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The Positivity of the Pressure in Thomas Fermi Theory*

R. Benguria'** and E. H. Lieb?
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Abstract. We prove the positivity of the pressure and compressibility for
neutral systems in the Thomas-Fermi theory of molecules. Our results include
some new properties of the Thomas-Fermi potential and a proof that the
kinetic energy is superadditive.

I. Introduction

The Thomas-Fermi (TF) theory of atoms, molecules and solids has been given a
firm mathematical foundation and many of the qualitative properties of the theory
are understood and have been proven [1] (see also [2]; properties of the many-
body TF potential are proved in [3]). There were, however, some open questions
in [1], one of which we solve in this paper: the positivity of the pressure and
compressibly for neutral systems.

The TF theory is defined by the energy functional (in units in which
h%(8m)~'(3/n)?* =1 and |e| =1, where e and m are the electron charge and mass)

&(0)=K(0)— Alg) +R(e)+ U (L.1)
K(@)=2{o(x)**dx
Ale)= [ V(x)o(x)dx

k

V(x)= ), zJx—Rj™*

R(o)= % [fe(x)o(y)lx —y| ™ dxdy
U= ) zzJR—R|™". (1.2)
1i<j<k

Here z,,...,2z, 20 are the charges of k fixed nuclei located at Ry,...,R,. [dx is
always a three-dimensional integral. £() is defined for electron densities o(x)=0
such that fo and f¢*? are finite.
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The TF energy for 1 (not necessarily integral) electrons is defined by

e(4)=inf{&(o)lfo =4} (1.3)
Itis known [1] that for A<Z= i z; there is a unique minimizing ¢ for (1.3). It is
the unique solution to the TF eazulation

o(x)*? =max[¢(x) — @, 0] (1.4a)
for some ®,=0, and with

G(x)=V(x) = flx =yl Te(y)dy. (1.4b)
— @, is the chemical potential [1], ie.

d%(? =—Q,. (1.5)

For A=Z, ¢(x)>0, all x. ,=0 if and only if 1=2Z and hence, for the neutral case
the TF equation is

0*P()=¢(x). (L4o)

If A>Z, there is no minimizing g for (1.3), and e(1)=e(Z) in this case.

There are various possible definitions of the pressure. The one we shall use is
the “change in energy under uniform dilation” defined as follows: Replace each R,
by [R,, | being a scale factor, and let e(4,[) be the TF energy for a given A and [.
Then P= — 0e/0V which we interpret as

P=—(31%)"0e(A, l)/0l. (1.6)

The reciprocal compressibility, ¥ ™!, should be — V%II; which we interpret as

kL= —(1/3)0P/dl. (1.7)

We shall prove that in the neutral case P and k™! are nonnegative (in the
atomic case they are, of course, zero). In the process of doing so, we shall prove
several interesting facts about the dependence of ¢(x), K, 4 and R on the z,. (Note:
here and in the sequel, ¢(x), K, A, R, etc. mean the respective quantities evaluated
at the unique, minimizing TF density, ¢9.) We are not able to prove that P and x are
non-negative in the ionic (i.e. subneutral) case but conjecture that they are. The
only thing we shall have to say about the ionic case except for appendix B is to give
a formula (1.14) for P in terms of ¢ and K. We are led to make the further
conjecture that P is a decreasing function of A and thus that the neutral case is the
worst case. When =0, P>0 and x>0 because e=I"" ) zz|R,—R|™". In other

i<j
words, the pressure is positive because the nuclear repulsion dominates the
attractive forces; this repulsion presumably grows stronger as electrons are
removed from the system.

The above definitions (1.6, 1.7) of P and k carry over, in the thermodynamic
limit, to the ordinary definitions for a solid (see [1], Sect. VI). There are, however,
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two other useful definitions which we will not touch upon in the main text (see
Appendix B, however) except to conjecture that P and x are non-negative for these
definitions as well.

(i) Dilation in one direction: Let R,—~(IR}, R?, R}), instead of R;—~IR,. Since this
is a one dimensional expansion it seems appropriate to define P= — de(4,1)/0l and
x~ 1= —10P/0l. As far as nonnegativity is concerned, this new definition changes i
but not P.

(i1) Separation relative to a plane : choose any plane which does not contain
nuclei. For convenience it may be assumed to be the x—y plane {(x!, x?,
x¥)|x*=0}. If R,=(R}, R}, R}), replace R} by R? +1if R} >0 and by R} —if R} <0.
Note that in this case we shift by [ instead of dilate by I. Again, P = — de(4,[)/0l and
k~!= —10P/dl In appendix B we will prove that P >0 if the plane is a symmetry
plane. This latter case was also proved by Balasz [4] but our proof is somewhat
different; it uses reflection positivity. Balasz assumed there were only two nuclei,
but his method works for any symmetric situation. One reason for being interested
in this special case is that our (and Balasz’) proofs are valid for the ionic case as
well.

The definitions we shall work with (1.6, 1.7) have one virtue, namely the
dependence of e on [ can be converted into a dependence of e on the z,. This is a
consequence of the following scaling properties :

Henceforth, Ry, R,, ..., R, are fixed (with R;+R; if i=j). We denote the k-tuple
z,, ...,z simply by z. Let e(z, 4, 1) be the energy with the uniform dilation [. Then,
from (1.1),

e(z, A,y =1""e(Iz, 1’4, 1) (1.8)
and the minimizing TF density satisfies
oz, A 1y x)=1"%(Pz, 1?2, 1;x/]). (1.9)
Substituting (1.8) in (1.6, 1.7) yields (assuming that all derivatives exist)

k
31'°P=Te—3P Y ze,~3P)e, (1.10)

i=1

K
N0kt =T0e—4213 Y zie,—4213)e,

i=1
k k
+9I° Y zzie, +91°0%,, + 18154 ). ze,,. (1.11)
Lj=1 i=1
In (1.10, 1.11) the notation is the following:
e;=0e(x, y,1)/0x;, e,=0de(x,y,1)/dy, etc.

