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Abstract. Under quite natural assumptions we prove that a classical spin
lattice has essentially two natural quantum extensions: The quantum spin
lattice and the Fermi system. Moreover we derive a transformation from a
commuting pair of Fermi systems to a purely anticommuting Fermi system.

Introduction

It is known that quantum spin commutation relations and anticommutation
relations can be extracted from the central extension of an abelian group, in a quite
similar manner as usual commutation relations can be extracted from central
extension of an abelian group, namely the abelian group of the phase space.
(See e.g. [1,2]); this point of view has obvious advantages not only aesthetical,
and we postpone to a forthcoming paper some results which are transcribed from
the case of quantum canonical commutation relations. Our aim in this paper is to
derive a result which is analogous to the fact that, up to the value of % (the Planck
constant), there is essentially one possible central extension of the group R?. In
our case for a given value of # there are essentially four possible central extensions
of p, x p, [see Definition (2.1)] satisfying some homogeneity requirements. Two
of them are rather trivial from a physical point of view and the two others cor-
respond to the usual quantum spin systems and Fermi systems.

Nevertheless the C*-algebras which are built in a canonical way on these
extensions are unique up to isomorphisms if the number of points in A4 is even
or infinite.

The x-isomorphisms between the two algebras are of especially simple form,
namely:

a0y y) =S (X, Y)0 x v

where f is a function from p, x p, to 4+ 1 and 7 an isomorphism of p, x p, onto
itself [Theorem (2.40)].

This theorem contains an abstract version of an old trick which connects the
Clifford algebra to the U.H.F. algebra (see e.g. [3,4]). But it contains also as
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corollary [Corollary (2.41)] the following result: if »#, and s#, are real Hilbert
space of even or infinite dimension J#; @, their orthogonal sum then:

WA, @A) ~ WA )QUA)

where A7), W) are the Clifford algebras built on J#;, # and the x-isomor-
phisms can be chosen to send a finite product of generators in the left hand side
onto a finite product of generators in the right hand side.

1. Central Extension of Abelian Groups by the Torus

This section contains results which are needed for Sect. 2; some of them are known,
if not in the full generality that we shall need in the sequel. We shall always consider
groups equipped with the discrete topology.

Definition (1.1.). Let G be an abelian group. A multiplier on G is a function
£:G x G—T, which satisfies:

€91, 9269192, 93) =892, 93)6(9 1. 9293),  Y91.92.9:€G.
The next proposition is an easy consequence of the previous definition:
Proposition (1.2). Let G be an abelian group, & a multiplier on G, then:
e,9)=CLg,e)=Clee),  &lg.97 =L g), Vgel.
The usefulness of the multipliers is examplified in the following

Proposition (1.3). Let G be an abelian group, & a multiplier on G, then G x T endowed
with the product :

(g0 (g, 2)=(9g, &g, g)e),  Vg.9'eG, a,d'eT
and the inverse law:
(g, )" =(g7", &le, )élg, g~ @), VYgeG,aeT

is a group GQ T, with identity (e, &(e, €)), the central extension of G by T. Namely
one has the following exact sequence

e~»T—>G®<T—>G—>e.

Multipliers on G form an abelian group for pointwise multiplication, and the
subgroup of trivial multipliers of the form

Ug.9")=MaMg)Mgg), Vg,9'€G,

where 4 is any function from G— T form an invariant subgroup. The quotient
of these two groups characterizes the different extensions up to isomorphism,
in the following sense.

Proposition (1.4). Let G be an abelian group; & and { two multipliers. The necessary
and sufficient condition for the existence of an isomorphism j between G®.T and
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G®,T which makes the following diagram commutative :

AN

e—>T Ti G—e
~ G@lT /’

is that there exists a function A from G to T such that :

LA

&g, 9')=Mg)Mg) 999, 9) . Vg.9'€G.
We can use this fact to simplify the calculations, so:

Proposition (1.5). Let G be an abelian group, & a multiplier on G. There exists a
multiplier { which is equal to & up to a trivial multiplier, such that :

é(@, e)zg(ga g‘l)zl .

We can give explicitly the isomorphism j between the two groups G®.T and
G® CT:

(1.6) (g, OC)G®;T)=(9’ I(_—g)“)(;@gr , VgeG,oeT,

where the subscripts indicate in which groups we consider the elements (g, o)
since as sets the two groups are equal.

