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Abstract. We study the class of stationary states and the domain of attraction
of each of them, for a dynamical semigroup possessing a faithful normal
stationary state. We give applications to the approach to stationarity of an
open quantum system, and to models of the quantum measurement process.

1. Introduction

Quantum dynamical semigroups provide a convenient mathematical framework
for the study of approach to equilibrium of an open quantum system. In some
recent works of several authors, conditions have been found for a dynamical
semigroup to possess a unique stationary state and to induce approach to it, in the
cases of N-level systems [1,2] and of dynamical semigroups with a faithful normal
stationary state [3,4] the related problem of irreducibility has been treated
in [5-7].

In this note we extend the results of [3] in several respects. Under the only
assumptions that the dynamical semigroup Tt under consideration acts on a von
Neumann algebra Jί and possesses (at least) a faithful normal stationary state,
which imply, by [3], that the fixed point set of Tt in Jί is a von Neumann subalgebra
of Jt, we give in Section 2 a classification of the normal stationary states of Tt.
Under an additional condition of sufficient dissipativity, which is less restrictive
than the ones of [3], we prove in Section 3 that any normal state tends to a limit
as t -> oc, under the action of Tt, and we characterize the domain of attraction of
each normal stationary state. The results apply to the discussion of approach to
stationarity for a spatially confined quantum system weakly coupled to several
heat reservoirs at different nonzero temperatures [8] and to some models of the
quantum measurement process (cf. [9]). For a restricted class of dynamical semi-
groups, we prove in Section 4 a stronger property of approach to equilibrium,
which should be of interest in the study of infinitely extended quantum systems,
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in order to discriminate real dissipation of local disturbances from their migration
to infinity (cf. [10]).

2. Classification of Stationary States

We recall some definitions and preliminaries.
A dynamical semigroup [11-13,6] of a von Neumann algebra Jί is a weakly*
continuous one-parameter semigroup {Γ r : ί^0} of completely positive identity
preserving normal maps of Ji into itself, with T0 the identity map /. Assume that
Tt possesses a faithful normal stationary state ω. Then Jί can be identified with its
representation πω(Jΐ) on the Hubert space Jjf = JΊfω, with cyclic and separating
vector Ω. There exists [11,14] a strongly continuous contraction semigroup
tt on $e such that ft(AΩ) = Tt(A)Ω for all A in Jf, t ̂  0. The set ̂  of vector
functional, defined by

is uniformly dense in Jt* by [15] Example 5 (see also [10], Theorem 4.2). The
fixed point set of Tt in Jί is a von Neumann subalgebra of Ji, which we denote
by J((T) ([3], Lemma 3; using [7], Theorem 3.1).

Theorem 2.1. Let Tt be a dynamical semigroup of a von Neumann algebra Jί,
with a faithful normal stationary state ω. Then there exists a unique Tt-invariant
normal conditional expectation E of Jί onto the fixed point subalgebra Jί(T)
given by

CO

E(A) = w* - lim A f dte~λtTt(A), AεJί, (2.1)
A-»0 o

the integral being a weak* Riemann integral

ί °° }
Proof (cf. [16]). The net <λ] dte Tt(A) > is bounded in norm by || A \ , hence,

I o ) λ
by the weak* compactness of the unit ball oϊJί, it converges in the weak* topology
as λ -> 0 if and only if it has exactly one weak* limit point. Let AQ be one of such

CO

limit points. By [17], Theorems 18.6.2 and 18.7.3, s — lim λ J dte~λtft exists and
λ-»0 o

is the projection P onto the subspace of ft -invariant vectors in Jf. Then PAΩ =
A0Ω = PA0Ω. This proves that A0 is uniquely determined by A and is in Jί(Ύ\
since Ω is separating for Jί. Let A0 = E(A). It is clear that E is linear and completely
positive, and that E(A) - A if and only if A is in Jί(Ύ\ If Ae.M,E^E2eJί(Ύ\
then E(B1AB2) = B1E(A)B29 since T^B^AB^^B^T^B^^ for all ί, by [7],
Theorem 3.1. Hence £ is a conditional expectation, which is normal since it has a
predual map £#, whose explicit expression on the dense set i^ is

E*\I/(A) - (PΨ, AΩ) if \I/(A) - (Ψ, AΩ).

