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Ergosphere Instability*

John L. Friedman
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Abstract. We consider stationary asymptotically flat spacetimes having an
ergosphere but with no horizon. In the framework of linear perturbation
theory such configurations are unstable or marginally unstable to scalar and
electromagnetic perturbations.

1. Introduction

Outside the event horizon of any rotating black hole is a region in which no
physical object can remain at rest as seen by an inertial observer at infinity: all
timelike trajectories rotate with the black hole. Such regions, called ergospheres?,
are also present in models of dense, rotating fluids [1,2,3,4]. Technically an
ergosphere is the part of a stationary asymptotically flat spacetime in which the
Killing vector that corresponds asymptotically to time translations becomes
spacelike. We shall argue here that any configuration having an ergosphere but no
horizon will be unstable to scalar and electromagnetic perturbations. One expects
that an object which rotates rapidly enough to acquire an ergosphere will radiate
its excess angular momentum and spin down until no ergosphere remains (or,
perhaps, until another more disruptive instability arises).

Spacetimes with ergospheres are also presumably unstable to gravitational
perturbations. In general, however, gravitational waves couple to the source: the
linearized field equations include the perturbed matter fields. Thus a stability
analysis must specify the nature of the source; and in the case of greatest
interest—when the source is a perfect fluid—we show in a companion paper that
all rotating configurations are unstable (or marginally unstable) to gravitational
radiation. Our considerations here will therefore be restricted to nongravitational
perturbations, for which the presence of an ergosphere marks the onset of
instability along a sequence of rotating equilibrium models.

*  Research supported in part by the National Science Foundation under grant MPS 74-17456 with
the University of Chicago and grant MPS 74-7456 at the University of Wisconsin-Milwaukee

1 The word is analogous to “atmosphere.” Ergospheres are not topological spheres ; ergospheres of
stars, for example, are toroids
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In the case of scalar and electromagnetic test fields, the ergosphere instability
arises in the following way. Associated with the test field’s energy-momentum
tensor 7% and with the background Killing vector ¢ is a canonical energy

&= [ T'1dS, .
S

Because t* is a spacelike within an ergosphere, initial data can be chosen on S to
make &4 negative. But, because only positive energy can be radiated at future null
infinity, the value of & can only decrease from one asymptotically null hyper-
surface S to another, say S, in the future of S. Furthermore, we will see that the
energy can be negative (in fact nonzero) only when the test field is time dependent.
Thus, unless the system can always settle down to a time dependent but
nonradiative state, the energy & will grow without bound. If one assumes sufficient
smoothness of the field in a neighborhood of null infinity, an argument based on a
timelike uniqueness theorem due to Holmgren [5] rules out the first alternative
and implies that the system is strictly unstable.

For axisymmetric spacetimes the instability is associated with non-
axisymmetric perturbations, fields having angular dependence €™ (where ¢ is the
angle about the background symmetry axis). We find that unstable (or marginally
unstable) solutions to the test field equations exist for all sufficiently large values of
the integer m. When the ergosphere is small, unstable modes have large values of
m: along a sequence of models, the instability sets in not through a particular
mode, but via the limit as m— oo of modes having behavior ™,

The question of how rapidly the ergosphere instability is likely to grow is not
dealt with here. However Comins and Schutz [4] have recently considered the
problem in the case of a scalar field propagating on a background spacetime that
approximates a rotating fluid. Using a JWKB method, they find (for reasonably
large ergospheres) characteristic growth times long compared to the dynamical
timescale but short compared to evolutionary times. Thus the instability is
unlikely to play any role in collapse; but it can be used to tighten the upper mass
limit on compact objects by ruling out relativistic configurations that rotate
rapidly enough to have ergospheres.

In § 1T and § 111 we treat scalar and electromagnetic test fields on a background
spacetime and carry through the stability argument sketched above. An appendix
deals with uniqueness of the timelike initial value problem, applying Holmgren’s
theorem to wave equations on a curved spacetime.