These quantities are evaluated at x=1[3z and y=I[*A. A numerical error in the
expression for k7! was made in Ref. [1], Eq. (145).

A more convenient form for P is obtained by noting that e=K— A+ R+ U.
Furthermore, if (1.4) is multiplied by g(x) and integrated over the set on which
0(x)=0, one obtains

(5/3)K=A—2R—P\d, (1.12)
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moreover, e, = — @, (cf. (1.5)). Finally,

k
Py ze,=2U-A=2e—(1/3)K+11®, (1.13)
i=1
([1], Theorem I1.16 or Lemma V.7). Combining these facts and then using (1.8),
yields, for all 4,

3BP(z, 4, D) =elz, 1, )+ K(z, 4, ]). (1.14)

For an atom, 2K=A4 —~R (Virial Theorem, [1], Theorem I1.22), U=0 and
e=K—A+R. Thus (1.14) gives P=0 for all 4, as it should in this case.

The conjecture stated above, that the neutral case is the worst can be given a
more transparent form: ‘

Conjecture 1. e+ K is a decreasing function of 4 for fixed z and R,.

In this paper we will prove the positivity of P and « for the neutral case. In the
next Section the list of theorems to be proved is given. These theorems have an
easy heuristic proof and these are given in Sect. III. We do so because these
heuristic proofs are a guide to the proper proofs given in Sect. IV, and because they
may be a useful guide to future work.

II. Theorems to Be Proved

We will be concerned only with the neutral case and use the notation ¢(z, x), o(z, x),
e(z), K(z), A(z), R(z), U(z) to denote the TF potential and density at the point xe R?,
the total TF energy, the kinetic energy, the attractive energy, the electron repulsion
and the nuclear repulsion, respectively, (cf. (1.1)), for the unique TF g that satisfies
the TF equation (1.4b, 1.4c). zeR%, ={(z,,...,z,)|z;=20}. The R, are fixed and
distinct.

Definitions. If f is a real valued function on R% then:

(i) f is weakly superadditive(WSA)<=f(z, +z,) = f(z,) + f(z,), Vz,, z,€RY , such
that (z,,2,)=0, ie. (z,)(z,), =0, ¥i.

(i) f is superadditive (SA)<>f(z, +2,)2 f(z,)+ f(z,). Vz,, 2, RE.

(iil) f is strongly superadditive (SSA)<=f(z,+z,+2z;)— f(z,+2z,)— f(z, +23)
+f(z)) 20, Vz,, z,, z;e R,

(iv) f is ray comvex<f(lz,+(1—2Az,)SAf(z,)+(1=A)f(z,), VAe[0,1], z,,
z,eRY and either z; —z,eR% or z,—z,eR%.

(v) f is ray concave<>— f is ray convex.

(vi) f is increasing<>f(z, +z2,) = f(z), Vzy, z,€R%.

Obviously,
fis SSA and f(0)<0=f is SA=f is WSA. (2.1)

Further relations among these definitions are proved in Appendix A. These are
the following (CP(IR¥ ) denotes the p-fold continuously differentiable functions and
subscripts denote partial derivatives):

Lemma 2.1. (i) If feC*(RY) then f is SSA<f;;20, Vi, j.
(i) If fe CHRY) then f is SSA<f; is increasing.
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Lemma 2.2. (i) If fe C*(RY,), f(0)=0, and f;;=0 Vizj, then f is WSA.
(il) If fe CY(RY), f(0)=0 and f; is an increasing function of z; for j#i, then f is
WSA.

Remark. The converse implication is false as the WSA function f(z)=z, sin(z,) on
R?% shows.

Lemma 2.3. f is SSA implies f is weakly ray-convex, i.e. | satisfies definition (iv)
with 4=1/2.

Remark. The converse implication is false, even if SSA is replaced by WSA. On R%,
f@)=|z; —z,]+ 2z, +z, is convex (not merely ray-convex), increasing and f(0)=0,
but f(1, 1)< f(1,0)+ f(0, 1).

Lemma 2.4. If f is ray-convex and feC*(RY) then f, is increasing.

Corollary 2.5. If f is ray-convex and feC'(IR¥) then

k k
Y Al S fz+2) - fDS Y Ziflz+2).

i=1 i=1

The theorems to be proved can now be stated.
Properties of ¢(z, x) (neutral case) :

Theorem 2.6. For each fixed xeR?, different from Ry, ..., R,, z—(z, x) is in C}(R")
and C*(RX\Q). z+>¢(z, x) and z+->¢, (2, x) are equicontinuous in x. Furthermore,
k
(i) ¢z, x) =0, Vi, j, and is negative semidefinite as a matrix, ie. . -21 iz, x)
L=
<0 for all ceC".

(ii) ¢,z R,)= lim ¢,z x) exists (z0).
xR,

(iil) z—¢{z,x) =0 and is ray-convex, Vi.