Moreover, E is ^-invariant by construction. If E' is another Tt-invariant normal
conditional expectation of Jί onto Ji(Ύ\ then E' = EE' = E'E = E.
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Corollary 2.2. A normal functional φ on M is Tt-invarianί if and only if it is of the
form

In particular, ω — (ωr.^(T))c£, and E is faithful since ω is.
By Corollary 2.2, the study of normal Tt -invariant states on Jt is reduced to

the study of normal states on Jί(T). The fact that Jί(T}is the range of a faithful
normal conditional expectation E with ω°E = ω gives restrictions on Jt(T),
and hence on the set of TΓinvariant states in Jt ^. Indeed, by [18], Jf(T) is globally
invariant under the modular automorphism group σt associated to ω by Tomita-
Takesaki theory [19], and if Jl is a type I factor, then Jf(T)Ί§ of type I and its
centre is totally atomic [20].

It is clear that ω is the unique stationary state for Tt in Jί ' ̂  if and only if Jί( T] =
CH (cf. [3, 4]). In the more general situation, we have the following

Proposition 2.3. A state φ in Jί ^ is Tt-invariant and majorized by a scalar multiple
ofω if and only if it is of the form

φ(A) = ω(BΓ{(JBΩ, AΩ\ AeJί, (2.2)

for some positive B in Jί(Ύ\J being the antiunitary involution on ffl such that
JΩ = Ω, JJίJ = Jί'.

Proof. The general form of such a state φ is

for some positive X in Jt\ with XΩ in Pffl (see e.g. [21], Proposition 2.5.1).
Then B = JXJ is a positive element of M, and BΩ = JXΩ is in P.tfP, since
is stable under the modular automorphism group and P3? — Jί( T)Ω. Hence
B is i n < M ( T ] since Ω is separating for Jί, and φ can be written in the form (2.2).

Remark. The state φ of the above Proposition is extremal Tt -invariant if and only
if B is a minimal projection in M(T\

An adaptation of the arguments of [22], Theorem 6.4.1 gives the following

Proposition 2.4. // M(Ύ} is abelian, there exists a unique maximal measure μ on
the set of Tt-invariant states on M, with resultant ω and such that

f]
i = 1

for all self-adjoint A{ in Jί, i= 1, . . . ,n, and for all n.

3. Weak Approach to Equilibrium

In this Section, we discuss a condition under which any state ι// in M ^, acted upon
by (7^, converges weakly as ί-> GO to a limit, which is given by (ι//r

Definition. The integrated form of the dissipation function Dt( . , . ) is defined on
M x Jί, with values in Jί, by
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Df(4,B) = Tt(A*B) - ΓfU*)Γf(B). (3.1)

Dt(A9 A] ^ 0 for all A in Ji, t ̂  0 by the Kadison-Schwarz inequality [22]. Denote
by Λ'(T) the null space of {Dt:t^ 0}, i.e.

Λ^T) = {AeΛϊf ;Dt04, A) - 0 for all ί ̂  0}. (3.2)

In general, Λ"(T) contains

Theorem 3.1. Lei Tr be a dynamical semigroup of a von Neumann algebra Jt,
with a faithful normal stationary state ω. // Jf(T) = Jt(T\ then

w* - lim Tt(A) = E(A)for all A in Jt . (3.3)
ί->00

Proof. For all A, B in Ji, we have

lim ω(Dt(A,B)) = lim (AΩ, [1 - Γ*ft]BΩ)
ί-» oo ί-» oo

= 04Ω,[Ί-β2]βΩ),

where Q2 = s - lim f *ff([23],p. 41). Then the expression
r-»oo

ω(Dt(Ts(A\ TS(A)}} = (Afi, [fe*f, - f *+,i; + e

tends to zero as s -> oo, for all ί and for all A. Hence, using the Schwarz inequality
for the positive sesquilinear form ω(Dt(. , .)), we find that ω(Dt(Ts(A\B)) tends to
zero as s -> oo, for all t ̂  0 and for all A, B in Jί. This proves that any weak* limit
point A^ as s-> oo of the norm-bounded net {TS(A)}S is in ^(T).

Since £ is a normal Tt -invariant conditional expectation, TS(A) = E(A) -h
(I-E)TS(A) for all 5, and A^= E(A) + (I - E)ACG. If JT(T) = J((T)9 (I -
E)Aaΰ=0, and ^^ = £(^4). This holds for any weak* limit point, hence (3.3)
follows from the weak* compactness of the unit ball of Jί.