II. A Test Scalar Field

Consider an asymptotically flat spacetime, M, whose metric g, admits a Killing
vector t, Lit,, =2V, t, =0. The spacetime is supposed stationary: that is, near
infinity “ is timelike and has asymptotic norm t*t, = — 1. There is to be no horizon,
but an ergosphere — a region in which * is spacelike — will be present. No further
symmetry assumptions need be made, so that if stationary nonaxisymmetric fluids
exist in relativity, analogous to the Dedekind ellipsoids of Newtonian theory, the
analysis will apply to them as well.
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The first aim of this section will be to prove that all such stationary
configurations with ergospheres are at least marginally unstable to scalar per-
turbations, in the sense that there are always perturbations which do not die away
at large times; and unless there are time dependent but nonradiative per-
turbations, such configurations will in fact be strictly unstable, radiating infinite
energy in the linearized theory. In fact, when the background geometry is
axisymmetric, strict instability can be avoided only if there are time dependent but
nonradiative scalar fields having angular behavior €™ for all sufficiently large
integers m, where ¢ is the angle about the symmetry axis. Physically, this would
indicate that real perturbations radiate away the angular momentum of the
background spacetime until no ergosphere remains.

Denote by S, a family of Killing related spacelike hypersurfaces, indexed by a
scalar u with t*V,u=1. With the definition

p=(—=Vureul?, (1)
the unit normal n, to S, is
n,=—u "Vu. )

The Killing vector t* can be written in terms of n, and an orthogonal vector in the
manner

*=pu" Y (n 4ok, (3)
where

nn,=—1,

kk,=1,
and

nk,=0. (4)

The projection operator orthogonal to n* and k“is
Jop=0%+4nlkIn k., . %)
A scalar field on the background spacetime satisfies
Ver w=0. (6)

Its energy-momentum tensor,

T =VopViy —3g“VpVeyp, ()
is divergence-free

V,T*=0, 8)
and so to the Killing vector t* corresponds a conserved current

Ji=Tob, ©)
that is,

Vialyy =0=V,J=0. (10)
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Consequently, if the field y has, say, compact support on a member S, of the
family of surfaces S,, then

W= | J4dS,= [ JdS,=é&,, (11)
Su So

for surfaces S, near S

Suppose, now, that at large distances the surfaces S, become null, and consider
fields 1 whose support on S, may extend to null infinity. Let (u,7, 0, ¢), with
— 0 <uU< oo, r>ry, 056<n, and 0S¢ <2n be a standard null chart for M
outside a bounded region. That is, lines of constant u,6, and ¢ are null geodesics
with affine parameter r; lines of constant r, 8, and ¢ are trajectories of the Killing
vector t*; and the metric has the asymptotic behavior given, for example, by
Newman and Unti [6],

g=0, g"=—1, ¢“=0, g¢“=0,

2M
g=t-Miop ), =06, gr=00) (12
= SHOE,  PP=0070), = 00
r? ’ ’ r*sin*6 ’

characteristic of a time independent geometry. Let us consider a region % bounded
by the surfaces S, S,, and by an r=constant cylinder.

We have
0= j VJi= j Jeds,, (13)
R OR
whence

&,—8y=—lim [ Jr*dQdu

r—o 0

= — lim [ y?r*dQdu (14)

r—>w
where =1V, (and where asymptotic regularity, the condition
1 . .
p= . Y, (U, 0, ¢)+o(r— 1), has been assumed). In other words, a radiative solution

loses energy between S, and S, and, consequently &, is a decreasing of u.

If &, =0 for all initial values (y, Vi) on S, then the symmetry implies &, =0
for all u; by (12), only a finite amount of energy can be radiated and the functional
&, 1s bounded by &,. The scalar field is consequently either strictly stable, £,—0 as
u—o0?, or at worst marginally unstable, &, finite as u— oo. If, on the other hand,
there is some initial data on S, for which &, <0, than the field is at best marginally
unstable; and, unless it can settle down to a nonradiative state with fixed
&< &,<0, it will radiate infinite energy to null infinity. Furthermore, the energy
can be negative only if the field y is time dependent, and thus a field for which

2~ &,~0 implies that ¥,y—0 (i.e. components of Vi along a Killing transported tetrad converge to
zero);  itself can asymptote to a constant
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& <0 will be strictly unstable unless there are time dependent nonradiative states
available to it. To see this, one manipulates the expression for &, using the field Eq.
(6) and integrating by parts to obtain the following form involving the symplectic
product (Klein-Gordon inner product) of the field  and its time derivative ¢:

=3[V —ywVp)dS,+ 3 | wVypt®ds,,. (15)
S as

If i is a time independent solution of (6), the first term on the right hand side of
this equation clearly vanishes; and asymptotic regularity (when ¢ =0) requires
that the surface term vanish as well. Thus for time independent fields, & =0.