In the case of groups whose elements are of order 2, according to a theorem of
Kleppner (see [5]), every multiplier is equivalent to a bicharacter. In [6] the case
where ¢ is a bicharacter has been studied explicitly but most of the results are
still valid without this assumption [see Proposition (1.12)].

For classifying the different central extensions of a group G [see Theorem (2.24)]
it is more convenient to deal with the bicharacter which is associated with a multi-
plier since it has more special properties; hence it can be characterized in a easier
way. Indeed if G is an abelian group and ¢ a multiplier, b,:

(L7) bdg,9)=¢(9,9)eg’ 9),  Vg.9€G,

is a bicharacter of G. It characterizes uniquely the extension according to the

proposition:

Proposition (1.8). Let G be an abelian group, & and { two multipliers, the necessary

and sufficient condition for & and ( to be equal up to a trivial multiplier is that:
béz bc .

Bicharacters associated with multipliers satisfy special properties:

bdg,g)=1,
(19 9=l

bdg.g9)="bd9g.9).
In the case of groups whose elements are of order 2, the antisymmetry relation (1.9)
becomes a symmetry relation, namely:

(1.10) bulg.g)=bdg.g9), Vg,9'€G suchthat g>=g?=e.
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Moreover we shall say that a multiplier £ is non degenerate if
(1.11) {geG;bdg,9)=1,Yg'e G} ={e} .

In [6] we gave an explicit construction of a C*-algebra whose representations are
in bijection with the unitary representations of G®.T where the center of G® . T
is trivially represented, for ¢ a bicharacter. Actually all we did there can be repeated
for & a multiplier, namely:

Proposition (1.12). Let G be an abelian group and & a non degenerate multiplier. Let
A(G, &) be the set of functions from G to € with finite support, equipped with the
following product :

F,Glg)= > &gg' ™' g9)Flgg' ™ "G(g)

g9'eG
and =-operation :
F¥(g)=Zle.e)dlg.g NF(g ™).

MG, &) is a =-algebra which has a unique norm of C*-algebra. Let A(G, &) its closure.
The =-representations of A(G, &) are in bijection with the unitary representations U
of GQ:T for which

Ulg,)=aU(g,1), VgeG,aecT.

The basic generators of A(G, ¢) are the functions ¢, ge G, such that

1 if g=¢
(13 )=y L0

0 otherwise

which of course satisfy:

(1.14) 6,40, =E(9,9)0,9» V9,9'€G,
(1.15) 9% =&le, €)¢(g, g )y~

the algebra A4(G, &) has interesting properties with respect to automorphisms,
namely:

Proposition (1.16). Let G be an abelian group. Let & and { be multipliers on G let
o be an isomorphism of G onto G such that there exists a function A:G—T with
the property:

Sledg), ulg') = Ag)ilg) Mg g) (g, 9)
then there exists a x-isomorphism & of A(G, () onto A(G, &):

8(65)=Hg)05,» V9eG.

In particular o can be the identity isomorphism which shows that A(G, &) depends
on & up to a trivial multiplier.

It is easy to prove that o is a -isomorphism of 4(G, {) onto A(G, &). Then one
uses an obvious extension of Theorem (3.10) of [6].
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Finally let us remark that the bicharacter b, associated to a multiplier is
directly associated to the commutation relations, indeed:

Proposition (1.17). Let G be an abelian group and & a multiplier, then :

0,40, =bdg,9)0,%0,, Vg-g'eG

so that the non degeneracy of & implies that A(G, &) has no non trivial center, see
also [6].

In the next section we shall specialize ourselves to a special group connected
with both quantum spin commutation relations and anticommutation relations.
We shall show that the central extensions of this group are essentially unique.

2. The Basic Phase Space Group for Spin Systems and Anticommutation Relations

It is possible to obtain the commutation relations of quantum spin systems and
anticommutation relations from the central extension of a group that we shall
describe in the following.

Definition (2.1). Let A be at most a countable set; p, (resp. 2,) is the group of
finite subsets (resp. all subsets) of A4 equipped with the symmetric difference as a
group law: viz.

22) VXX, .., X, 2. X AX,A...AX,

is the subset of 4 whose points belong at most to an odd number of X’s.
This law is clearly associative and symmetric; the identity element is the void
subset:

(23) XAP=X, VXCA,

and every element is of order 2:
(24) XAX=0, VXCA.