Remark. In particular, if ^(T) — C1, every normal state ψ tends to ω as t — > oo ,
under the action of (Tt}^. The same result has been derived by Albeverio and
H0egh-Krohn [4] under the (less restrictive) assumptions that Jt(T) = d and
Tt has no (proper) eigenvalue on the unit circle besides 1. Although less powerful
from the mathematical point of view, our result is perhaps easier to use in applica-
tions to the approach to stationarity of open quantum systems, moreover, we are
able to study situations when the stationary state is not unique, such as the quantum
measurement process.

For the rest of this Section, we consider the case M — &(ffl®\ the algebra of
all bounded operators on a separable Hubert space Jf °, and Tt = exp Lί, L being
a bounded linear map of ̂ (Jf °) into itself. The general form of L, given in [13] is

L(A) = Σv*AVi + κ*A + AK> (3 4)
i

where K, V( are in J>(̂ °), Σ v*vι + κ* + κ = °> and the series converge ultra-
I

weakly. If A is in Jf(T\ then
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D(A9A) = L(A*A) - L(A*)A - A*L(A) = —Dt(A,A)\t = 0 = 0.

Thus Jf(T) a Ker D. When L has the form (3.4), Ker D = { Fj', the commutant
being taken in J>pf °) [2, 7].

We have the following

Theorem 3.2. Let Tt = expLf be a dynamical semigroup of ^(^ °), with L of the
form (3.4). Assume that lin{Fj is a self-adjoint set, and {F.}' = C ΐ . Then, if Tt

has a normal stationary state ω, ω is faithful and w* — lim Tt(A) = ω(A)ί for all

Proof. If lin{F } is self-adjoint, {Fj/ = Cί is equivalent to "there is no proper
closed subspace oϊJ^° which is stable under all F fY' (see e.g. [21], 2.2.4 and 2.3.1).
Then Tt is irreducible in the sense of Davies and ω is faithful [5]. Now Theorem 3.1
applies, with yΓ(Γ)-CH.

Remark. Notice that, in contrast to the corresponding theorems for the case of a
finite-dimensional J^° [2, 5], the existence of a normal stationary state must be
assumed in advance. Counterexamples when no stationary state exists are discussed
in [5, 7].

Theorem 3.1 can be applied to the study of the reduced dynamics of a quantum
system weakly coupled to several heat reservoirs at nonzero temperatures, for in
that case L is known and lin{Fj is a self-adjoint set [2, 8].

Assume now that Tt has a faithful stationary state which is not unique. It
follows from the discussion of Section 2 that there exists a family {Pn} of mutually

orthogonal TΓinvariant projections in 38($?®\ with ΣPn = H, such that the centre

3£ oiJί(T} is {?„}". We consider two cases:

(i) ,M(Ύ} = X : then E(A] = Σω(PnΓ
 lω(PnAPn)Pn (cf. [24] )

n

(ii) Jl(T) = & : then E(A] = ^PnAPn (cf. [6], p. 59).

Indeed, it is easily checked that the maps defined above are Tt -in variant normal
conditional expectations onto 3ί(resp.&')9 by using the fact that PnTt(A)Pn =
Tt(PnAPn) by [7] Theorem 3.1. The two maps are possible choices for the "reduc-
tion of the wave-packet" occurring when an observable B = ΣbnPn is measured.

n

When all Pπ's are one-dimensional, the cases (i) and (ii) coincide, otherwise, one
usually chooses (ii) on the basis of a hypothesis of minimum disturbance. However,
the analysis of Accardi [25] should lead to prefer (i). The condition Λf(T) = <M(Ύ}
is satisfied when

W = {^*,M*}' (see [7]).

In this situation, the asymptotic effect of Tt is the measurement of B. If one requires
minimum disturbance, then (F f}

; = {Pn}', and Vi = Σci*Pn Tnis proves that the
n

model of [9] is essentially unique.
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Finally, we remark that, if ω is not assumed to be faithful, the proof of
Theorem 3.1 can be adapted to show that, if ω(Dt(A, A)) — 0 for all t implies AΩ
to be a multiple of Ω, then lim ω(ATt(B)) = ω(A)ω(B) for all A.BinJί.

