'. (6.2.3)

Note that for icL\L' one has d{ί,dL)^R so that \L\Lf\ = Aσ(R,Γ) andJLΊ/|L| = l
— Aσ(R,Γ)/A(Γ). For associated boundary potentials Woffinite range, Rx <R,WQ
have

fϊiK, W,ίV,Γ)MV\/\U)fHK, W,W = 0,Γ), (6.2.4)

so that J(i) implies |L/|/|L|->1 as k->oo and we again obtain the complementary
inequality to (6.2.1), which proves the theorem.

As regards associated potentials of infinite range the remainder of the proof of
Theorem 4.4.2 applies, mutatis mutandi, for cylinders. If fl (Γ) denotes the
boundary free energy with the associated wall potentials truncated to Γ\Γ' the
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final estimate obtained with the aid of Lemma 4.4.1 and Condition Cτ is

= ( 6 2 5 )

Rr | L | W ^)

Taking the limits L, Nu N2-+co, so that |L'|/|L|->1, followed by R^-cc yields
\fl - / J - > 0 for all N\ and N'2. Letting N\, iV'2-^oo proves

lim inf/±(K, W, W, Γk) ^ f° ±(K, W) (6.2.6)
fc-» oo

and completes the theorem. Π
Likewise, in close analogy to Theorem 4.4.4 we have:

Theorem 6.2.2. Cylinders with super ferromagnetic associated walls. For a sequence
of cylinders {ΓLk N Nik} with ferromagnetic bulk and wall potentials satisfying the
conditions of Theorem 6.1.2 with saturating spins and super ferromagnetic associated
wall potentials W [see Sect. 23 J of finite range Rx

 9the limiting boundary free energy
and partial boundary free energies, as k, ΛΓlk, Λf2k—>°c, in any way, exists and are
equal to f*{K, W) andf*±(K, W), respectively [Theorem 4.4.3].

Proof. Except for geometrical considerations, the proof is the same as for
Theorem 4.4.4. Specifically the shape Condition J is used to show |LΊ/|L|->1,
|L\L'|->0, and |δL'|/|L|->Ό as k, JV1/c, N2k^°o where \J is the face of an appropriate
reduced cylinder. •

63. Cones and Frustrums with Subfree Conditions

In pursuit of our desire to establish the existence and uniqueness of the boundary
free energy for walls in a large class of domains we now introduce two further
auxiliary types of domains, namely, cones and frustrums (actually doubled cones
and doubled frustrated cones, see Fig. 10). The results for these domains parallel
those for boxes and for cylinders, so that attention will be focussed on the
geometrical considerations. Our result allowing greatest generality of shape will be
stated in terms of cones and frustrums.

In defining these domains it will be convenient to extend the continuum
language somewhat: For appropriate Ω in 5£ we define ΩcIRd as the continuum
domain which is a compact, simply connected subset of lRd consisting of the
continuum cells of Ω. With a face L formed of one layer of blocks on a wall plane
^ , we associate in the same way, a continuum set L clRd on the plane 0*. As before,
ξdΩ and ξd'L will denote isotropic expansions by linear factors ξ of Ω and L in IRd

and W respectively, but we will explicitly assume that the origin of the expansion
lies in Ω (or L) so that ξdΩ D Ω and ξd'L J L for ξ > 1. Recall also that Ω + R, L + R,
etc. denote translations of Ω, L, etc. by a vector R. Then, as illustrated in Fig. 10,
we introduce formally:

Definition 63.1. A doubly conical domain or cone, A =ALtN(v), is the set of blocks with
cell corners contained in the two continuum cones A1 and A2 formed with base L on
SP and vertices vx =v + Nb0 and v2 = v — Nh0, respectively, where v is a point in L.
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6>-Nb,

fa)

Fig. 10a and b. Illustrating (a) a doubly conical domain or cone, AL N(v\ and (b) a doubled frustrated
conical domain or frustrum, ΞL<N{ξ), with base L on a plane 0>. The cone vertices v1 and υ2 are translates
of υ through + JVb0 the frustrum expansion factor is ξ > 1 the contact angles are θ

Definition 63.2. A doubled frustrated conical domain or frustrum Ξ = Ξh^N(ξ), is the
set of blocks with cell corners contained in the two continuum frustrums Ξt and
Ξ2 formed with top L on & and bases ξd'L on έP + NbQ and & — ΛΠb0, respectively,
with ξ>l.

Remark 63.1. We could readily consider nonsymmetric cones with vertices vx and
v2 in h + N^Q and L — N2b0 and, similarly, more general frustrums with bases not
simple expansions of L. However, such domains will be covered by the theorem to
be proved for general shapes.

Remark 63.2. It is clear from the definitions and Fig. 10, that the contact angles, θ,
between the sides of frustrum (or a cone) and the wall-defining planes ^ , are
bounded by 0 and \π. In an infinite sequence of frustrums, {Ξk}, however, the
limits 0 = 0 may be approached indefinitely closely. In such circumstances the
situation of the walls becomes pathological and the integrity condition H [of
Sect. 2.4] is violated. To avoid this, we will consider only sequences {Ξk} for which
ξk is uniformly bounded above: then condition H is satisfied. Weaker conditions,
such as ζk^ξ0Nk, might be contemplated but the proof of boundedness
(Proposition 3.2.2) and other proofs would pose further difficulties and might
demand stronger restrictions on the decay of interactions needed to ensure a finite
wall free energy.
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containing
cylinder

Fig. 11. Illustration of a cone, Ak = ALk>Nk, contained in a cylinder, Γk = ΓLkίNk>Nk, on the same base Lfc

and containing a reduced cylinder Γ'k = ΓL^N,!N, of maximal base L^

Proposition 6.3.1. Subfree cones. Let {Δk} = {zlLk NJyk)} be a sequence of cones with
faces {Lk} satisfying the shape Conditions J, as /c, JVk-^oo, and subject to subfree
associated boundary conditions, W, satisfying the tempering condition Cτ with τ > 0,
and ferromagnetic bulk and wall potentials, K and W, satisfying the conditions of
Theorem 6.1.1. Then the boundary free energies of the cones satisfy

lim (6.3.1)

and similarly for the partial boundary free energies.

Proof The first step is simply to note (see Fig. 11) that the cone AL^N is contained
within the cylinder, ΓL N N on the same base. Application of Proposition 3.3.1 and
Theorem 6.1.1 for free boundary conditions then yields

l imsup/^K, W, , W). (6.3.2)

To prove the complementary inequality consider (see Fig. 11) a reduced
cylinder Γ'k = Γu N, t N, contained in the cone A k, and hence with Nr ^ JVk, whose base,
L', is of maximal area (for fixed N'). If Γ'k is subject to the same potentials as Ak (i.e.,
Kr

A=K^ for all A£Γ) then by Proposition 3.3.1 we have

, W, , W, W;Γk). (6.3.3)

Furthermore, the potentials acting on T'k satisfy the subfree conditions of
Theorem 6.2.1 specifically it is easy to check that the potentials restricted to Γ'k
still verify C t with τ>0.

Now by the geometry of a cone we have, as fc-»αo,

(6.3.4)
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where the correction term arises from the discrete block structure. We may now
take the limit /c->oo at fixed N' which yields |m/|L k | -^l . Then Theorem 6.2.1 and
the limit JV'->oo yield

liminϊf±{K, W, W;Δk)^f0±(K, W), (6.3.5)
fc->c»

which establishes the theorem. •

Remark 6.3.3. The proof of Proposition 6.3.1 applies equally to a domain Ωk which
is the union of a disjoint set of m conical domains Δk

j) with bases Lj^ on the same
plane 0>, provided each cone satisfies the conditions stated. We may further allow
the total number, mk, of such cones to vary with k and even approach infinity,
provided, to state a clearly sufficient condition, each cone Δ(

k

j) is, up to a
translation, drawn from a finite set of standard sequences of cones {2[α)}α=1 n

separately satisfying the conditions of the proposition.