P, is a subset of 2, ; they coincide if 4 is finite. p, and 2, have natural topologies,
namely for p, the discrete topology; 2, is isomorphic to the topological product
of {0, 1}, hence compact for the product topology and it is isomorphic to the
dual group of p,, through the natural bilinear form:

(2.5) (X, Y)ep, x 2, —(X|Y)=(— )Xol

where | X| denotes the number of points in X.
The structure of automorphisms of p, is especially simple.

Lemma (2.6). Let © be a homomorphism of v, it is completely characterized by a
function

xie A=t({x }epy

SO

t(X):r( A {xi}) = A t({x).

x.€X xieX
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Actually for describing the commutation relations of a quantum spin system or
anticommutation relations, we need the group p, x p,. Despite of the fact that it
is isomorphic to some p,. we want to quote some more special results:

Proposition (2.7). Any isomorphism t of p % p, into itself is of the form
(X, Y)=(XAF(X)AF,(Y), YAG{(Y)AG,(X)),

where the F's and G;'s are homomorphisms of p, such that the two equations
X=F,(X)AF,(Y), Y=G(Y)AG,X),

have the unique solution X =Y =@; moreover if v commutes with Ty, :
(X, V)=(Y,X), VX, Yep,,

then
Fi=G, and F,=G,.

The proof is obvious; notice that the F,’s are not necessarily isomorphisms as
examplified by the following.

Proposition (2.8). Let 8 be a homomorphism of p, into itself. Then:
(X, V)=(XA0(XAY), YANXAY)), VX, Yep,,

is an isomorphism of p 4 x p 4 onto itself. Moreover t is an isomorphism of the group
of homomorphisms of p, into itself onto the group of isomorphisms of p 4 x p 4 onto
itself, which commutes with t, and preserves pointwise the diagonal A={(X, X);
Xep,); moreover 12 =i the identity isomorphism.

Proof. If an isomorphism t commutes with 7, and preserves pointwise the diagonal
A then:

FI(X)AF,(X)=0, VXep,.
so that Fy =F, and t rewrites:
(X, Y)=(XAF(XAY), YAF (XAY)).
Conversely let § be a homomorphism of p,; 7, is injective since the equations
X=0XAY)
Y=0(XAY)

imply XAY =@ and (XAY)=0; hence X =Y =#@. It is surjective since its square
is the identity isomorphism:

(X, Y)=1o(XA0XAY), YAO(XAY))
(2.9 =(XANXAY)ANXANXAY)AYANXAY)),
YAOXAY)AOXANXAY)AYAOXAY))=(X,Y), VX,Yep,.
This relation is a special case of the obvious relation:

(2.10) 74,79, ="Tg, 0,
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where 0, A0, is defined for a pair of homomorphisms of p, into itself by:
(2.11)  0;80,(X)=0,(X)A0,(X), VXepy;
they form a group with identity:

(2.12) 0,X)=0, VXep,;
another remarkable homomorphism is 0,:
(213) 0(X)=X. VXep,.

Among these isomorphisms we shall need two special ones which are described
in the following definition.

Definition (2.14). 1, =1, and 1, =1,, are the isomorphisms of p , x p, which come
from the homomorphisms 8, and 6, of p, which are defined by

0,({x;})=0,
0,(Ixi)=1{x;ed;j<i}, Vi>1.
0,({x,})=9,
O,({x2ks 1 ) =1{x;€4;j<2k+1},  Vk>0,
02({x2k})={xj€/1§j§2k} ,  Vkz1,
for an arbitrary given order on the points in A.

We give in the next proposition some formulas which are useful in the fol-
lowing.

Proposition (2.15). Let 0; be the homomorphisms defined in the previous proposition
then one has the relations:

2.16) X N0 (MN+1Y N0 (X))

=|X|Y|+|XnY| mod2 VX,Yep,,
217 X 0 0,(X)=3IXI0X]- D) +[X|(1X]=1)(X|-2) mod4 VXep,,
(2.18) 10,(X))=0 mod2 VXep,,
(2.19) XN 0,(Y)+|Yn0,(X)=X||Y|+]|X Y] mod2 VX, Yep,,
(220) [ XnO0,(X)—=1X N0 (X)) =10,(X)|—10,(X)] VXep,.

We shall not prove these relations since the calculations are easy but tedious.
Let now oe & be a finite permutation of the points in A.