4. Strong Approach to Equilibrium

For an infinitely extended quantum system, a property of approach to equilibrium
like (3.3) can hold even if Tt is a group of automorphisms dίJί. A possible charac-
terization of true dissipation of local disturbances is [10]

lim \\ψoTt-ψoE\\ =0 for all ψ in M^. (4.1)
ί-*oo

Lemma 4.1. A sufficient condition for (4.1) to hold is

s -lim f*r( l l -P)J f = 0, (4.2)
t->oo

where P is the projection onto the subspace of Tt-invariant vectors in ffi .

Proof. Let ψ be in ̂  , ψ(A) = (Ψ, AQ\ ΨεJf. Then

\ψ(Tt(A)) - ψ(E(A))\ = \(Ψ, TtAΩ) - (Ψ,PAΩ)\

= |(f *(1 - P)Ψ,AΩ)\ £ || f *(1 - P)Ψ -\\A\\,

which tends to zero as ί -> oo, uniformly in AeJί, if (4.2) holds. Since 1^ is uniformly
dense in Jί ^ (4.1) follows.

Conditions ensuring the validity of (4.2) are discussed in [23] Chapter II,
Theorem 2.1 and Proposition 6.7; however, they are not suitable for applications
in concrete cases. We are able to prove the property (4.1) under the assumption
Λf(T) — Jί(T) for the particular class of dynamical semigroups defined below.

Definition. A dynamical semigroup Tt of a von Neumann algebra Jί will be said
to be normal w.r.t, a faithful normal state ω if there exists another dynamical
semigroup Tt

+ of Jί such that

ω(Tt

+(A)B) = ω(ATt(B)) for all A9BmJΐ9t^Q (4.3)

and

Tt Ts

+ = Ts

+ Tt for all t, s ̂  0. (4.4)

Remark. In particular, ω is stationary under Tt and Tt

+ . Conditions (4.3) and (4.4)
hold for instance when Tt satisfies detailed balance w.r.t. ω in the sense of [26]
and the Hamiltonian part of Tt is the modular automorphism group associated
to ω (cf. also [27]); for the reduced dynamics of a spatially confined quantum
system in the weak coupling limit [28] this situation occurs when the energy level
shift is proportional to the original Hamiltonian.

Theorem 4.2. For a dynamical semigroup Tt which is normal w.r.t. ω, the following
are equivalent

(i) rf(T) =
(ii) for all ψ in M ^ , φ°Tt converges in the norm topology of M ^ as t -> oo
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and if the above equivalent conditions hold, the limit ofψ ° Tt as t -> oo isψ^E.

Proof. Denote by Q the positive square root of 5 - lim f*f f ([23], p. 41). It
ί-»oo

follows from (4.4) that { f t , f * } is an abelian family of operators, hence Q is a

projection commuting with T*and ft , and also s— lim ftff = Q. Then Q^f
ί->00

reduces both ft and f *, and by ([23] p. 40-41) the restrictions of Tt and f* to
( H — Q)2f contract strongly to zero as t-* oo, whereas their restrictions to Q3Sf
are isometric. Now Q maps JIΩ into JίΩ (just let ^4^ be a weak* limit point as
ί-+oo of the norm bounded net {Tt

+Tt(A)}t9 then QAQ^A^Q) and
|| ( ΐ - Q)AΩ || 2 = lim ω(Dt(A,A}) for all A in ̂  hence QJ^ is the closure of

ί-»oo

^(T)Ω. It follows that ^(T) is globally invariant under Tt and Tf

+, and

Tt

+ Tt W(T) = TtTt

+ \Jf(T) = I I^(T). (4.5)

(i) => (ii) : (i) implies that P — Q, hence Lemma 4.1 can be applied and (ii) follows,
with lim ψ°T = ψ°E.

(ii) => (i) : Let ψ be in Jί ^ , and take φ in Jί ' ̂  such that || ψ ° Tt — φ || -» 0 as ί -> oo .
Then φ is ΓΓin variant. Denote by ι^,φ the restrictions of \j/,φ to jV(T). Taking
into account Equation (4.5) we have

Then, for any ψ in Jί ^ , there exists φ = φ(^) in Jt ' ̂  such that

This can only hold if Jt(T) = ^V(T\ which proves (i).
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Note Added in Proof

After the completion of this paper, I have been informed that Theorem 2.1 has been proved indepen-
dently by S. Watanabe (Niigata University, Niigata, Japan).