Remark 6.3.4. For the following proof for frustrums it is important to observe that
Proposition 6.3.1 applies with an essentially identical proof to complementary
conical domains, ΘL N(ξ), defined via:

Definition 6.3.3. A complementary conical domain or comcone, Θ = ΘL N(ξ), is the set
of blocks contained in the cylinder Γξd>L>N^N but which are not in the correspond-
ing frustrum ΞL N(ξ), i.e., ΘL N(ζ) = Γξd>L N N\ΞL N(ξ). Note that for d = 2 SL comcone
is, in general, a disconnected domain (of two triangles).

Now we can establish:

Proposition 6.3.2. Subfree frustrums. Let {Ξk} = {ΞhktNk(ξk)} be a sequence of
frustrums satisfying ζk^ζ0 (all k) and the shape Condition J as k,Nk->co, and
subject to subfree associated wall potentials, W, and ferromagnetic bulk and wall
potentials, K and W, satisfying the conditions of Proposition 6.3.1. Then the limiting,
full and partial boundary free energies exist and are equal to f°{K, W) and
fo±(K, W), respectively.

Proof. As in the proof of Proposition 6.3.1, we note that Ξk contains a cylinder
Γk = ΓLk Nk Nk, on which the same potentials may be imposed as on Ξk (i.e.,
KΓ

A = K^ for all v4SΞ). The subfree conditions of Theorem 6.2.1 then apply and we
conclude

lim inf/ί (K, W, W; Ξk) ̂  /° ± {K, W). (6.3.6)
/c-> oo

To obtain the opposite inequality, consider the expanded cylinder
Γk = Γξd'hk Nk Nk with free associated boundary conditions, which can be decom-
posed into the frustrum Ξk, with the given subfree associated conditions, and the
comcone Θk = Θhk Nk{ζk\ with free associated conditions. Application of
Proposition 3.3.1 then yields

\^Lk\fί(Γ:)^\LkmΞk) + \ξtίk\hk\mΘύ, (6-3.7)

or, on rewriting and decomposing \ξd'L\L|,

Θ ) - / x

± ( Γ + ) ] , (6.3.8)
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where the subscripts k have been dropped for simplicity, and

X(ξ,L) = \ξd'L\/\L\-ί^ξd'. (6.3.9)

Since, by hypothesis, ξk is uniformly bounded, we may take the limit k->oo and
use Theorem 6.1.1 and Proposition 6.3.1 with Remark 6.3.4 to conclude

limsup/^X, W, W Ξ^f^iK, W)9 (6.3.10)
k-* oo

which proves the theorem. •

6.4. Super ferromagnetic Conditions on Cones and Frustrums

The propositions for cones and frustrums may be extended fairly straightforward-
ly to cover superferromagnetic associated boundary conditions when the in-
teractions are of finite range. For completeness we state the results and indicate the
proofs.

Proposition 6.4.1. Superferromagnetic cones. Let {Δk} = {A^k Nk{vk)} be a sequence
of cones as in Proposition 63./, subject to superferromagnetic associated boundary
conditions with potentials W of finite range R x , and ferromagnetic bulk and wall
potentials, K and W, satisfying the conditions of Theorem 6.1.2. Then the limiting
boundary free energy and partial free energies exist and are equal to f*(K, W) and
/ ^ ( K , W\ respectively [Theorem 4.4.3].

Proof. As for subfree conditions, we first compare the cone AL N with the
containing cylinder Γh N N. If we set Ω"ΞΞΓ\Δ and subject all three domains to
superferromagnetic associated boundary conditions we can use Proposition 3.3.2
to conclude

(6.4.1)

where ΔW^ = W~[ — W^ and Δι=Δc\£?v etc. [see Sect. 2.2] while £" indicates a
sum over collections linking at least three of Δv A2, Ω"v Ω"2. Since, by the
conditions of Theorem 6.1.2, the potentials are of finite range and degree, the last
two terms in (6.4.1) can be bounded by cx\dL\ + c2 for suitable constants. In taking
the thermodynamic limit, subject to the shape Condition J, we have |<3L|/|L|->0
and hence

liminf/^K, W9 W;Δk)^/**(!£, W). (6.4.2)

Now, as in Proposition 6.3.1, consider the reduced cylinder Γk = ΓLk N,fN,
maximally contained in Δk, and subject to superferromagnetic associated con-
ditions consistent with those in Δk (in the sense of Proposition 3.3.2). A further
application of Proposition 3.3.2 and use of the finite range and degree conditions
and Theorem 6.1.2, yields the complementary inequality and completes the
proof. •

Proposition 6.4.2. Superferromagnetic frustrums. Let {Ξk} = {ΞLk Nk(ζk)} be a se-
quence of frustrums satisfying ξk rg ξ0 (all k) and the shape Condition J as k, Nk-+ oo,
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Fig. 12. A minimal frustrum, Ξ°, enclosing a general, (d = 2)-dimensional domain, Ω, intersected by a
plane &

and subject to super ferromagnetic wall conditions, W, of finite range Rx. If the
remaining conditions of Theorem 6.Ϊ.2 are satisfied the limiting boundary free energy
and partial boundary free energies exist and are equal to f*(K9 W)9 respectively.

Proof Following the proof of Proposition 6.3.2 the frustrum Ξk is compared with
the inscribed cylinder Γk = ΓLk Nk Nk and with the expanded, escribed cylinder

£ =Γξ
d>LkίNk^Nk.

i l d th

k k k

Use of Proposition 3.3.2 and Theorem 6.1.2 as in the proof forξ

cones yields the required upper and lower bounds. •

6.5. General Domains

We may now use the propositions established to prove the existence and
uniqueness of the boundary free energy, / x (K, W\ for a rather general sequence of
domains - essentially for all domains that can be contained within a limiting
sequence of frustrums and be filled, sufficiently well, by a sequence of sets of cones.
The shape conditions we will utilise are certainly not as weak as possible: however,
they encompass a wide range of possibilities and relaxation of the conditions
allows counterexamples to uniqueness to be constructed (see e.g. Remark 6.3.2).

Consider a general domain Ω intersected by a plane 0> which forms faces L x

and L 2 on Ωx and Ω2. For any Ω there is a corresponding enclosing frustrum
Ξ° = ΞLΌ^N0{ξ0) on the same plane 0 which, as illustrated in Fig. 12 is a

Definition 6.5.1. Minimal frustrum in the sense: (i) that the (matching) faces L° and
L 2 of Ξ° just contain Lί and L 2 this can be written more explicitly (but less
transparently) as

L° = Lx u(L 2 + b0) = (Lί — b o ) u L 2 + b 0 = L 2 + b 0 (6.5.1)

(ii) Ω cannot be contained in any frustrum of half-height N° — 1 (iii) no frustrum
ΞhOfNo(ξ) with ξ less than ξ° can contain Ω.
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Fig. 13. A filling of a general, (d = 2)-dimensional domain, Ω, by cones Λ{1) and Δ{2\ Note the unfilled
part, JL j , of the face Lx (compare with Fig. 12)

In normal cases |LJ, |L2 |, and |L| will be close in magnitude and, in particular,
in the thermodynamic limit we must have |L1 |/|L|, |L2|/|L|->1 for our definition of
wall free energy to make proper sense.