221) 0,({xD={x} O, Vx4

induces an isomorphism t, of p,x p, which commutes with 7, and represents
the finite permutations by taking in Proposition (2.7)

Fi(X)=0,X), VXep,,
2.22) 1(X)=0,(X) €y
Fy(X)=0,X)=0, VYXep,.
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This isomorphism does not preserve pointwise the diagonal; it is an isomorphism
since X Af,(X)=0 implies that X =0_(X) but

(223) 0,X)= A 60,(x)= A {x}Alx,) =XAd(X)

xieX xeX
where  o(X)={x,;;x,e X},
hence o(X)=0 and X=0.

This group of isomorphisms is of central importance to reduce the number of
possible central extensions of p , x p, which is our next aim.

As we noticed any central extension of p,xp, by the torus is completely
characterized up to the equivalence by a bicharacter b, which is both symmetric
and satisfies:

bA(X,Y),(X,Y))=
using this remark we can state the

Theorem (2.24). Let p, be the group of finite subsets of a set A (|A|=2N or o)
endowed with the symmetric difference as group operation; let p , x p 4 be the direct
product of p, by itself. Let € be the group of the finite permutations of A, denote
by t, the induced isomorphism of p 4 X p 4 (see (2.21)).

7, (X, Y)=(XA0,(X), YAO(Y), VX,Yep,.
Denote by t,, the automorphism of p,xp,:
T5,(X, Y)=(Y, X), VX, Yep,
then there exists only four bicharacters b on p 4, X p 4 which are

i) symmetric, i.e. (X, Y), (X', Y)=b(X", Y'),(X,Y))
il) invariant by 7, for any o€ S, viz

bt (X, ), 7,(X", Y'))=b((X, Y), (X", Y))
ili) invariant by t,, viz
b(tp(X, Y), 75,(X", Y')=b((X, Y), (X', Y))
iv) non degenerated, viz
(X, Y),(X,Y)=1, VX,Yep,=>X=Y=0.
v) and satisfy:
b(X,Y),(X,Y)=1, VX, Yep,.
They are respectively :

(X, Y), (X', Y)=(—
(X, Y), (X, Y')) = (= XX+ YY1+ X+ YDA+ 1Y)
bo((X, Y), (X, Y) = (— 1) XX I+ Y ox I+ XX+ Y]
bo((X, Y), (X', Y)=(~

1)|XnY |+1X' Y|

)IXnY’|+ X' Y| +|X] Y| +]|X]Y]
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The two bicharacters b” and b? are degenerate when |A|=2k+ 1. In what follows
we denote b((X, Y); (X", Y")) by b(X, Y; X',Y’). Proof of theorem (2.24) uses a
number of lemmas.

Lemma (2.25). Let y be a bicharacter of p, which is invariant by o that is:
wWo(X),o(Y)=x(X,Y) VX,Yep,0eS

then it is of the form:
H(X, Y)=(—1)pXoyI+ x|y

where o and f§ are O or 1.
Indeed if X 0, Y +0 then:
= 11T G-
ieX jeY
Since y is permutation invariant, y({i}, {i}) is independent of i, the same for

2({i}, {j}) (%)) since if i) and k=1 there is a finite permutation ¢ such that
o(i)=k, a(j)=1; moreover x({i}, {j})= £ 1; hence the four possibilities:

1) (i} {ii)=x{i}, jP=1, (X, Y)=1, a=f=0.

11) X({l}’ {l}): —ls X({l}> {]})219 X(X9 Y) ( 1)|XHY|> “—17 ﬁ 0.
i) A48} )=, 2({0) )= — 1, 70X, ¥)—(— Ieixar o g~
i) K0 1 = X T2, 0, et

Notice that they are automatically symmetric
2X, YV)=x(Y, X).
Lemma (2.26). Any symmetric, S invariant, 1, invariant, bicharacter of pxp,
is of the form:
b(X,Y; XY
=(— l)al(er\X’HlYmY’|)+az<lXﬁY’l+IYﬁX’U (— 1)ﬁx(|XI X+ YHY D+ 20X Y+ IXYD
Actually since b is a bicharacter
bX,Y; X', Y)=b(X,0; X", 0)-b(X,0;0,Y)-b@,Y; X', 0)-b0, Y:0,Y").
but
(X, X7)
12X, Y')
x:3(Y. X7)
xa(Y. Y)
are bicharacters of p, which are € invariant; the previous lemma implies that:
b(X,Y; X", Y')

=(— 1)a1|Xr\X’|+ﬁ1|X| (X' + o] X Y[+ B2l XY

b(X,0: X', 0),
b(X,0;0,Y"),
b, Y; X', 9),
b@, Y0, Y').