(iv) lim {pz,x)—|x =R '} =0 exists. ¢z, x)<|x—R|™".
x—R,
(V) ¢z, R)= lim ¢(z,x) exists for i%j. Moreover, ¢(z,R)=¢z,R)).
x—=Rj

(vi) For every o< (1+ ]/7_5)/2, there exist an R(o) < oo and finite numbers M(a)
and B(a) such that ¢(z,x) S M(@)|x|”% — ¢z, x) S B@)[x|™* (z+0), hold when |x|
> R{x).

Using Lemma 2.1, we have

Corollary 2.7. For each fixed xeR?, different from R, R,, ..., R,,
(i) —¢(z,x) is SSA.
(i) ¢(z, x) is concave (not merely ray-concave).
(ili) —@,(z, x) and (¢(z, x) are strictly increasing.

Remark. That ¢(z, x) is increasing is Teller's Lemma [5], [Theorem V.5, [17].
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Properties of K, A, R and e (neutral case) :

Theorem 2.8. K(z)e C'(RY) and C*(IRX\0) and :

k

() K(2)=3 lim |$(z,%)— ¥ 2,6z %) (22)
(i) K (2)=—3 i 2,0,z R,). (2.3)

Remark. The limit in (2.2) exists by Theorem 2.6, and by e;= lim {¢(z, x)
x—R;
—z|x—R,|"*} ([1], Theorem I1.16, Lemma V.7).

Using Theorem 2.6 we have

Corollary 2.9. (i) K,(z) 20 and is positive semidefinite as a matrix,
(il) K(z) is convex (not merely ray-convex) and SSA on RY,,
(iii) K(Q)=0, which implies K(z) is SA.

Theorem 2.10. (i) R(z) and A(z) are convex (not merely ray convex) and SSA on R¥,.
(ii) e(z) is WSA on R

Remark. (ii) is just Teller’s Theorem [ 5], [1, Theorem V.17, e(z) is not SA. For k=1,
e(z)= —(const.)z”/3, [1], and this is not SA. However we make the following.

k
Conjecture 2. Let &(z)= ) e*(z j)» where e“(z) is the TF energy of an isolated atom

j=1
of charge z. Then e(z)—&(z) is SA.
Remark. e —& is not SSA because

(0%/0z7) (e — &)= lim (¢(z, x) —(0¢*/02) (z;, X)),

and this is negative if some z; 40 (j=1i) by Corollary 2.7 (iii). It is obvious that e —&
is WSA since e and —¢& are both WSA.

k

Definition. X(z)=3K(z)— Z z,K(z). (2.4)

i=1

Theorem 2.11. X(z) is SSA and X(0)=0. Hence X is SA. Moreover X(2) is ray convex
(as follows from Lemma 2.3 and Theorem 2.8).

These theorems can be combined to yield the desired results about the pressure
and compressibility.

Theorem 2.12. For the neutral molecule, the pressure and compressibility as given
by (1.6), (1.7) exist and satisfy :
(i) 3PP(z)=e(2)+ K(2), (2.5)
(i) 9Pk~ 1 (z)=6P(z)+2e(z) +3X(2) (¢f. (2.4)), (2.6)
(iti) P and x~ ' are WSA and non-negative,
(iv) 2P(z,1) is a decreasing function of l. Equivalently, e(z,1) is a convex function

of
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Proof. We can write (1.8) in the form e(z,l)=1""e(I’z), where e(I’z)=e(l’z, 1).

k
Hence 31'"°P=T7e—3I> ) ze, since ze; exists [1]. (1.12), (1.13) are true [1], and so
i=1
(2.5) is proved [cf.(1.14)]. Since e and K are WSA, so is e+ K and e+ K =(sum of
the e+ K for isolated atoms)=0. Using scaling again on the right side of (2.5)
(K(z,)=1""K(I’z,1) also), and Theorem 2.8(i), we can differentiate (2.5). Again
using (1.13) and rescaling, (2.6) is obtained. By Theorem 2.11, (iii) is true. To prove
(iv) note that for an atom, e= — (const.)z”/3 and K = —e; hence 2e+3X =0 in this

case. Since e and X are WSA, 2e+3X =20. Thus —I%I; >2P. If one writes P(z,[)
=1""n(z,1), then on/0l<0. [

The following conjecture, ~if true, would show that [*P is decreasing, for the
right side of (2.6) is 12I* P(z) + X (z). It would also show that K(z, l) is decreasing in .

Conjecture 3. X(z)=3X(z)—2K(z) is WSA.
Remark. X(z)=0 for an atom.

Let us define E(z)=e(z)— U(z). It has been proved ([1], Theorem V.3) that
— E(z) is WSA. We conjecture that something stronger holds, namely

Conjecture 4. E(z,1) is monotone increasing in [, for fixed z.

Remark. It is easy to check that Conjecture 4 is implied by Conjecture 1.
Conjecture 4 means that the pressure of a molecule in which the nuclear-nuclear
repulsion is neglected is negative instead of positive. Some results in this direction
for the Schrodinger theory are given in [11].