A general domain Ω with intersecting plane SP may also be filled with one or
more cones zl(1), A{2\ ..., A{m\ with disjoint bases L(

t

1}, L[2\ ..., and L(

2

1}, L(

2

2),..., L(

2

W)

contained in L t and L2, as illustrated in Fig. 13. There is no special merit in
defining a maximal filling by cones but we will require fillings which are efficient in
the sense that the unfilled face ratios, IzlLJ/ILI and |z!L2|/|L|, where

\ m \ m

are small and, in particular, vanish in the thermodynamic limit. The number of
cones used to fill Ω may grow indefinitely in the thermodynamic limit but some
uniformity condition on their shape and size is required in accord with
Remark 6.3.3. The following condition seems more than adequate for all practical
purposes and suffices for our proof.

K. An asymptotically efficient filling of a sequence of domains {Ωk} intersecting a
plane 0> and forming a wall of area |Lfc|, is a sequence of sets of cones {Ak

j)}j=1 m k

constructed on 0> and satisfying the conditions:
(i) each cone A[j) is, up to a translation, identical with a standard cone, A{

k\ in
a finite set of sequences {A{

k

]}a=ι>n;
(ii) The cones are disjoint, i.e. Ak

j)nAk

j) = \ all fc), and A{

k

j)cΩk (all j,/c);
(iii) the unfilled parts, ALlk and AL2k, of the faces,

(6.5.2)] satisfy
L1/c and L2/c, of Ωk [see

as

(iv) the standard cones, Ak

a) ΞΞ ,

(6.5.3)

), satisfy the shape Conditions J and

' (α)_
•00 , as k-+co for all α = l,2, ...,n. (6.5.4)
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Now we can state the main theorem for subfree associated conditions.

Theorem 6.5.1. Existence for general domains with subfree conditions. Let {Ωk} be a
sequence of domains intersecting a plane 0> such that (i) there is a corresponding
sequence of enclosing minimal frust rums, {Ξ%} = {ΞhotNO(ξ%)}, satisfying ζk^ζ0 (all
k) and the shape Condition J as k, Nk-+cc, (ii) the mismatch in the faces L l k and L2fc

of Ωk, namely,

ΔL°k=±\Lo

lk\Lιk\ + ̂ 2k\L2k\, (6.5.5)

satisfies ALk/|Lk|->0 as fc->αo, and (iii) {Ωk} possesses an asymptotically efficient
filling by cones, {A{

k

j)}, as specified by Condition K. Then if the {Ωk} are subject to (a)
sub ferromagnetic associated boundary conditions with potentials W satisfying the
tempering Condition Cτ (Sect. 1.4) with τ > 0 , (b) ferromagnetic bulk and wall
potentials, K and W, which satisfy the defining Conditions D and E (Sect. 2.2 and
23) and the boundedness Conditions A and F (Sect. 1.4 and 23), the boundary free
energies satisfy

lim fx (K, W, W; Ωk) = f°(K, W), (6.5.6)
fc—• c o

where f®{K, W) is the standard free energy for box domains with free associated
boundary conditions (Theorem 4.4.1), and similarly for the partial boundary free
energies.

Proof. With the apparatus assembled the proof is straightforward. (Some detail
contained in earlier proofs will be omitted.) By application of Proposition 3.3.1
and the fact that Ωk is contained in a minimal frustrum Ξk on which we may
impose consistent subfree associated wall potentials, W°, we have

\Lk\fHK, W, W; Ωk) ̂  \L°\f*(K, W, Wk° Sk°). (6.5.7)

On noting, with the aid of (6.5.1), that \Lk\ = |Lfc| + ALk and using the Condition (ii),
which states that the facial mismatch is asymptotically negligible, we can obtain
from Proposition 6.3.2, for subfree frustrums, the bound

liminf/ίCK, W, W ΩJ^f^iK, W). (6.5.8)
/c^oo

The complementary inequality follows from the existence, by (iii), of the efficient
filling by cones {A[J)} on which we can impose subfree boundary conditions, ^
consistent with K, W, and W. Specifically, by Proposition 3.3.1 we then have

|L,|/X (K, W, W; Ωk) £ £ \\}J>\f± (K, W, Wf > Δψ). (6.5.9)
j

Now we may use Proposition 6.3.1 for subfree cones, and the Condition K(iii), for
efficient filling of the faces L l k and L2/c by the cones to bound

ίtK, W, W; Ωk) by f^{K, W), and thence complete the proof. •

The parallel theorem for superferromagnetic associated boundary conditions
may be proved along precisely the same lines with adaptations already well
exposed in the proofs of the corresponding propositions. Thus we will give only
the statement:
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Theorem 6.5.2. Existence for general domains with super ferromagnetic conditions.
Let {Ωk} be a sequence of domains intersecting a plane 0> and satisfying
Conditions (i), (ii), and (iii) of Theorem 6.5. 1. For a system of saturating spins subject
to (a) super ferromagnetic associated wall potentials, W, of finite range R x , and (b)
ferromagnetic bulk and wall potentials, K and W, of finite range, Rm and Rx,
respectively, of finite degree, and satisfying Conditions A (Sect. 1.4), D (Sect. 2.2),
E and F (Sect. 2.3), the boundary free energies have a limit

lim fx(K, W, W;Ωk) = f*{K, W), (6.5.10)
k-

where f*(K, W) is the standard free energy for box domains with simple super-
ferromagnetic associated potentials (Theorem 4.4.3).

Remark 6.5.1. These two theorems for arbitrary domains are evidently restricted to
subferromagnetic or to superferromagnetic associated wall potentials (in saturat-
ing spin systems). However, along the lines of Theorem 4.4.5 we may allow
arbitrary associated wall potentials over regions of the boundaries of the Ωk

provided the contribution to the total free energy of these regions is asymptotically
negligible compared to the wall area |Lk|. In the simplest case this leaves us at
liberty to impose arbitrary associated conditions on a "strip" extending a fixed
distance, say Mb0, on either side of the wall plane ίP while maintaining, say,
subferromagnetic conditions on the boundaries further removed from 0*.

7. Multiple Walls and Complete Boundaries

In the foregoing we have proved existence and uniqueness theorems for the
thermodynamic limit of the free energies of planar walls constructed by cutting a
domain Ωk, drawn from a sequence {Ωk} of domains of general shape, by a plane 0*
into subdomains ΩkΛ and Ωk 2. Granted ferromagnetic bulk interactions, K, we
were able to handle general wall potentials, W, although, in proving uniqueness, we
had to restrict the associated wall potentials, W, to be either predominantly subfree
or, for interactions of finite range, to be predominantly superferromagnetic.
Furthermore, we have been unable to establish the general equality of the two
corresponding limiting free energies, f®(K, W) and ft{K, W) for subfree and
superferromagnetic associated wall potentials, respectively. For the reasons
explained in Sect. 2.7 one may, in fact, anticipate circumstances in which/^ and/*
would not be equal; further conditions are then essential to exclude such
situations.