(— 1)«3|Yﬂx’l+ﬂsll’| X +aglYaY |+ BalY| Y]
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The symmetry of b implies that o, =0a5, fi,=f3;
b(X,Y; XY
— (= XX [+ XL X+ 220X ¥+ YA XD

(— 1)!32(le WYX D +aal Yo X+ Bal YY)

The 74, symmetry implies that o, =0, f; =f,:
b(X,Y: X', Y
=(— 1)a|(|XﬁX’I+IYﬂY’|)+ﬂ1(|XSIX’1+1YHY’I)

(— 1)«2(er\Y’l+ X aYD+B0X1Y 1+ X Y]D

Lemma (2.27). Let b a bicharacter of p,xp, as in Lemma (2.26), if o, =0w,, then
it is degenerate.

Indeed
b(X,Y; X', Y

=(— 1)a1(|XﬂX’l+1X0Y’|+1X’0Yl+ YY) (— I)BI(IXI XYY D+ 20X HY T+ X YD

If X =Y and |X|=2K for some integer K0
b(X,Y; X', Y)=1, VX,Yep,.

Lemma (2.28). The following four bicharacters do not fulfil the condition v):
(__ 1)]XnX’|+[YnY’[
(= 1YXAX Y Y+ XY 1] 1Y)
(— DAY XA+ XX Y 1]
(—

1)|xm~|+ X oYX+ YD UX[+{Y])

Indeed for (X, Y)=(X",Y’) they are respectively
(— X+
(— X+
(— X1+
(= DxI+IrD2

They all are equal to —1 if Y=0 and [X|=2K +1 for instance.
Hence we are left with the four possibilities of the proposition. Nevertheless
we shall prove the following lemma.

Lemma (2.29).

(X, Y; X, Y)=(— 1)le‘Y'l+lX’ﬁYl+leIY’|+IX’IIYI
bUX,Y; X, Y)=(— 1)iXmX‘I+1YnY’1+IXIIX/HIYIIY’I )

are degenerate if and only if |A|=2N +1.
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Indeed for X=Y=A, |A|=2N+1
bo(A, A; X', Y )=(— D)V
bo(A, A; X', Y )= (— XTIV g
If now |A]=2N:
boA, A X', Y )=b"A, A; X', Y)=(— )X THITT
On the other hand if
(X, Y; X, Y)=b"X,Y; X', Y)=1, VX, Yep,,
in particular for Y'=0:
(_I)IYnX’I+|X’IIYl=((_1)!XmX‘I+IX||X’1=): 1, vX'c4a,
for X" such that |[X'|=1and |X'nY) (or |X'nX])=0
(=M= (-n¥=)=1,
but for X’ such that | X'|=1and | X'nY] (or [X'n X])=1
(=)M=(=¥=)= -1,

hence a contradiction; since Y (or X) are different from A as we have seen for
|[A]=2N and of course for |4} = c0; Y (or X) are the void set; by symmetry X (or Y)
are the void set which concludes the proof.

The next lemma shows that b5 and b¥ are non degenerate.

Lemma (2.30). b5 and b* are non degenerate.
Indeed if X, Yep, are such that:

(= DIXeYIFIX Y1 =YX Yiep,.
in particular for Y'=0:

(=D Y=1, VYX'ep,,

which implies that Y=#; symmetrically one can prove that the first relation
implies X =0.
On the other hand if

(_ 1)|X5X'[+ Yoy |+ dX[+{YDAX[+1YD 1, VX', Y'epA ,
then in particular for X'=Y":

(_I)IXAYnX'lzl, VX,EPA,
which implies that X = Y; but then

(=HFXeYi=1, WX, Yep,,

which in turn implies X =@ hence Y =4.
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Finally b5, bf, b°, b? fulfil the condition v), so
bS(X, Y; X, Y)=(—1)>¥"Y=1
BE(X, Y: X, Y)=(— 1)XIFIVI+axI+¥hz _
bYX,Y; X, Y)=(—1)XI+IXE+IYIIY_q
bU(X,Y; X, Y)=(— [)2XoYi+ 21X _
The next propositions shows the relations between these bicharacters.