III. Heuristic Proofs

In this section we give simple, but non-rigorous proofs that K(z) and X(z2), (2.4), are
SSA and K(z) is convex. From this, Theorem 2.12 on the positivity of P and K
follows, as mentioned in Sect. II. We think it is important to provide these “proofs”
because the main line of the argument may be obscure in the proper proofs given
in the next section. These “proofs” assume that all necessary derivatives exist. Let
us begin with some facts about the TF potential ¢(z, x). Hereafter we refer only to
the neutral case. By (1.4) ¢(z, x) satisfies the TF equation

k

—(@n) ' APz, x)+ Pz, x)** = Y z,5(x—R,). (3.1)

i=1

The kernel for [—(@4n)~'4+¢Y*]™! is positive, and z,6(x—R,) are positive
“functions”. Therefore ¢(z,x)=0 all x. Differentiating (3.1) twice with respect to
the z's we formally get

[—(@m)~ 4+ (3/2)¢(z, x)"*1 ¢z, ) =d(x — R) (3.2a)

and

[—@m) " 4+ (3/2)$(z,%)"*1;z. )= = 3/D$z,x)" ¢z, X)d,(z,x). (3.2b)
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From Eq. (3.2a) we have ¢, =0, since the kernel for [ —(4n) "' 4+(3/2)¢*/*] 1 is
positive. For the same reason, ¢;;<0, all i,j, and therefore — ¢ is SSA. Multiplying
(3.2b) by ¢, ¢;, with ¢;e C, and summing over i,j we get,

[—(@m) " 4+(3/2)d(z, )] Z Ciije;=— (/4712 ;

i,j=1

Therefore the quadratic form Z Ci¢h;(z, x)c; is non-positive for all ce C*. Hence ¢

=1
is concave in R¥. Finally dlfferentlatmg (3.2b) with respect to z;, we have,

[—@m)~'4+(3/2)¢" 14,
=(3/8)¢ i, — (34~ 2 [dyd;+ b1+ D] (3.2¢)

which in turn implies ¢,;=0 all i,j,l. Indeed the following is formally true:
(="', ;20 for all i; and all n2 1.

Remark. 1f one assumes that the derivative ¢; ; exists, then Theorem 4 of
Ref. [3] shows that the sign is indeed (—1)***. To use Theorem 4 for this purpose
it is necessary to choose R;=R; for some i =/, but this is allowed, as explained in
[3] in the paragraph after (1.6). Theorem 4 of [3] directly gives the SSA of —¢
without going through Lemma 2.1. Indeed, Theorem 4 is a generalization of SSA ;
for example @z, +2z,+z3+24X) =Pz, +2,+23,X)— Pz, + 23+ 24, X)— Pz, + 2,
+24,X)+ Pz, + 25, X)+ Pz, + 25, X)+ Pz, + 24, X) — P24, X) 20. However, we are
obliged to prove the existence of the first two derivatives of ¢(z, x) because we need
them in our proof that K(z) and X(z) are SSA.

From ¢,;,;20 follows the ray-convexity of ¢; because the quadratic form
Z (¢,);22, is non-negative for all zeRR.
Bl=1
Now, let us formally show that K is SSA. We have to prove that K;;=0 all i,j
(see Lemma 2.1). For the neutral molecule the kinetic energy is given by

K(2)=(3/5) ] d(z,x)*?dx. (3.3)
Differentiating (3.3) twice with respect to the z’s we get,

Ki(2)=B/2)[] ¢(z. x)*"* ¢, (z, x)dx
+(3/2) [ ¢(z, )2 ¢z, x) ¢ (z,x)dx]. (3.4
Introducing (3.2b) in (3.4), partial integration yields

k
K;=3[¢;((4n)" 4 —$>?)dx= -3 l; 219;(R)),

where the last equality is a consequence of (3.1). But ¢;;=<0, all i,j and therefore
K;;=z0 and K is SSA. Furthermore [¢,;;] is negative semi-definite [recall the
discussion after (3.2b)]; hence [K,;] is positive semi-definite and K is convex.
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It remains to be shown that X,.>0, all i,j, that is, X is SSA (Lemma 2.1).

ij=
Differentiating X twice with respect to z;, z; we have

k
Xij=Kij“ Z ZlKijl

=1

k
=3 Z lem¢ijrn(Rl)’
Ilbm=1
where the last equality follows from (3.5). Therefore X;;20, all i,j because
G X) Z 0V, 1, j, m.

IV. Proof of Theorems 2.6-2.11

Here we give the rigorous proofs of the theorems enunciated in Sect. II. Only
neutral systems are considered. Let us begin by recalling some of the known facts
about the TF potential ¢(z, x) that we are going to need in our proofs:

(P-1) ¢(z, x) satisfies,

k

$lz,x)= Y zlx—R| ™ = [lx—yI"'d(z,y)**dy. “.1)
i=1

(P-2) ¢(z,x) is bounded and continuous on any open subset of R* which is at

non-zero distance from all the R, ([1], Theorem IV.1). In fact, the TF potential is

real analytic away from all the R, on all of R3> ([1], Theorem IV.6).

K
<¢(Z, x)— Y z]x—R,™! is continuous for all x.
i=1

(P-3) ¢(z, x) is strictly positive for z=+0 ([1], Theorem IV.3).

(P-4) |x|[*¢(z, x)—9n~ 2 as |x|— co, uniformly with respect to direction. (This is
Sommerfeld’s - formula, [1], Theorem IV.10.) Moreover, for every
c¢<3n~13R(c)< oo such that ¢(z, x)=c?x|~* when |x| =R(c) ([1], Theorems IV.8,
IV.10).

(P-5) Properties (P-1) and (P-2) imply that ¢(z,x)=z;x~R;|~ !+ g(x) near R »
where ¢ is a continuous function.

(P-6) By the foregoing ¢(z,x)e L? for every pe[1,3), and ¢(z, x)*eL? for
every pe(3,12).

(P-7) é(z,x) is increasing in z for every xeR?. (This is Teller’s lemma, [1],
Theorem V.5.)