It is not difficult to show that

Proposition. & <0 for some (y, V,1p) on S<>there is an ergosphere.
We have
&= | Treds,
5

= [ TPu='(n"+oak®)n,ds . (16)
Now ’
1T+ ek ny =3 [0V, )7+ 20(n V) (K*Vyp) + (kY p)
SR ATATI B

But the expression on the right-hand side is positive when |«| <1, whence & >0
when there is no ergosphere.

On the other hand when|x| >1somewhere on S, initial data for which & <0 can
be found as follows. Let Q be an open set in the ergosphere and (t, x, y, z) a chart on
Q2 chosen so that curves of constant ¢, y, z have tangent k*:k°V, f =0, f. There is
some ¢ with ¢/ >14+¢>0 on Q and we can assume a>0. Let Qp <Q be the ball
r* <R (there is such a ball about p in Q for small R). Consider a function ge C*(Q)
which vanishes outside of a compact subset of Q, whose value and derivatives are
bounded by

loll, = lub o+ lub [k*F,0| + lub (**V,0¥,0)"* <K, (17)
o I )
and with
o=1 on Q. (18)

Then the initial data,
Y, =0 sinmy
nV o= =k Vo,
= —mgcosmx+g , sinmx, (19)

on S gives £3<0, for large enough m. That is,

Tty = — (o= 1) (V) + 21 VpmV s - (20)
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Denoting the bounds on u by y, and g, i.e.
HoSpHp)=py, PpeQ, (21

we have

E= | TrndS< —ep ' | (V)2 dS +pg " [ 1V, Vo, dS
Q Q

Qr

S —mPeu;t | sin? mxdS + pg 'K?|Q| (22)
Qr

where |Q|= | dS.
Q

As m—oc0, | sin® my—%|Qpl, so for sufficiently large m,
Qr

E< —m?(bepr Q)+ K2 ug 12| <0. (23)

This concludes our proof of the proposition.

Spacetimes with ergospheres are thus marginally unstable to scalar per-
turbations, and initial data on S with 5 <0 must either evolve to a time dependent
but nonradiative state, or grow without bound (Jy] or & becomes infinite).

The first alternative appears to be ruled out by the following line of argument.
Define the domain of dependence D(T) of a timelike hypersurface T to be the locus
of all deformations T of T'with compact support on Tand which are themselves
timelike (see Appendix IT). A uniqueness theorem due to Holmgren [5] implies
that when the background spacetime is analytic, any smooth (C®) solution p to
the scalar wave equation is uniquely determined by its “initial data” on T. That is,
given y and Vi on T, there is at most one solution to V*V, =0 on D(T). In the
case of a stationary spacetime with ergosphere, the existence of a timelike Killing
vector implies that the metric is analytic outside the source and the ergosphere [7].
Moreover, supposing the whole background to be analytic does not restrict the
physics that can be described. (Any background metric can be approximated with
arbitrary accuracy in, say, a C" norm by an analytic metric.) So for the remainder
of this section we will assume that the background is analytic.

Now suppose that p were time dependent inside the ergosphere IE. Then
(p, V,p) cannot be zero on the whole of any distant timelike surface Twith IE in its
domain of dependence D(T). Moreover, if we take Ttangent to the Killing field ¢,
the data must be time dependent on T. This is because the Killing translated data
on Tgives the Killing translated solution on D(T), whence 1 time independent on
T implies p time independent on D(T). Solutions to the wave equation have the
asymptotic behavior

o D000

r Y. (24)
r

The energy radiated to null infinity between u, and u, is | (3,y,)*dQdu and unless

0,w,;—0 as u— oo, the radiated energy will be infinite.
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The possibility remains, however, that although asymptotically the field settles
down to a time independent state, its time derivatives remain finitely large in any
spatially bounded region. This lacuna can be eliminated if one assumes that the
scalar field and the null coordinate components of the metric g** can be expanded
in powers of r~? near future null infinity. That is, suppose that the series