Proposition (2.31). Let 0, be the homomorphisms of p, defined in (2.14); then we
have the following relations

BE(X, Y X', Y) =5z, (X, Y), 7 (X', Y).

X, Y X', Y)=b(14,(X, Y), 74,(X", Y')).
The proof of this proposition is not difficult but tedious, see Appendix A.

At this stage it is worth-while to show that these four bicharacters correspond
to the actual extensions of p 4 x p 4. Let us consider the commutation relations of

the generators:
a) for S

b({i}, 0; U}, 9)=b°0; {i}; 0, {j}) =1
b({i}, 9:0, i) =60, {i}: {j}, O =1-20,;.

these are the commutation relations of a quantum spin system.
b) for b¥

b({i}, 8: 0, {})=b"1, {i}; {j}, )= —1,
br({i}, 8; {j}, 0)=b"(@, {i}; 0, {j})=25;—1.
these are the commutation relations of a Clifford algebra.
c) for b?
be({i}, 0;0, {H=b0, {i}; {j},0)=1,
so that the systems splits into the tensor product of two Clifford algebras.
d) for b°
ba({i}> ﬂ, {]}’ ﬂ):ba(ﬂ’ {l} N @s {]}): 1 5
b’({i}, 9: 0, {j})=b"1, {i}; {j}, 0)=26,;—1
the system is of quantum spin type.
We describe in the next proposition the multipliers whose associated bi-

characters are respectively b5, b, b? and b°. They are chosen such that &(e, e)
=¢&(g,g”Y)=1; in such a way the generators of A(G,¢) are both unitary and
hermitian’.
! These conditions are not sufficient to determine completely the ¢ since if x is a function from p ; x p,
into + 1 which is 1 on (@, #). Then:

XY XL Y )= p(X, VX', Y)WX AX, YAYN(X, Y X, Y,
satisfy the same conditions
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Proposition (2.32). The following multipliers are associated respectively to b5, bF,
Y g p
b? and b’ :
gS(X, Y: X', Y/):l-—]XnYii—IX/mY’li|XAX’mYA Y/](___ 1)|X’mY[ , VX, XY, YIEPA )
éF(X Y X/, Y/):i!XﬁB1(X)!+IYn91(Y)|+|X||Y!
JX 0O Y 0 (Y XY= XA X n0(X A X))

JTIYAY R0 A= XA XY AY] ()X Y+ X001+ ¥ nou]
EX, Y1 X, Y')=ilXn0201+ 1Y 02|
itX'noz(X'H H1Y A02(Y) ]~ XA X nOXAX )| —|YAY nO(YAY)| (_ l)lX’mBZ(X)I +1Y'n0(Y)] ,
E(X, Y X, Yf)zi-IXIIYI—IXﬁYli‘lX’IIY’I~|X’r\Y’IiIXAX’!IYAY’HIXAX’nYAY'I
(— DXIHX Y]y X Y X, Yep,.
They are chosen to satisfy:
X, Y:X,Y)=1, VX, Yep,.
From Proposition (2.31) one can conclude that
) ERX, Y X, Y)=F, (X, Y)F, (X', Y)Fo (XAX', YAY')
(e (X, Y); 1o (X, YY), VX, Y, X', Y'ep,.
i) EUX, Y; X', Y)=Gy(X, V)G (X', V)G (X AX', YAY')
LUt (X, Y )T (X, Y), VX, Y. X', Y'ep,.

(2.33)

where

(|xc+m>
XY\ 27 ) +IXHIY ]+ XY
(234) F@ (X, Y):(__ 1)!Yn0,(Y)]+|XmY09;(XA Y)| (__ 1)

VX,Yep,.
(235) Go(X,Y)=F, (X, Y)ilez(XA Y)!(|X|+|Yl)(_ 1)102<X)062(Y)l

(= 1)161iY)|(_ 1)l91(X)n61<Y)l(_ 1)IXn02(XAwl YI+Yn02X 2D IX]

moreover Fy (X, Y) and G,,(X,Y) are equal to +1 and F, (0,0)=G, (0,0)=1.
They can computed by a tendious calculation using essentially Proposition
(2.15).

From this result and using Proposition (1.16) we can conclude the following
theorem which is nothing but the fact the Clifford algebra is isomorphic to the
U.H.F. algebra.