(P-8) ¢(z, x) is strongly subadditive in z for every xelR® ([3], Theorem 4). In
particular ¢(z, x) is subadditive.

(P-9) ¢(z, x) is concave in z.

Proof of (P-9). Let yp(x)=(p(z, x)—ad(z,, x) — (1 —a)p(z,, x), with z=az,
+(1—a)z,, 0= 1. By (P-2) y is continuous for all x and by (P-4) yp goes to zero
at infinity, hence S = {x|y(x) <0} is open and =0 on dSU{0}.On S, —(4n) " 1Ay
= — (2, %)*? +ag(z,, ) + (1 =) P(z,, X)** = — (2, x)*/* + (2, x)*/> = 0 because
t+—13/? is convex. “Hence 1 is superharmonic on S and thus 1 takes its minimum
on 0Su{oco} where it is zero. Then S is empty.” [
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Remark. Since the argument between the apostrophes in the last paragraph
repeats several times throughout this paper we will denote it by MMP (maximum
modulus principle) to abbreviate.

If we call ¢,(z, x) the derivative of ¢(z, x) with respect to z,, we have formally

bz, x)=Ix =R ™1 =3[ Ix—yI" 'z, ) iz, y)dy. (4.2)

Our first task will be to investigate the general properties of equations like (4.2).

1V.1. General Properties of an Integral Equation [Eq. (4.4)]

We deal here with L? spaces (IR* always being understood) and with the weak L?
spaces :

Definition. feL? (p>0) if and only if there is a constant c¢<oo such that
Df(a)zu{xlif(x)|>q}gc"a”", all a>0, where pu is Lebesgue measure. The in-
fimum of all such c is denoted by || f], .

Remarks. (1) L?CLY, (for pz0). If fe L7, | f1I, =1 f1
(2) 1 fll,.,, is not a norm since it fails to satisfy the triangle inequality.
(3) It can be easily checked from the definition that |x|™'e L3.
We will need the following later.

Lemma 4.1. If f,ge L}, and L% respectively then f-ge L), and | f-gl,.,
2011wl gll g with P~ =p~ ' +q7" and 0<p,q,r < 0.

Proof. Without loss we can assume | fl, ,=lgll,.,=1.

XN x)g)I>ay C{x[1f () >a" o {x]lg(x)|>a"}.

Therefore D, (a) <D [(a"?)+ D (a"?). But D (a"")<a™"| f|%,, and D (a")
sa "l|gll3 ., whence D (a)<2a”". [

q,w?

Notes. (i) The constant 2*/" is not the best possible. It is easy to find a better one,
namely p'/Pq'/a/rt/r,

(i) For more details about L? spaces the reader can consult [6].

The main tool to show existence and uniqueness of solutions to equations like
(4.2) in some function spaces is given by:

Theorem 4.2. Let we L3(IR®), w real, and let 3 <p<3. Then the map

T, :g=w(x) [ Ix =y~ 'w(y)g()dy, (4.3)
is a bounded map from LF(R3)— LP(R3),
Note. Theorems of this kind have been proved by Faris [9] and Strichartz [10].

Proof. By the previous lemma A4 :g+wg is a bounded map from Lf—L! with
r =p 1 4+1/3. Also A4, restricted to L? is a bounded map by Remark (1). Now,
B:h+|x|"'+h is a bounded map from L/ —L! with 1+t '=r"1+(1/3) (since
|x|"*e L}, and the weak form of Young’s inequality, [6]), when t>1, 1 <r<3/2.
Therefore T, = A,,BA,, is a bounded map from L2 — L? for all pe(3/2, 3). Finally by
the Marcinkiewicz-Zygmund interpolation theorem T, extends to a bounded map
from LP->L? 32<p<3. []



The Positivity of the Pressure in Thomas Fermi Theory 203

If we restrict the domain of T, to L?, T, is a bounded operator from the Hilbert
space L? into itself. Moreover T, is self-adjoint and positive since the kernel
|x—y| ™! is positive definite. Hence we have,

Corollary 4.3. The equation (T,,+ 1)g=u with T, defined by (4.3) and we L, ue L*
has a unique L? solution, g. "

We now obtain the main result of this section:

Theorem 4.4. Let we L and woe L*. Then there is a unique f (defined a.e.) which
satisfies the equation

S)=0v(x)= [Ix =y~ 'wy)*f(y)dy (4.4)
a.e. and such that wfe L>.

Proof. (i) Existence: Define

)=o)~ flx—y1"'wg(dy, (4.5)
where ¢ is the unique L? solution (by Corollary 4.3) to
(T,,+1)g=vw. (4.6)

From (4.5) and (4.6) we have wf'=g and therefore the f defined in this way satisfies
(4.4) and also wfeL?. (ii) Uniqueness: Assume there are two solutions f;, f, to
Eq. (4.4) such that wf, and wf,e L% Both wf, and wf, satisfy Eq. (4.6) which has a
unique solution. Therefore wf; =wf, a.e,, and hence f, =f, a.e. [using 4.4)]. O

Having shown the existence of a unique solution to (4.4) for some class of v and
w, we next specialize to the particular v of interest.

Theorem 4.5. Let ueR? and let f, be the solution to the equation
L) =Ix—ul"" = [Ix=y" W) L)y, (4.7)
withwe L}

3 and h,(x)=w(x) |x —u| " 'e LAR?) for all ueR?. Then the integral in (4.7)
is finite for all xeR?® and thus f,(x) is defined by the right side of (4.7) for all x +u.
Furthermore, if u#teR3, f,(t)=f/(u).