Vol 0, p)r7",

=
—

<
[
118

9= 2, 9, w0,9)yr"",

s

=

g"=r"2% ¢ 0,)r7", .., (25)
n=1

converge in a region exterior to some timelike hypersurface T of the form
r=R(u,0,¢) and in the future of S,,. Then, following Moret-Bailly and Papapetrou
[8], it is easy to show that the scalar wave equation is equivalent to recursion
relations of the form

(n—=1)0,p,+0,(0,¢,0505)p,_ £... +0,_1(0,, 09, )y, =0, (26)

where the O, are linear operators of second order involving d, and J, with
coefficients depending on the coordinates 6 and ¢. For a nonradiative field, 0,y
must vanish ; the recursion relations (26) then imply that 1y, is a polynomial in u of
degree less than or equal to n— 1. Thus either all the y, are of degree zero or else
some 1, increases without bound. If all v, were degree zero in u, v would be time
independent outside T. By the timelike uniqueness theorem, 1 would then be time
independent everywhere to the future of some S,, which contradicts the assump-
tion that & <0. If, on the other hand, some v, grew without bound, then v would
be unbounded as well. Thus, as asserted, any bounded, time-dependent scalar field
satisfying (25) must radiate.

There are in principle time-dependent sources with constant amplitude that
radiate finite energy (for example, machines that change their shape with a time
dependence Q(u) ~sinlogu (as in Bardeen and Press [97), but their time derivatives
must become arbitrarily small. In the case at hand, the existence of a finite
amplitude solution with arbitrarily small time derivatives would presumably
again, by (15), be inconsistent with the fact that the energy is bounded away from 0
by 6 <&, <0.

I11. Electromagnetic Perturbations

The analogous demonstration that for a test electromagnetic field initial data
exists for which & = | T,?1°dS, <0 if and only if an ergosphere is present is provided
S

in this section. The remaining argument is the same as that for the scalar field,
Holmgren’s theorem applying also to the free electromagnetic field.
A test electromagnetic field F* satisfies

VF*=0, ¥,F,,=0, (27)
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and has the energy-momentum tensor

Tab — FachC _ %gabFCchd . (28)
Defining the electric and magnetic field associated with the hypersurface S by
E*=Fn,,  B*=%¢"n,F =*F"n,, (29)

we can characterize an initial data set on S as a pair of vector fields (E* B%)
satisfying
D,E*=0 and DB*=0, (30)

where the operator D, is the covariant derivative on S. Equivalently, one could
specify vector fields A° and A® on S with

An,=0, A%,=0; (31)
then

Et=¢"p,V A,
and

Bi=¢®n, v A4, (32)
will satisfy equation (39). We will first show that the electromagnetic energy & can
be nonzero only if the field is time dependent®, and will then turn to the more
complicated demonstration that Eg<0 for some initial data on a hypersurface S if

and only if the background spacetime has an ergosphere.
By defining fields E,=Ft" and B,=*F,t°, one writes the energy,

&= | T,h%ds, (33)
S
in the form
&=%[(E,E*+B,B"dS. (34)
S

From the second of Maxwell’s equations (27) and the fact that ¢* is a Killing vector
follow the relations

Vb~V E, =L F,, (35)
VB, ~V,B,= 2 F,. (36)
Then, using (32) to express E* and B® in (34) in terms of 4, and fla, we obtain

E=3[(AZ F g+ A *F o) dS* + | (A Ey + A By)dS®. (37)
S oS

3 Alternative versions of the demonstration below are apparently known. I am indebted to R. Geroch
for the one given here
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When F, is time independent, asymptotic regularity requires that the surface term
at infinity vanish, and since the first term in the above expression for & is
manifestly zero, the energy & vanishes as well. In analogy with Eq. (15) for the scalar
field, this equation requires finitely large time derivatives in order that the energy
& be bounded away from zero.

The stability of a test electromagnetic field then depends on whether the
quantity & is positive for all initial data sets on S. Using Eq. (3) and the relation

Fab =2plaEP) 4 gbedB (38)
we can write the integrand in (33) in terms of E and B®:
Trrtn, =~ [L(EE, + B'B) + 0, B, (39)

where &% =e**K n, is the antisymmetric tensor in the subspace orthogonal to K¢
and n“. When there is no ergosphere, the vectors t* and »n* are both timelike and the
integrand is itself positive: this is the dominant energy condition.