Now we turn to more general definitions of the boundary free energy
applicable to systems in which a number of planar walls are present. In particular,
the case in which the set of walls form the complete boundary of a domain is of
principal interest. In fact it will suffice for most practical purposes to restrict
attention to the boundaries of parallelepipeds or, (after a suitable affine transfor-
mation of space as discussed in Sect. 6.1), simple rectangular or box domains, A.
Two concrete cases we will analyze are illustrated in Figs. 14 and 15; the latter
case, in which one large box is subdivided into many smaller but identical boxes,
will enable us to isolate the total boundary free energy of a single box domain, and
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Fig. 14. A domain, Ω, in d = 2 dimensions, intersected by four wall planes to form a box, A = Q^ whose
complete boundary free energy is of interest, and four further subdomains, Ωn {n = 2, ...,5)

ft

Λ,

c2

Λ2

Λ ί + 2

ft

Λ3

i 1

Λ

—

Fig. 15. A large box domain, Ω = Λ°, divided by wall planes into many smaller, isomorphic box
domains, Λn = Ωn

hence to address the question originally posed in Eq. (0.5) and rephrased in
Eq.(5.1).

As we will show, it is possible to prove that the total boundary free energy in
such multiple-wall situations is, asymptotically, just equal to the sum of the
constituent boundary free energies defined for the corresponding single planar
walls. However, in parallel to the difficulty of proving complete independence of
the associated wall potentials [specifically, the equality of/°(K, W) and/*(K, W)\
we pay the price of treating only wall potentials, W, which are subfree. This
restriction is regrettable but, in the absence of other conditions, is probably
necessary for reasons of the sort explained in Sect. 2.7. Nevertheless, subfree wall
potentials do include the most important case of free walls constructed merely by
removing all bulk interactions KA which couple the domains separated by the
walls.

The techniques involved in our proofs for multiple-wall situations are the same
as those developed and applied in the previous sections. Accordingly we will
explain the main ideas involved but omit many of the technical details.
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7.1. Definitions for Multiple Walls

The overall boundary free energy of a system with multiple walls formed by planes
&v . . . ,^ ί 9 . . . , which divide a domain Ω up into subdomains Ω l 5...,ί2π,... (as
illustrated in Fig. 14 and 15) may be defined in obvious analogy to previous
definitions (see e.g. Sect. 2.1) by:

Definition 7.1. The overall or mean boundary free energy is

/ x (K, W, W, Ω) = i | L Ω | ' HX F(K, ΩJ - F(K, Ω) (7.1.1)

where |LΩ | is the total wall area generated by the intersection of the planes 0>x with
Ω, while F(K,Ωn) = \Ωn\f(K,Ωn) is the total reduced free energy of the subdomain
Ωn [see (1.2.9)]; this depends on the bulk potentials, X, on the overall wall
potential, W, and on the associated wall potentials, W, originally imposed on Ω.
The total wall area, |Lβ | may be defined precisely in terms of the number of
complete blocks lying adjacent to the set of planes {^}, in complete analogy to
(2.2.6).

We would clearly like to regard the overall wall potential, W, as composed of a
set of independently assigned, translationally invariant planar wall potentials, that
is

W={W(l)} (7.1.2)

where W{1) is defined in association with the plane ^ , as in Sect. 2.3, and satisfies
the bounds F, etc. To make this concept precise, however, it is necessary to accept
some convention as to the meaning of a specific wall interaction term, WA, for a
set of spins A when A lies near the intersection of two or more planes WA so is
nominally specified by a number of W{1). (The analog of this question was faced in
Sect. 2.4 when associated wall potentials were defined explicitly.) The convention
must clearly satisfy (i) the separation condition, E(i), i.e. KA + WA Ξ 0 whenever A
links distinct subdomains Ωn. For our methods of proof to go through, it must also
respect (ii) the ferromagnetic character of W, i.e. KA -f WA ^ 0 all A see (2.3.6). Both
these ends are met by the local averaging convention:

Definition 7.2. Multiple wall potentials W= {W{1)}, where W{1) = {W(l)A}, imply, for a
domain Ω intersected by planes &v &2,..., the explicit interactions

W^KΩ

A-KA = ΣμAJ(W;Ω)W(l)A, (7.1.3)
I

where the weights μAl are given by:
(i) if A<=><£VΛ-<£Vt2 for some /' (i.e. A links the half-lattices 5£vγ and ifΓ>2

separated by ^ , see Sect. 2.2)

μAJ{W;Ω) = 0, if X U

= ί/vJW; Ω), otherwise,

where vA(W,Ω) is the number of planes 0>x whose half-lattices are linked by A and
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(ii) if A^Ωnfor some n (and hence A does not link subdomains)

μAtl(W;Ω) = 0, if SPX does not bound Ωn,

= ί/vA{W\ Ω), otherwise,

where vA{W\Ω) is the number of planes, ^ Γ , bounding Ωn for which W{V)ή=0.
In strict analogy with (2.4.8) we may define the total wall Hamiltonian via

jf(Ω) + τr(Ω) = Σ # ( Ω I I ) 5 (7.1.4)
n

and decompose it explicitly into disjoint contributions from the individual planes
0>x a s

-)T(Ω) = Σ ^ ( Ω ) . (7.1.5)
i

On using (7.1.3) we can, in analogy to (2.4.9), write

irt(Ω)= Σ KWΓ^^-Σ'^V (7.1.6)
A^Ω B(l)

in which the sum in the second, associated wall interference term runs over all sets
B linking subdomains separated by 2PV Strictly, we require a convention here, like
(7.1.3), to avoid overcounting however, we will ignore this complication: we
always assume the associated wall potentials W maintain the ferromagnetic
character [see (2.4.5)] and satisfy the boundedness Conditions G.

For large domains we expect that the mean boundary free energy can be
written as a sum of independent contributions from the separate walls, namely,

/ x (K, W, W, Ω)« X λt{Ω)fx (K, W{1)), (7.1.7)
i

where fx (K, W) is the limiting boundary free energy for a single planar wall (for
appropriate associated boundary conditions, say, subfree). The weighting coef-
ficients should simply be ratios of wall areas, namely,

A ^ ) = |L(I) |/|L f l |, (7.1.8)

where the areas of the plane Θ)

ι in Ω may be defined just as in (2.2.6).
Having disposed of these preliminaries, let us turn directly to the question of

proving (7.1.7) in the thermodynamic limit for the situations illustrated in Figs. 14
and 15.

7.2. Overall Free Energy for Multiple Walls

Consider a situation, such as shown in Fig. 14, in which a domain A is bounded by
walls formed by planes intersecting a domain Ώ, on which subfree associated
boundary conditions have been imposed. To estimate the overall boundary free
energy, fx{K, W, W Ω) defined by (7.1.1), our strategy, as in previous cases, is to
attempt to construct upper and lower bounds to the partial boundary free
energies, f^{K, W,W;Ω\ in terms of the standard limiting partial free energies
/x ±(K, W) defined originally on boxes, by using Proposition 3.3.1, the basic
comparison theorem for compound domains.
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Fig. 16. A decomposition of the domain Ω, illustrated in Fig. 14, into disjoint subdomains, ΩJ, each
intersecting with only a single plane 0>x (7 = 1,...,4)

Fig. 17. A decomposition of the box domain Ω = Λ°, shown in Fig. 15, into disjoint subdomains, in this
case all cones Ω'Um = ΔKm, and containing only a single segment m of the wall planes 0>

ι

In fact, lower bounds for the partial free energies are easy to obtain: consider a
decomposition of Ω into disjoint subdomains Ω'v £2'2,..., such that each sub-
domain intersects only with a single plane. For the case illustrated in Fig. 14, a
suitable decomposition is shown in Fig. 16; in this instance a decomposition with
a single subdomain Ω\ for each plane ^ suffices. More generally, if the planes cross
within Ω, as in Fig. 15, separate subdomains, Ω\ w, are needed for each distinct
segment, m, of a wall plane ^ , as illustrated in Fig. 17. On each such subdomain,
Ω\ m, let free boundary conditions be imposed on the newly created boundaries.