Proof. Since we L3 and h(x)e L. Theorem 4.4 implies that there is a unique (a.e.)
function solving (4.7) and satisfying wf, =g,e L*. Since wf,e L* and h (y)e L* for
all x, the integrand in (4.7) is absolutely integrable for all x. Now, g, satisfies
(1+71,)g,=h,and (g, h,)=(9,1+T,)g,)=(1+T,)9,.9,)=(h.g,) since T, [defined
in (4.3)] is self-adjoint. Explicitly, this says

Fw)? LA x—ul ™ = £,(x) [x — 1] 7' ]dx =0.
Using (4.7) this implies 0=f,(t)—|t —u| ™' — fiu)+lu—t|"'. O

Up to now the only assumption on w was we L. We will now make a stronger
assumption about w in order to obtain continuity of the solution to (4.7). First, a
preliminary remark :
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Lemma 4.6. If fe L” and ge L with p,q dual indices different from 1 and oo then
f*g is a bounded continuous function going to zero at infinity.

Proof. This result is standard. See [1], Lemma I1.25. [

Lemma 4.7. Let we L3 and such that we LS~ *nL%"* ( for some £>0). Let v be such
that vwe L? and let f denote the solution to (4.4). Then the integral in (4.4) (namely
f—v) is a bounded continuous function going to zero at infinity.

Proof. By Theorem 4.4 the solution f exists and satisfies g=wfeL? Using
Holder’s inequality, wge LP- nLP* with p, =2(6+¢)(8+¢)~'. We can always
decompose |x|"'=|x|Z'+ x|t with |x|Zte LT, x|Z'e LT (n,, positive).
Choose 7, =ed+¢)”'; then (3Fn,) is the dual of p,. But f—v=|x|"'xgw
=|x|Z xgw+|x|Z ' *gw, and hence this lemma follows from Lemma 4.6. []

Remark. The w which will eventually be used is simply ¢/#(z, x). This satisfies the
conditions of Lemma 4.7 by (P-6).
We now study the dependence of the solution f on v and w.

Lemma 4.8. Let we L3 and such that we LS~ *nL°*¢ (for some ¢>0). Let ueR® be
a parameter, and let

v(x)=Ix—ul""+ V(x), (4.8)

where V(x) is a continuous superharmonic function, bounded and going to zero at
infinity such that wVe L?, then:

(i) The solution f, to (4.4) is non-negative for all x.

(ii) If v, is fixed and if w,(x)*=w,(x)* all x, the corresponding solutions f,,
(resp. f,) to (4.4) with w=w, (resp. w=w,) are such that f,(x)<f,(x) all x.

(iii) Now keep w fixed. Let v,,,v,, be of the form (4.8) with v,,—v,, superhar-
monic, then the corresponding solutions f,,, f,, are such that f, (x)=f,,(x) all x.

Proof. Since we L °nL°"* and |x—u| 'eL* " + L3 with n, =ed+e)™?,
using Holder’s inequality we have w(x)|x—u| *e L?. Therefore v,we L* and, by
Theorem 4.4, there is a unique solution f, to Eq.(4.4), with this v, satisfying
wf, e L?. Moreover by Lemma 4.6 and the properties of v,, f, [defined by the right
side of (4.4)] is continuous away from u and goes to zero at infinity. (i) Let
S={x|f(x)<0}. Since f,—o0 as x—u, S is disjoint from u and open (since f, is
continuous away from u). On S, the distributional laplacian of f, is given by

—(4n)"tAf, = —wf,—(4n)" 'AVZ —w3f,20.

Then (i) follows from MMP. (ii) Call y=f, —f,. v is continuous everywhere and
goes to zero at infinity. Let S = {x|y(x) <0}. Sis open and p=0on dSuU{c0}.On S,
—(@n) MAp=wif,—w3if, =2 —wip>0 and (ii) follows using MMP. (iii) is a
consequence of (i) and the linearity of f, in v,. [

Theorem 4.9. (Asymptotic Behavior of f(x)). Consider v(x)=|x|"! and w as in
Lemma 4.8 and, moreover, w(x)?*=c|x|~? for |x|>R and some ¢>0. Then f(x)

< M(c) x|~ for |x|>R where a(c)=(1+]/1+16nc)/2 and M(c)=a(c)” ' R*O~ ",
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Proof. Take w, defined by w,(x)*=c|x|* for |x|>R and wi=0 for |x|<R, the
solution to (4.4) corresponding to this w is given by f;(x)=M(c) x|~ for [x|>R
and  fi(x)=|x|"'(1+alx]) for |x|<R with M()=aulc)"*R*@~! and
a=(1—ulc))/(e(c)R). We have w(x)* Zw,(x)? all x and hence, by Lemma 4.8(ii) f(x)
< f1(x). In particular f(x)<M(c)|x|”* for |x|>R. [J

To close this section we prove the following,

Lemma 4.10. If v(x)=|x|"%, and w as in Lemma 4.8, then [w(x)*f(x)dx <1, If,
moreover, w(x)? Zc|x|~* for |x|>R ( for some ¢, R), then {w(x)* f(x)dx=1.