Theorem (2.36). Let &5, &F (resp. £°,E%) be the multipliers of p,x p, previously

defined. The algebras A(p,xp 4, &) and A(p4xp 4 EF) (vesp. AP, X P %) and
A(p 4 X Py, €°)) are *-isomorphic. Namely there exists an isomorphism t,, (resp. ty,)
of paxp4anda function Fy (resp. Gy,) fromp,xp4to +1 such that &, (resp.d,)
defined by :

34(0% )= F, (X, V)55, (X, Y)

(reSp. &2(5§,Y) = GGZ(X, Y)ét:gz(X9 Y)) . VX’ YE pA ’
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realizes this isomorphism which is a symmetry, i.e. it satisfies (&,)* =i, (resp. (6,)* =i).
0, (resp. 0,) is given by (2.14) and F,_(resp. G,,) is given by (2.34) (resp. (2.35)).

It is clear if one restricts to the sets ({i}, @) and (9, {j}) that these isomorphisms
are the abstract version of the usual trick which allows to transform the generators
of the U.H.F. algebra into the generators of the Clifford algebra (see e.g. [4]).

For the sake of completeness we shall derive a result which shows that b? and
b are connected in the previous way if |A4] is even or infinite; if | 4] is odd the de-
generacy of b? excludes this fact.

Proposition (2.37). If |A| is even or infinite there exist isomorphisms T, of P, X P4
such that

bUX,Y; X, Y)=b*1,,(X, Y), 1,(X, YY), VX, Y, X.,Yep,,

where b' and b* are any of the two bicharacters described in Proposition (2.24).

Indeed it has been proved that b* and b® (resp. b and b%) are connected by
such an isomorphism, hence it is sufficient to prove the statement for b5 and b?
for instance.

1t can be shown that if it exists it cannot be of the form (2.8); namely it cannot
commute with 7, . We can give an abstract form of this isomorphism; nevertheless
it is perhaps more instructive to give an expression which connects the familiar
generators; let (67, 67),.y be the generators of the usual quantum spin system;
define

(2.38) bleyisy)= n G§j+10¥j+ 102i415
Jj<i

_ x y y
bley;i2)= n 02j+102j+102i+1>
j<i

b(f2i+1)= n G§j+2‘7§j+20')2ci+2 >
j<i

b(f2i+2)= H 034202420342 -
J<i
It can be shown very easily that the b(e)’s and the b(f))’s are the generators of
AP 4% P4 €. From this expression one can induce the form of the isomorphism
on the generating elements of p , x p,:

(2.39) Ts,({1}, O)=({1},9),
o, (2041}, O)=({1,3, ..., 2i+ 1}, {1,3,...,2i—1}), >0,
ts,({2}, B)=(9, {1}),
e, ({2042}, O)=({1,3,...,2i—1}, {1,3,...,2i+1}), >0,
15,0, {1})=({2}, ),
ts,@ 2i+1)=({2,4,...,2i+2}, {2,4,...,21}), >0,
5,0, 121) =, {2}),
oo, (20+2)=({2,4, ..., 21}, (2,4,...,2i+2}), i>0.

This form shows that |4] has to be even. It is not unique but it will be useful for
the proof of Corollary (2.41).
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For the sake of completeness, in Appendix B we give explicit formulas for the
other isomorphisms which connect the different bicharacters.

Theorem (2.40). Any two of the algebras A(p, XDy, E), where & is a multiplier
satisfying the conditions of Proposition (2.32), are x-isomorphic; the isomorphism
&, can be chosen such that :

6‘21(5>1c,y):f21(X, Y)ézzu(x,)') , VX, Yepy,,

where f,, is a function from p,xp,—{+ 1} and ©,, is an isomorphism of p X P4
—>p,xp,of the form:

‘CZI(X; Y)z(XAF(ZI)I(X)AF(ZI)Z(Y); YAG(ZI)I(Y)AG(ZI)Z(X))
where the F5,,/’s and the G, ,,;’s are homomorphisms of p 4.

Proof. The proof is a simple application of the previous results and essentially
Proposition (2.7).

For the sake of completeness we shall add a result pertinent to the Clifford
algebra.