Now the total partial boundary free energies, |L Ω | /^, can be expressed as
integrals over the expectations <#^+>^ for partially coupled domains with
coupling parameter ζ as in (3.1.8). However, the integrands are sums of fer-
romagnetic correlation functions, (see Proposition 3.3.1), and hence can be
bounded below by the corresponding integrals in the decomposed domain,
Ωf = {Ω'lm}. Via the plane decomposition (7.1.5), these latter integrals entail the
uncoupled expectations <#^Z ) ±>o' = x ^ o + ^ ί m? which, in turn, are essentially just
the integrands that would arise if the free energies |L(/ m)\f^(K, W{1), W{1 m)\Ω\ m)
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were computed directly. (Here W{Um) denotes associated boundary conditions
which are free on the new boundaries of Ω\ m but agree with W on the boundaries
in common with Ω.) The "essentially" in the previous assertion occurs because of
the interference terms arising along the perimeters where two walls intersect as a
result of the convention (7.1.3). However, such interference terms will, for wall
potentials W(l) and W respecting the bounds F and G, respectively, give rise to
asymptotically negligible corrections to fί{K,W{l),W{hm);Ω'uJ if the thermody-
namic limit is taken in a reasonable way. Specifically, we may suppose that Ω, A,
Ωm, Ω\ m become infinite in such a way that the domains Ω[ m satisfy the shape
conditions enunciated in Sect. 6 (see Theorem 6.5.1). Then

and the surface area ratios satisfy

ΣlL ; >J/lLΩl-+ l i m ILJ/ILJ^r , (7.2.1)
m Ω-»oo

where the limit may be identically zero. The appropriate shape restrictions will
certainly be met if the limit is taken through a simple sequence of intersected
domains Ωk={Ωkn} defined [see (1.4.4)] by expanding an initial configuration
such as in Fig. 14. Our arguments show how to prove the following lemma:

Lemma 7.2.1. Lower bound for multiple walls. The overall partial boundary free
energies for a multiple-wall situation, defined in analogy to (7'.1.1), for ferromagnetic
bulk and wall potentials, K and W, and for subfree associated wall conditions W,
satisfy

lim inf7± (K, W, W; Ω) £ £ l«/x°
 ± (K, Wm), (7.2.2)

Ω-*oo i

where the limiting wall area ratios, λ™, are defined in (7.2.1), and the limit is taken
through a simple (or other sufficiently regular) sequence of intersected domains
Ω^{Ωn}. •

Remark 7.2.1. This lemma applies to multiple boundaries with distinct wall
potentials W(l) which are quite general provided only they respect the fer-
romagnetic conditions WB ^ \KB\ (all B).

Remark 7.2.2. Although we have focussed attention on the case where the walls
form the complete boundary of a box Λ9 it is clear that A may be replaced by a
more general domain bounded by planar walls. Furthermore, no specially singled-
out, completely bounded subdomain like A need be present e.g. the domain Ω
might simply be divided by two planes, ^ and ^ 2 into four subdomains, each
sharing part of their boundary with Ω. Likewise, the configuration of Fig. 15 is
covered.

For later convenience, we state explicitly the complementary upper bound for
superferromagnetic associated boundary conditions:

Lemma 7.2.2. Bounds for superferromagnetic multiple walls. Under the conditions
stated in Lemma 7.2.1, but with superferromagnetic associated wall conditions, W,
and the additional restrictions that the spins are saturating, and that K and Ware of
finite range and finite degree (in accord with the conditions of Theorem 4.4.3), one
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has

limsup/^X, W, W Ω^ΣλrfϊHK, %,). (7.2.3)

Proof. This follows along the same lines used for Lemma 7.2.1, with appropriate
modifications as in the proofs of Theorems 4.4.3, 4.4.4, 6.5.2, etc. •

To obtain the required upper bound for subfree associated conditions
corresponding to (7.2.2), a new argument is needed: certainly we cannot embed Ω
usefully in larger domains of standard shapes with each one including only one
wall segment. Instead, let us generalize the previous coupling integration method
embodied in (3.1.2) and*(3.1.3) by defining,

^ ζ l ζ2 (Ω) = ̂ ( Ω ) + Σ ί ^ Ω ) , (7.2.4)
i

where the separate wall Hamiltonians are defined by (7.1.6). Now consider the
sequential introduction of the walls W{1), W{2γ... by successive coupling in-

1 1

t e g r a t i o n s : \dζx w i t h ζ2 = ζ3= ... = 0 ; \dζ2 w i t h ( i = l» ζ3= ... = 0 ; etc. I n p l a c e
o o

of t h e o r i g i n a l re su l t (3.1.8), we finally o b t a i n

2|LJ/X

±(Ω)= Σ K ; < ^ ) + >ζΛ (7-2.5)

where the superscript ζ(ί) means ζ1= ... = ζι_x = l, d + i — ••• = 0 , while ζt varies.
Consider the first step at which the wall Hamiltonian Ίf^jΩ) is coupled in. If in

(7.1.6) we had μA t(W; Ω) = 1 for all A (with non-vanishing W(1)A) and, if we neglect
overcounting questions in the associated wall interference term, the contribution
to the overall partial boundary free energies, | L Ω | / * , would be just

\Lw\f±{K,Ww,W;Ω). (7.2.6)

The corrections to this arising from the cases where μA 1(W;Ω)<1 will be
proportional to the total perimeters of the wall segments on plane ^ as defined by
the intersection with the other planes 0)

ι (Z=f= 1). (Likewise, the associated boundary
terms are of order |δL(1)|.) For simple sequences of intersected domains, or for
other regular sequences, such corrections will be asymptotically negligible.

This last assertion assumes, of course, that the wall potentials W{1) (and the
associated potentials W) satisfy the boundedness Conditions F (and G, re-
spectively) and, say, tempering Cτ with τ > l (see Lemma 2.3.2). In making the
detailed estimates of the interference terms, however, it is easier to assume that the
wall (and associated wall) potentials are of finite range Rx (and Rx). If the bulk
potentials K are of infinite range, the corresponding "walls" will actually be
"seams", since the subdomains will not be fully decoupled. However, we will show
later (in Sect. 7.4) that the corresponding limiting free energies, fx(K,W), are
continuous in the wall or seam potentials W, provided these remain bounded
within the norms specified by F or Cτ. Hence, the simplification of assuming finite
ranges ,Rx (and Rx) is not restrictive.

At the next stage, consider the introduction of the second wall with
Hamiltonian W{2)(Ω). In the absence of the first wall, this would, by the argument
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already given, contribute to the overall boundary free energies, | L β | / * , a term
asymptotically equal to

\Li2)\f*(K9Wi2),W;Ω). (7.2.7)

However, in the presence of the first wall the actual contribution may differ from
this in an uncontrollable way. The essence of the difficulty can be seen by
reexamining the proofs of Propositions 3.3.1 and 3.3.2 on compound domains. The
first wall represents, from the viewpoint of the second wall, a set of additional
associated walls, with potentials W, W/f=W{1y whose effects can be controlled
only if they are either subfree (Proposition 3.3.1) or superferromagnetic
(Proposition 3.3.2). Since we are here desirous of an upper bound on the partial
free energy contribution, we are forced to restrict the original wall potentials W{1) to
be subfree, (but see Remark 7.2.3 for the converse situation). In that case the
expression (7.2.7) represents, asymptotically, an upper bound to the contribution
of W{2) to the overall boundary free energies \LΩ\f~.