Proof. Assume fw”f > 1. Define the spherical average [f] (n=(@m)"" | f(rQ)dQ.
From (4.4) we have [ f]1(r)=r""—w(»)*f(y) [(4n)~* [ dQrQ—y|~ 1]dyjszUsing the
well known formula (4n)™" | dQIrQ—y| = {max(r,sl;l)}_1 we get [f] (r)

Srrtd= | o w)Af)dy). S’;’herefore for r large enough [f](r)<0 which con-

Ivizr
tradicts Lemma 4.8(i). Hence [w?f<1. Let us now consider w such that w(x)?
2¢|x|72 for x|>R. [f1(r)=r '(1—w?f) by the same arguments as above. If
fw2f <1, then [f](r)=dr~" for some positive d which contradicts Theorem
49. O

IV.2. Proof of Theorem 2.6 : Properties of the TF Potential

The strategy to prove that z—¢(z, x)e C' is the following: we first show that a
unique solution to Eq. (4.2) exists (Lemma 4.11) and is continuous in z uniformly
with respect to x (Lemma 4.13). We then show that @iz, x)=¢™ '[P(z +se;, x)
— ¢(z, x)], with ¢;=(5!) a unit vector in R%, along z,, converges to ¢z, x) as ¢—>0
uniformly in x. (Lemma 4.14). We then imitate the same argument to show that
deC?,

In what follows we study the equation

bz, x)=Ix —ul "' = (3/2)fdylx — ¥ " (2. ») (2. y). (4.9)

Note that w=(3/2)"/2¢**e L3 (since w goes as |x|™ ! at infinity) and we L? for all
pe(3,12) [(P-4), (P-6)]. In particular we L® °*nL®*? for some e >0, therefore
|x—u|"'weL? as discussed in the proof of Lemma 4.8,

Lemma 4.11. (Existence of ¢(z,x)). There is a unique ¢ (z,x) satisfying Eq. (4.9)
with ¢,p*'*eL?, and it has the following properties :

(1) ¢ (z,x)—|x—u|"" is a bounded continuous function going to zero at infinity.

(ii) z— ¢ (2, x) is non-negative and decreasing

(i) z—¢ (2, X) is ray-convex.

(iv) For every a<(l+ [/’E)/Z:4‘77, there exists an R(a)< oo and a finite
number M(o) such that ¢,(z, x)< M(o)x|™* for |x| = R(a).

Proof. Since we L] and |x—u| 'we L? Theorem 4.4 implies the existence of a
unique ¢,(z, x) satisfying (4.9) with w¢ e L. (i) follows from Lemma 4.7, since
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we L8 7¢nL%** As for (ii), Lemma 4.8(1) implies that z—¢ (z,x)=0 all x; (P-7)
together with Lemma 4.8(ii) imply that z—¢ (z, x) is decreasing. To prove (iii), let
z,, z,eRY with z, —z,eR% and define z=4z, +(1 —A)z, with 0<A<1. Define
p(x)=A¢,(z,, %)+ ({1 =D, (z,,x)— ¢ (2, x). Because of (i) yp(x) is continuous every-
where and goes to zero at infinity. Then S= {x|y(x)<0} is open and =0 on
0Su{oo}. From (4.9)

—(@m) " Ay =3{~ (2, )2 (21, %) — (1 = Ddlz,, x)'* ¢, (2,. X)
+¢(z, %), (z, %)} .

Because of (P-9), (P-7) and part (ii) (since z, —z,eR%) we have —(4n)”™ "4y =0.
Hence (iii) follows using MMP. (iv) given o <(1+ /73)/2 (i.e. ¢ <(9/27)) there exists
R(c)< oo such that w(x)?>=(3/2)¢(z,x)"/?> =c|x|”* (P-4). Hence, by Theorem 4.9,
P,(z, x) = M(o)|x|”* for [x|Z R(c). [

Remark. In the atomic case, Hille [7] used methods of ordinary differential

equations to prove that the asymptotic formula with a=(1+ |/73)/2 was exact

[[7], Eq. (4.5)].
We now prove a general theorem that we will later need:

Theorem 4.12. Let f be a real (or complex) function on RY.. Suppose f satisfies the
following condition :

1f(z) = flz)l <Kllzy — 2,113 (4.10)

forallz,,z,eRY suchthat z, —z,eR%,, for some 0.>0 and some K >0, then z— f(z)
is continuous in the whole of R¥..

Proof. Assume first that zeInt(R%). Let n=(1,1,..,1), and z,=z—dn, with
0= min (z)) (ie. z,eR%). Let z'€B(z,6), the ball of radius & centered at z.

15isk
Applying (4.10) twice we get [f(2)— f@IS (12— 2 l3+ z—2,|2K, because
Z—z,eRY, z—z,eRY. But, as §—0, ||z—z,ll,—0 and ||z’ —z,]| =0 uniformly in
B(z,9), so f is continuous at z. Now, if z is in one face, F, of R%. (of dimension 0 </
<k) the same argument can be repeated using 7= projection of p on F. [

Lemma 4.13. (Continuity of ¢,(z,x) in z). ¢ (2,x) defined as the solution to (4.9)
(Satisfying ¢*'*¢ e L?) is continuous for all zeRY, uniformly with respect to x.