Corollary (2.41). Let 5%, and #, be real Hilbert space of even or infinite dimensions;
H =H,DH, their orthogonal sum. Let W(H) (resp. W(H;)) be the Clifford algebra
built on A (resp. #,), then W(H) is =-isomorphic to WH)QW(H,). The isomor-
phism can be chosen such that it sends a finite product of generators in (A, ) QA (A,)
into a finite product of generators in W(H).

Proof. If dim#, = dim #, it is a direct application of formulas (2.38)
WA QUA) = Alp 4 X p 45 &)

for a set A with |4]|= dimJ#;; and
WA )~ Alp % pa: €D

For dim##, & dim s, one can built explicitly the isomorphism using formulas
similar to the formulas (2.38).

Appendix A

Let us prove the relation
bf(X,Y; X', Y’)=bS(’Col(X, V)it (X', Y').
One has:
(A1) bS(Tsl(X, Y)it, (X', Y")
= (= FABEANAY A0 BYI] ()X 80T INYS0,XS Nl
Since X, Y —(—1)¥"Yis a bicharacter of p:

(A2) b(1p,(X, Y);7y,(X', Y7))

=(— 1)!XF\Y’| FIXAYHIXAYA (X AY)|+ X' AY A6 (XAY)]
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Then using the formula (2.16)
(A3) b¥(1y,(X, ¥);74,(X, Y")

=(— 1)]XnY’|+ IX'AY|+|XAY||X'AY' |+|XAYAX AY')

Using again the fact that X, Y —(—1)*~¥l is a bicharacter of p,, and the obvious
formula

(Ad) | XAY|=IX|+]Y]|-2|XNnY|
(AS) b, (X, ¥); 79, (X', Y')) = (= XX T WX T X DX 110D
In order to prove that

bo((X, V) (X', Y)=b(1,(X, Y): 74,(X, Y)),
one proves first that
(A6) (— 1)[xa 0:(XA Y)Y AO2(X'AYY] (— 1)|X’A02(X’A Y)Y A 0,(XAY)|

— ( _ l)er\X’]+ [YAY' |+ (X +YDAX |+ Y]

in the same way as for 0, since 0, satisfies (2.19) which is the same than (2.16).

Moreover

(A7) (___ 1)]X092(XA Y A0(X' AY")| (__ l)lX‘AOZ(X’AY’)} Y2 0,(X0Y)) :(—- 1)|X||Y|+ XY

if one uses (A.4) and the relation (2.18). Combining (A.6) and (A.7), one proves (2.31).

Appendix B

In this appendix, we give explicit formulas for the different isomorphisms ;;
which connect different multipliers.
Let us remark that since one has

B.1) t;=1;"

ij= Y

TijTik=Tik
they are all obtained by suitable products of 7,,, 14,, 7,5 and t5,. Moreover we
use the following compact notations
(B2) N,={x;izk} k>0
(B3) E,={xp;isk} k>0
(B4) O,={x,,_1;iZk} k>0
(B.5) No=E;=0,=0.

Table 1 gives the ten different 7,;. Notice that 15 =17,=1.
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Table 1. Different isomorphisms of Theorem (2.37)

235

({2i+1},9) ({2i+2},0) @, {2i+1}) @, {2i+2})
Ty, (Nj,i1, N2 (N2 Nain) (N2 Naiiy) (Nas1sNoyia)
Tg, (Naiw1s N2y (Nys1s Nayis) (Na Naisq) (Nais2, Nayir)
Tsp (0141, 0) 0,0,4,) (E.s1, E) (E, Eiiy)

Nyi1,0) (@, N 44) (Nais, A2i+ 1}, 0) (0, Nyiy 2 {20+ 1))
Tpp (EA{2i+1},E) (E, EARi+1}) (0;+1A{2i+2}.0,,) (0i41,0,,,0{2i+2})
Tor ({2041}, Ny)  (Npieo, 2041}) ({2i+2},N,) (N3isa, {2i42})

(0,{2i+2},0)

(0,4:10{2i+2},0,. 1)

Tos NZH—D ) (ﬂ:NZH'l)

(Naisr, {204+1,2i42})

({2i+1,2i4+2}, Ny, 4 y)

Trg 0|+1» )

(0,4, 020 +2}, 0,A02i+2)) (E,, ; AQRi+1}, EA2i+13) (

E1+13E1)

s
(
(
15, (EAR2I+1}E) (B A2i+1},E L)
(
(
(

Tor ({2041}, Ny) (N5, {2i4+2))

({20413, Nayis)

(N2, {2i42})
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