At the third stage, we may similarly obtain an upper bound to the contribution
arising from W{3) if we assume that W{1) and W{2) are both subfree. On continuing
the argument for successive walls, we are forced to assume that all but the last (or,
equivalently, the first) wall are subfree. This finally establishes a complementary
upper bound to that embodied in Lemma 7.2.1: the result for fixed Ω may be
stated as:

Lemma 7.2.3. Upper bound for multiple walls. For a multiple-wall configuration as
defined in (7J.I), with ferromagnetic bulk and wall potentials, K and W={W(l)},
satisfying Conditions A, D, E, F, and Cτ with τ = 1 and with subfree associated wall
potentials, W, satisfying G(i) and Cτ with τ > 0 , the overall partial boundary free
energies obey

(K, W, W Ω) £ £ |L(/)|/±(K, Wm, W Ω)
II

Σ |3L ( I f Γ ) | l, (7.2.

where the coefficient C(K, W, W) is independent of Ω and {^}, provided the separate
wall potentials W{1) are subfree for 1^.2; in the last term dL{l) denotes the outer
perimeter of the face L(Z) of ^ in Ω while dL(lJΊ denotes the mutual perimeter of the
faces L{1) and L ( r ). •

The two lemmas may be combined to prove the main result:

Theorem 7.2. Multiple walls. In a multiple wall configuration as defined in (7JJ)9

with ferromagnetic bulk and wall potentials, K and W={W{1)}, satisfying the
conditions stated in Lemma 7.2.3, the overall boundary free energy has the thermody-
namic limit

lim fx (K, W, W Ω) = X λ?f°(K, Wφ), (7.2.9)

where the limiting wall area ratios, λ^, are defined in (7.2.1), provided the separate
wall potentials W{1) are subfree for I ̂  2 and that the limit is taken through a simple
(or other sufficiently regular) seguence of domains Ω={Ωn} intersected by a finite
number of planes 0>

ι.
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Proof. Lemma 7.2.1 provides a lower bound to the partial boundary free energies
of the appropriate form. An equal upper bound follows from Lemma 7.2.3 for a
sufficiently regular sequence of domains because the perimeter-to-area ratios,
|δL(Z)|/|LΩ| and |3L ( ί>r) |/|Lβ |, vanish as £2->oo. •

Remark 7.2.4. As remarked after Lemma 7.2.1, the configuration of the multiple
walls can be quite general; specifically, both Figs. 14 and 15 are covered by the
theorem. It is also clear that, if the defining planes, ^ , and wall potentials, W{1), are
equivalent under the symmetry operations of the lattice if, then (7.2.9) may be
written simply as fx(K, W) = f%{K, W).

Remark 7.2.5. By recalling Remark 7.2.3 and the argument following (7.2.4) above
we can see that a complementary theorem can be proved in terms of /*(iC, W) for
superferromagnetic associated boundary conditions W, provided all the separate
wall potentials W{1) for 1^.2 are also superferromagnetic, and, as usual, that the
spins saturate and that K and W are of finite range and degree.

7.3. Free Energy of a Single Box Domain

Up to this point, our analysis of the free energy associated with a wall has always
dealt with pairs of walls created by the intersection of a plane with a domain. Thus,
in Fig. 14, for example, the overall boundary free energy computed in Theorem 7.2
is that associated with the boundaries of the box domain A, plus that of the
adjacent walls of the four domains Ω2, Ώ 3 , Ώ 4, and Ω5. Of course, we expect that, in
the limit of large^l, the sum of these wall free energies will asymptotically equal the
total wall free energy of A however, even a symmetry assumption such as D(iii) is
not sufficient to guarantee this. Nevertheless, we may use Lemma 7.2.3, with a
multiple wall configuration such as that illustrated in Fig. 15, to establish the
asymptotic behavior of the total free energy of a single box domain. Explicitly for
subfree wall potentials W={W{a)}> with α = 1,2,... ,d, we can prove

= \Λ\fJK) + AΛΣλ?f?(K, W(y)) + o(AΛ), (7.3.1)
y

where AΛ is the overall area of the box A, λ™ is the relative area of the face
y (= 1,2,..., 2d), and A-+ oo in any way. This expression enunciates the fundamen-
tal expectation of thermodynamics regarding the independent existence of the wall
free energies for the distinct (planar) boundaries of a large domain in the shape
of a parallelepiped.

To make this statement more precise and then embody it in a theorem, a few
points require further explication. First, following Definition 4.1 for a box domain
with one distinguished axis, we will adopt the convention that

denotes a box domain of Lx x L2 x ... x Ld_1x Ld blocks. Second, note that the
minimal symmetry restrictions D(iii) and E(iii) will not be invoked, so that two
opposite faces of /tL, say Lα + and Lα _, parallel to the plane ^ α , need not be of
similar lattice structure neither need the specific wall interactions associated with
these faces be related. However, the set of wall interactions W(a +)A and W(a _)A
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may be associated with the first and second sides of ^ α , and, taken together with
the set of decoupling potentials, W{a)B= —KB for BeJ£al-£?a2, then clearly are
sufficient to specify a wall potential set W(a) in the sense of (7.2.1). Conversely, if we
again accept the convention embodied in Definition 7.2, regarding the interference
between walls in a multiple wall configuration, a given set {J^α)} of wall potentials
yields an explicit specification of the wall potentials in a box domain Λh via an
indefinitely large array of the sort illustrated in Fig. 15. (Note that the numbers vA

and vA entering in Definition 7.2 are finite for all bounded A, even if an infinite
array of boxes is contemplated as necessary in the case of long range interactions.)
The standard boundary free energy f®(K, W{a)) then represents the average of the
limiting free energies per unit area associated with the opposite faces Lα + and
L «.-

Having disposed of these preliminaries, we may state the main result:

Theorem 7.3. Single box domain. For a box domain, ΛL, of sides L1,L2,...,Ld

blocks in length, with ferromagnetic bulk potentials, K, satisfying condition A, and
ferromagnetic wall potentials, W={W{a)}, which are subfree and satisfy Conditions
D, E, F, and Cτ with τ > l , but do not necessarily respect the minimal symmetry
requirements D(iii) and E(iii), the total (reduced) free energy,

^α)},/lL), verifies

lim [F(/LJ - \ΛL\fJK)-]/2AL = £ λ»/x°(K, W{a), (7.3.3)
L->oo α = 1

where the limit L = (L l 5L 2,. . .,L ά)-^co may be taken in any way, while f.JK) is the
limiting bulk free energy, the total wall or boundary area is

2ά d

Λ = Σ ILωl wiίft li»l= Σ V (7 3 4)
y = l jβΦα

and the limiting wall ratios are given by

λ» = lim (|L(α)|Λ4L)= lim \lLa £ ( 1 / L J ' . (7.3.5)
L-> oo L-> oo [ β-ί J

Proof. We present only the main steps which utilise a multiple-wall configuration
of the sort shown in Fig. 15, consisting of a <i-dimensional array of
NxNxN... xN = Nd = Jί replicas of the box ΛL forming a compound box
domain Ω = Λ[. By appropriate choice of subfree associated wall potentials, W, on
the compound domain, the Hamiltonian and hence the free energy for each box
domain can be made isomorphic. Thus the overall wall free energy for Λf may be
written

F x = 2\LA(T \fx (Λ{) = jrF(K, W, ΛL) - F(K, W, A[),

= ^{[F{Λι)-\Λi\fJK)-]-\Λι}Δfx}, (7.3.6)

where, by the existence theorems for the bulk thermodynamic limit,

AfJK, W) = F(K, W, Λi)l\AΪ\ -fJK)-+0, (7.3.7)

as yK-ί oo (at fixed L).
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Now a lower bound to the corresponding partial boundary free energy can be
found, as in Lemma 7.2.1, by using a decomposition of Λ£ into subdomains as
shown in Fig. 17, and appealing to the basic inequality, Proposition 3.3.1. Since all
walls are subfree one has f~ ΞΞ — / x and so, in terms of the intersecting planes ^ ,
one obtains the upper bound

^x ^ Σ KJfΛK, W{1)9 W;Aι>m) (7.3.8)
l,m

where the subdomains are cones, Λι m with faces Lj^m while the subfree conditions
W may be chosen to take account of the perimeter interference terms. Except for
surface corrections at the boundary of the compound box Λ£, the cones can be
chosen to be replicas of a set of d cones zlL>α with bases Lα ( α = l , ...,d)
corresponding to the faces of a single box (see Fig. 17). Thus one can conclude

F x £jr £ 2\LJfΛK,Wia),W;Δ^J + Nd-U^g(K,W,W), (7.3.9)
α = l

where the area |L(α)| is given explicitly in (7.3.4), while g(K, W, W) is a coefficient of
order unity which looks after the special surface cones.