Explicitly,

6 E, B,| <(E,E*)"*(B,B")!> = EB (40)
whence
Trt'n, 2 3[E*+B*—20EB]>0 when a<1. (41)

Within an ergosphere, however, the integrand (39) can be negative, and we will
find initial data for which the integral & is negative as well. Consider as in II, an
open set 2 in [E and a chart with origin at some point pelE. The chart is to be
spatially geodesic at p so that (writing concrete indices i, j, k, to refer to components
in the chart (¢, x, y, z)),

lgs;—nijl < Kr? (42)

for some constant K, where #,;=diag(—1, 1, 1, 1); by aligning the coordinate axes
at p, we can require

In,— 0 <Kr? and |k,—dF|<Kr? (43)

(ie., at p, n'd, =0, K'9,=0,), redefining K if necessary in order that (27) and (28)
hold for a single constant K. By Eq. (3), t'=pu~*(n' +ak’). Because Q is compact
inlE, o>1+6 on Q. Similarly, as in II, u is bounded on Q by

O<po<plp)<p, pef.
Writing
T=¢""n,,
we have by (42) that
lt—1]<Kr*. (44)

Again, as in treating the scalar field, we will use functions of the form y,, = ¢ sinmy,
where ¢ vanishes outside © and satisfies Egs. (17) and (18).
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Here we will take QR=Q<£>, where g(s) is a smooth function, vanishing for

s>1 and satisfying
os)=1, s<i, (45)
lell; =luble|+luble’| < K. (46)

It will also be convenient to introduce the following shorthand. The letter I" will
represent functions bounded on Q by a constant independent of the integer m.
Only a finite number of such functions will be considered and so we can assume
that they are all bounded by a single constant K. Then

Y=, oy,=I, dy,=I, 0y,=ml (47)
and
t=14TI7?%. (48)

(In each occurence of the letter I' it represents a different function bounded by K).
Consider now initial data of the form

A=y,, A=A4,=4=0,
A=—vp,, A,=A4,=4,=0, (49)
with
Y, =o0sinmy. (50)
We have
E¥=¢""n(0,4,—0,4)
= —10 sinmy
=T,
E’=0,
E?=mrtocosmy+1T, (51)
and
B*=T
B’=mtocosmy+1I
B*=0. (52)

Then, from (39)
T tny=5u" '[g.(E)* +9g,,(B)* + 20E* B ] +mIl' + I
=519,y +9,.— 20, ym*t?? cos’my +ml +1I . (53)
Now Egs. (43), (44), and the definition of the tensor &* imply

9yt 9., — 208, <2—20+1I1? (54)
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it follows that by making Q sufficiently small, we can require that on Q,
gyy+9g..—26,<—0 (55)

for some positive number 6. Then
&= [ Tri*n,dS
Q

<15 [mPu't?p* cos?’mydS +mC +C,
(2]

m2

§———2~/11_159§ 1> cos? my+mC,+C, (56)
where C, and C, are constants.
Again, by restricting the size of Q we can make t— 1 small; and, as m— oo,

[ cos?mydS—1 | dS=1]Qyl. (57)
QR QR

Thus for sufficiently large m,
EgS —m*Gpi QNS +mC +C, <0 (58)

as was to be proved.

In the case of an axisymmetric background with an axial Killing vector ¢“, one
considers data with angular dependence ™%, where ¢ is an angular coordinate
about the axis of symmetry chosen in such a way that ¢“V,¢=1; in other words,
(E“,BY)= Re(E* B%), where

2 B =imE*, ¥, B'=imB°. (59)

Then for all integers m greater than some m, there is initial data with angular
dependence €™ for which &¢>0. Because the time evolution preserves the ¢-
dependence of the perturbation, each such initial data set gives rise to an
independent unstable or marginally stable perturbation with angular dependence
¢™?. The magnitude of m, depends on the detailed configuration, and crucially
upon the size of the ergosphere. In particular, suppose Q(J) represents a
continuous sequence of equilibria, parameterized, say, by increasing angular
momentum J ; and suppose that for J>J, there is an ergosphere that shrinks to a
point as J—J,. Then my,— o0 as J—J, " and the instability can be said to set in as
a limit m— oo of perturbations with angular dependence e™?,

Finally, as in §II one expects on the basis of Holmgren’s theorem that initial
perturbations having &<0 will grow without bound and therefore that con-
figurations with ergospheres will be strictly unstable. The expectation relies,
however, on the fact that by Eq. (37), if & <0 the perturbation must be time
dependent and on the assumption that time dependent perturbations will be
radiative; and even for the scalar wave equation, there is no formal demonstration
that all time dependent solutions on a stationary background (with or without
ergosphere) radiate energy to null infinity.