A complementary bound follows directly from Lemma 7.2.3 which (on again
changing / " to - / x ) yields

Fx ^ Σ\LH)\fΛK9 W{1)9 W;ΛΪ)-C(K9 W, W\Af?i, (7.3.10)
i

where the superscripts Jί merely serve as a reminder that the compound domain
A[ is involved. The coefficient C(K, W, W) is defined in the lemma and the total
perimeter is likewise given by

)
2d

{y,Y)

where dL{y> y>) is the common perimeter (or "edge") of the faces L(y) and L ( / ) of ΛL.
Apart from 'corner' effects where perimeters meet, one then has

2d

ΣWLyLy),
(y,γ')

Σ (l/ί-J =K Σ (l/i.). (7-3.12)
α = l JL α = l J α = l

where AL is the total area of Λh as defined in (7.3.4).
Now the total wall area of each plane ^ in Λ£ is (L^| = AΓ̂ ~ 1|L(α)[5 for

appropriate α, and there are (N — 1) parallel walls with essentially the same wall
free energy [since when the Lα are large the location of 0)

ι in Λζ has only an
asymptotically negligible effect on fx(Wwy]. From (7.3.10) we thus obtain the
bound

Σ 2\Lia)\fΛK,Wia)9W;Λf)-jrCP{. (7.3.13)
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Now we may combine this result with (7.3.9) and (7.3.6), divide through by Jί,
and take the limit N->oo. On using (7.3.7) and dividing by 2AL one obtains the
bounds

> Y λJΪ(K,W(a))-CP£/AL, (7.3.14)
α = 1

where Aα = |L(α)|/y4L. Finally we may take L—>oo in any way and use Proposition
6.3.1 for cones and (7.3.12) for the perimeter. This establishes (7.3.3) with
(7.3.5). D

7.4. Truncated Wall Potentials

To obtain the detailed estimates required for some of the proofs in the previous
section, it is a considerable simplification, as remarked, to suppose that the wall
and associated wall potentials, W and W, have finite ranges Rx and Rx. If the bulk
potentials are actually of infinite range, this means that one is restricted to
considering "seams" or "grain boundaries", since some (long range) couplings will
remain present after introduction of W. It is thus natural to enquire into truncated
potentials of a range R which is afterwards allowed to become infinite. A
convenient, although somewhat arbitrary, definition is provided by:

Definition 7.4.1. Truncated potentials. Given wall potentials, FFΞΞ{Ϊ^}, and
associated wall potentials W={WA}'m2i domain Ω, the corresponding potentials,

) = {W\R)} and W{R) = {W\R)}, truncated at range R are defined by

= WA, if

= 0, otherwise; (7.4.1)

= WA, if d(A)SR and d(i,dΩ)SR for all ieA

= 0, otherwise. (7.4.2)

It is then possible to prove a number of propositions allowing one to
interchange the limit R-^oo with the thermodynamic limit. These results amount,
essentially, to continuity of the boundary free energy in the wall potentials under
the norms defined in condition F. The simplest situation is covered by:

Proposition 7.4.1. Truncated wall potentials. Under the conditions required for the
uniform boundedness of the free energy (Proposition 3.2.2), namely Conditions F, A,
G(i), and H, we have

lim fx (K, W,W;Ω)= lim [ lim / x (K, W{R\ W Ω)]. (7.4.3)

Proof. We may employ Lemma 4.4.1 to compare the wall free energies of two
Hamiltonians describing different walls in a domain Ω in terms of the difference
Hamiltonian l = iT- iT{R\ This yields

, W, W;Ω)-fx(K9 W*\ ] ^ ; ί 2 ) | ^ 2 « ^ - ^ w » / | L | (7.4.4)
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where <̂  >̂ denotes the maximum modulus of the expectation within the various
ensembles (with and without the walls). Evidently, one has

AcΩ

SMWW-W^^+WW-W^W,), (7.4.5)

where in the second step the norms introduced in F(i) and F(ii) have been used to
bound (i) the wall interactions coupling the subdomains Ωλ and Ω2 (created by the
wall), and (ii) the wall terms within the separate subdomains, respectively. On
substitution in (7.4.4), the wall area |L) cancels and the limit Ω->αo may be taken.
Finally, the boundedness of || W\\o and || W\\ λ ensures that the right hand side then
vanishes as K—>oo, and this proves (7.4.3).

Similar propositions may be proved in which the range of the associated
potentials is held fixed until after the thermodynamic limit however, in analogy,
to the Condition F one needs Ct, with τ > l , and a simple, or other sufficiently
regular sequence of domains Ωk. Likewise, the overall free energies,
fx (K, W, W Ω), discussed above, may be dealt with.

8. Periodic Boundary Conditions

8.1. Introduction and Definitions

If one has a box domain ΛL formed by pairs of parallel lattice planes, ^ α + and 0>

a_
for α = 1,2,... d, one may identify pairs of opposite planes so that the box faces
L(/J)+ and L{/?)_ become adjacent. If this is done for all d pairs, (^ α + ,^ α _), one
obtains a box with periodic boundary conditions or a lattice torus, J7L, of size
L = (L 1 ? L 2 , . . . Ld) blocks. Such a torus has no boundaries. However, if one
identifies only t pairs (<Pβ + ,0>β_), for some t <d, one obtains a partial torus or tube,
27 .̂ It is convenient to label the periodically identified planes β = 1,2,..., ί. Then a
tube has a boundary of total area

^ ) = 2 Σ |L(,)I- (8.1.1)
β = t+ 1

In the case ί = l , where only a single pair of box planes are identified, one may
speak of a strip. If the lattice symmetry and the dimensions Lβ for β > 1 permit, one
may even introduce a twist before identifying the opposite planes 0>

1 + and &>

1 _
this yields a Mobius strip!

Now any wall constructed on a plane, say ^ 0 parallel to one of the planes
^y± and intersecting the underlying box, will, by the construction outlined, lead to
the definition of a corresponding wall in the associated torus, 17L, or tube nl

h. In
view of the use of periodic boundary conditions in many exact or approximate
theoretical computations (see e.g. the comments of Fisher and Lebowitz [9]), it is
of interest to discuss the free energy of such a wall in a torus or tube. We may
define the corresponding periodic wall free energy in the usual way, namely via

A(K, W; Πh) = [F(K, W; Πi~') - F(K ΠL)]/2|L ( y ) |. (8.1.2)

For tubes Π^ one must clearly specify the associated wall potentials W acting on
the tubes' boundaries and the free energy F(K, W, W Π^1) also enters. Similarly,
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multiple-wall periodic boundary free energies fx(K, W, W;Π[) may be defined.
It is also of interest to discuss the asymptotic behavior of the total free energy,
F(X;77L), of a torus. Specifically, one would like to show that no term pro-
portional to ΛL( = A^\ the area of the underlying box, appears in the asymptotic
behavior.

To discuss these points, the meaning of F(K ΠL) and F(K, W; Π\) must be
specified more precisely: i.e. the significance of periodic boundary conditions for
the interactions must be explained. For potentials X, W, Woifinite ranges R, Rx,
and JRX realized on J7L or Π^, the issue is quite straightforward whenever
mina {La}>2max {R,R*,RX} i.e. for large enough tori or tubes. More generally
for long range interactions one may merely consider truncations of the potentials
at a range R=^mma{La} this serves to remove interference efforts around the
torus. However, as discussed by Fisher and Lebowitz [9], it is more natural to
define "periodized interactions", Kπ, acting on the underlying box /tL, by
considering the couplings of the spins in ΛL with the corresponding spins in the
periodically repeated images of Ah. The explicit realization of this idea is
straightforward and we will not present the details (but see [6]).

8.2. Thermo dynamic Limits

It is clear from the definitions that a torus or tube cannot be embedded in a larger
domain (periodic or otherwise) which has greater dimensions in the periodic
directions. This simple geometrical fact presents a serious obstacle to the
techniques based on the Griffiths inequalities which we have developed so far.
However, some progress is possible and will be reported briefly here.

Uniform boundedness of the periodic wall free energies /X(17L), / x(i7L), etc., is
equivalent to the statement that the total free energy of a box A (or partial torus
JT) differs from the total free energy of the corresponding torus Π by at most a
surface term. For continuous particle systems with pair interactions such a result
has been proved by Fisher and Lebowitz [9] using appropriate restriction
(analogous to C τ with τ > 1). For our lattice spin systems, more general results can
be established using the methods of Sects. 1.4, 2.3 and Lemma 4.4.1. Without proof
we quote:

Proposition 8.2.1. Uniform boundedness. Under Conditions F and A, there are
bounds

\fx(K,W;ΠL)\SCJK,W), \fx(K,W;ΠL)\^Cx(K,W), (8.2.1)

independent of L, and similarly for fx (K, W, W; Π[), etc. D

Although one cannot embed a torus or a tube in a larger domain, one can
convert it to a box by cutting it by d or t ancillary walls. In general, one cannot
control the effects of these ancillary walls by the previous techniques. However,
consider a strip ( ί=l) , which is long in the periodic direction, α = l , so that the

d

transverse cross-sectional area, | L ( 1 ) | = \\ Lα, is small compared to the areas,

|L(/?)|(/?>1), of all lengthwise sections, by a factor of order l/Lv Then, given
interaction potentials K satisfying F(i), we may use Lemma 4.4.1 to compare the
free energies of lengthwise walls in the strip and in the underlying box. Specifically,
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one may show that the difference

|/ x (K, W, W; Πi) - fx (K, W, W; ΛJ, (8.2.2)

for a wall parallel to a plane g?y± (with y φ l ) and with, say, subfree associated
boundary potentials W, is at most of order

IL^I/IL^VZ,!. (8.2.3)

If this ratio vanishes in the thermodynamic limit, corresponding to an infinitely
long, thin strip, then the limiting wall free energy for the strip is equal to f®{K, W),
the standard box free energy for subfree associated conditions.

This argument applies equally to a Mδbius strip and further generalizes to any
wall which is parallel to a free face (i.e. normal to a nonperiodic direction) of a
tube, Π\ which is "flat" in the sense that the area of the wall is asymptotically large
compared with the areas of the ancillary walls needed to convert the tube to a box.
Thus we have:

Proposition 8.2.2. Flat tubes. For a tube n*L with ferromagnetic bulk and wall
potentials, K and W, describing a wall parallel to the nonperiodic face L(d), and
subfree associated wall potentials, W, all meeting the conditions of Theorems 4.4.2
and 4.4.1, the wall free energy obeys

lim/x (K, W, W; 17'L) = f°x(K, W), (8.2.4)
L-> oo

provided the limit L-» GO is taken in such a way that Lβ/Ld-^ oo for all β — 1,2,..., t.

Although one cannot embed a torus or a tube in a larger nonperiodic domain,
one can decompose a torus into tubes, and a tube into lower order tubes or boxes.
Via Proposition 3.3.1 this leads to a series of lower bounds on the partial wall free
energies for walls in a torus or tube, which in turn yield:

Proposition 8.2.3. Subfree lower bounds. For potentials, K and W, and subfree
associated potentials, W, all meeting the conditions of Theorem 4.4.2, one has

liminf/±(K, W; ΠL) ^liminf/±(K, W, W; Π\) ^
L L

K, W, W Π'^f^iK, W), (8.2.5)
L—• oo

where t ^ t\ and similarly for multiple wall partial free energies for subfree W. D

A precisely analogous series of upper bounds on the partial free energies for
systems with saturating spins and potentials of finite range follows on a torus, or
on tubes with superferromagnetic associated boundary conditions, from
Proposition 3.3.2. We will not trouble to state these results formally but will
discuss the special case of a free torus in further detail. Specifically, consider the
overall boundary free energy of a box constructed by cutting d walls with subfree
potentials VF={t^α)} in a torus, namely,

f?(K, W; L) = [F(K, W; ΛL) - F(K, i7L)]/XL, (8.2.6)

where AL = A{£] [see (8.1.1)] is the total surface area of the box ΛL. For simplicity
we may suppose there is high lattice symmetry then we have:

Proposition 8.2.4. Torus wall free energy bounds. For bulk interactions, K, and
subfree wall potentials, W, meeting the conditions of Theorem 4.4.1, the overall torus
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wall free energy [defined in (8.2.6)7 satisfies

f°x{K, W)^\imsupf*(K, W h), (8.2.7)

lim inff?(κ, W; L) ^ f*(K, W), (8.2.8)

where in (8.2.8) saturating spins and finite range interactions are supposed.
Furthermore, the lattice symmetries are assumed to allow the d-fold transformation of
any box-defining lattice plane, &a, into any other plane, £P — 0t$β*φ

 an^ l^e bulk and
wall potentials are taken to respect these symmetries. •

Now, under rather general conditions, we expect to have/°(K, W) = f*(K9 W).
For the symmetric situation this then implies

lim f»(K, W; L) = f»(K9 W; oo) = f°x(K, W). (8.2.9)
L —> oo

More generally we expect this limiting equality to hold in many cases even for
systems with nonsaturating spins or long range interactions (when / * is not
defined). Indeed one may prove (8.2.9) on the basis of a correlation decay
assumption [6]. When (8.2.9) is valid, we may use Theorem 7.3 to discuss the
asymptotic behavior of the total free energy of a torus and show explicitly that a
torus has no surface free energy!

Proposition 8.2.5. Free energy of a torus. If the asymptotic equality (8.2.9) holds
[where f" is defined in (8.2.6)7 for subfree W and K satisfying the conditions of
Theorem 73, one has

F(K 77L) = F(KΠ Λh) = \Λh\fJK) + o(Ah). (8.2.10)

(As in Proposition 8.2.4, a d-fold symmetry of the lattice and the potentials is
assumed.)
Proof A straightforward application of Theorem 7.3 to the definition (8.2.6) yields

F(K J7L)«\Ah\fJK) + Ahlfχ {K, W) - f«(K, W; L)] , (8.2.11)

which, with (8.2.9) establishes the proposition. •
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