A related result for quantum fields on a background spacetime with ergosphere
obtained by Ashtekhar and Magnon [10] should be mentioned. In constructing a



254 J. L. Friedman

Hilbert space from solutions to the scalar wave equation, one introduces a
complex structure analogous to that obtained in flat space by the decomposition
of a real solution into its positive and negative frequency parts. Ashtekhar and
Magnon show that any definition of complex structure for which the Klein-
Gordon inner product is positive definite must be time dependent; that is, the
complex structure cannot be Lie derived by the asymptotically timelike Killing
field. Consequently any spacetime with ergosphere is unstable to particle creation,
and so is quantum mechanically as well as classically unstable. (For astrophysical
objects the particle creation would be negligible.)

Acknowledgements. I want to thank James Ipser for suggesting the problem considered here, Robert
Geroch for helpful conversations, and Bernard Schutz for comments on a previous version of the
manuscript.

Appendix

We establish here a uniqueness theorem for C* solutions to linear wave equations
on analytic spacetimes of the form

P, 7y =0 (A1)

where ¥ is an n-index tensor (see also [11]). As stated in §II, one can define a
domain of dependence for timelike surfaces as follows. Let TCM be a timelike
hypersurface and let ©C T be an analytic submanifold of T with compact closure.
Consider the set of all timelike surfaces T which can be obtained from t by an
analytic deformation that leaves dt fixed. The union of all such 7 for all compact
7C T is the domain of timelike dependence of T, written D(T).

We assume that M is an analytic manifold and that the metric g, is an analytic
tensor field on M. The uniqueness theorem is

Proposition. If 1%t and p*-° are two C* n-index tensor fields on T, there is at most
one C® tensor field v** on D(T) satisfying

Vmel/)a"'bZO
lpa"'b[T=la"'b
and
anmlpa...blT___'ua“.b, (A2)

where n® is the unit normal to T.

Proof. By the linearity of (A2), it suffices to prove that A**=0 and p*-*=0 imply
p*?=0 on D(T). The proof is based on a theorem due to Holmgren [5], a version
of which can be stated in the following manner. Let L(u) =0 be a hyperbolic system
of r linear analytic partial differential equations of order m in r functions u; of k
variables. Then if for all j, u; and its derivatives of order less than or equal to m—1
vanish on a noncharacteristic manifold and if u ; is C®, u ; must vanish in a

neighborhood of the manifold.*

4  The proof given by Holmgren is for single hyperbolic equations, but its extension to hyperbolic
systems is straightforward
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There is a neighborhood N of any point p of T and a chart on N for which the
Eq. (A1) satisfies the conditions of Holmgren’s theorem, and so if yp** and
n™V_yp*? vanish on T, y*-* must vanish in some neighborhood of each point p of
T.

Now let = be a submanifold of T with compact closure. Suppose that for each
Se[0,1], xs:t—M is a difftomorphism of © to 75=y4(1), that 74 is timelike and
that 0tg=0t. Further, suppose that the map [0, 1]—-M, S—y(p) is continuous for
all pet; in other words that y is a deformation of . We want to show that y*-®
vanishes on all surfaces 74 Let S, be the greatest lower bound of all Se[0,1] for
which %t l;, is not identically zero. By continuity, the field p*® and all its
derivatives vanish on 74, and since 7y, is timelike, Holmgren’s theorem implies
that y*-* vanishes in a neighborhood of each point of 75 . But Ty is compact, and
so is covered by a finite collection of open sets O, on each of which - vanishes.
Then if Sy =1, 74 JO, for a finite range of > S, say for S, <S<S,. This means
that * vanishes on tg for all S<S,, contradicting the assumption that S, was
the greatest lower bound for surfaces on which tg vanished identically. Whence
S, =1, and we conclude that y*® vanishes on D(T).
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