Proof. We divide the proof into two steps. First we prove continuity at z+0, and
then at z=0. (i) z=0. There is a z*elR¥, z*=0 such that z—z*eR%. Let z,,
z,e(z*+R":) with z, —z,eR%. From Eq. (4.9) we get,
D22 %) = D21, X) =B/ Ix =y 7 P21, 1) [ Dz, 1)1~ blz,, 1) 12 ]dy
+B2fx =7z Pz V= bz 0] (41D)
Since z, —z,eRY,, ¢,(z,,X)— P,(z,,x) =0 because of Lemma 4.11(ii). Hence, (4.11)
implies

|22, %) = b, (21, 0 <G/D)fIx = 17 (2%, 1) (Plz 1, )2 = Lz, 1)),
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Because of (P-8) we have,

k
2 1
Pz ) =Pz NPz, =25, ) P Sz~ 2,157 X =R’ (4.12)
i=1 i

where the last inequality follows from Eq. (4.1). Hence

1h,(22,X) = @21, )| <llz; — 2, llzg(x), (4.13a)
where

g(x)=0G/2)flx—y" ; (I R l‘”)‘b (z*,y). (4.13b)

By  Youngs inequality g(x)eL™  because |x|7'eL*+L°? and
ly=R,| ?¢ (z*,y)e L? for any 1<p<2, in particular for p=4/3 and p=5/3.
[Lemma 4.11(i), (iv)]. Theorem 4.12 and Eq. (4.13) then imply that ¢ (z, x) is
continuous in z, uniformly with respect to x, for all ze(z*+R¥ ). But | ) (z* +R%)

=RX\{0}. (i) z=0, Equation (4.9) and Lemma 4.11(ii) imply
|z, %)= D, 0, ) S h(x) = flx =y 'z, ) Ply—u| " dy. (4.14)
Using Young’s inequality we get,
TGO, S Uz, ) X2 azya 7 1@y —ul ™ 55
xS e y—ul ™ 15,0

and thus [|h(x)|[ , ScldM*| 4, with ¢ < co because ¢p*'*|y —u| e L? for any (3/2)<p
<(12/5) and |x|Zte LP(p<3), |x|Zte LP(p>3). From (4.14) we finally get ||¢,(z, x)

— 00, )] , SclpV*|=c(f0)"® =cz"/®, where z= Z z. [
Let us define ¢z, x) to be ¢ (z, x) with u=R,. Then the last step to prove that
¢(z,x)e C}(RY.), uniformly with respect to x, is the following:

Lemma 4.14. (Convergence of ¢i(z,x) to ¢[z,x)). Let ¢i(z,x)=¢" '[P(z+¢e; X)
— ¢(z, x)] with ¢,=(8}) being a unit vector in RY,, along z; and ¢= —z;. Then $3(z,
X)— ¢z, x) as e—0, uniformly with respect to x.

Proof. (1) Consider first ¢>0. We will prove the following,
@iz, x)— Pz +ee;, x) 20, (4.15a)
$ilz, x)— Pz, x)<0. (4.15b)

Consider p(x)= ¢z, x) — ¢z +ee;, x). By Lemma 4.11 and (P-2), p is continuous
for all x and goes to zero at infinity. Then S={x|y <0} is open and =0 on
0Su{oo}. On S,
—(@dn) Ay =¢"'[Plz, x)** — Pz +ee;, x)*%]
+(3/2)¢z +ee, x)- Plz + e, x)M?
2(20)" ' plz + e, x) 2 plz, x) [ =3+ 267 1],
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where p?=¢(z +¢e, x)/d(z, x) =1 [by (P-7)]. Hence p? —3+2u~ ' 20. MMP then
implies (4.15a). The proof of (4.15b) is analogous. From (4.15) and Lemma 4.13,
[ @iz, x)— Pz, x)|| ., ~0 as 0. (i) If —z,<e<0, (4.15a, b) imply

¢i(Za X) é ¢f(z> X) é ¢z(,z + ée;, X) (4 16)

which in turn implies ||¢¥(z, x) — ¢z, x)|| , =0 as 70. O
If we denote by ¢,(z, x) the derivative of ¢,(z, x) with respect to z;, we formally
get (from (4.2)):

— ¢z, X) =3/ Ix =y 7'z, 1) Pz, )b (2, y)dy
—(3/2)fIx =) Pz, 1) (= Pz, y))dy. (4.17)

As we have already mentioned, the strategy to prove that ¢(z, x) is in C*(R%,\0),
uniformly with respect to x, will be the same as before. Now there will be an
additional difficulty, namely the control of ¢(z, y)~*/%. Let us start proving that a
solution to (4.17) indeed exists.

Lemma 4.15. (Existence of ¢,(z,x)). For z+0, there is a unique ¢, (z, x) satisfying
Eq. (4.17) and such that ¢,;¢""*e L*. Moreover :
(i) ¢;,(z, x) is continuous for all x. It is bounded and goes to zero at infinity.

(i) — ¢;/(z, x) is non-negative and so is Y E(—¢, 1z, x))c;, and ce Ck,
154, j<k
(iii) — ¢z, x) is a decreasing function of z.

Proof. Note first that, for z=+0, ¢(z, )~ *¢,(z, -)e L for any 1 <g<4. In fact, for
z#0, ¢ is strictly positive (P-3) and ¢(z, x) = ¢|x| ™ * for |x| > R=2max |R,| and some

positive constant ¢ (P-4). Because of Lemma 4.11(iv), ¢;0~ 1/* <, |x|* ™ for |x|
>R(x) with 4<a<4.77. Then if B(0,R(x)={x||x|SR@)}, ;¢ /*c LP(R*B(O,
R(x))), Vp=1. Inside B(0, R(x)) and away from R, ¢~ *¢, is bounded since B is
compact, (P-4) and Lemma 4.11(i). In a neighborhood of R; ¢,¢p ~'/* behaves like
Ix—R,|7** hence ¢, '/*e L for any 1 <q <4. Therefore, ¢,p~*/*¢ ¢~ /*e L* for
1=s<2 and, since x| 'e L, v,;=G3/4)x|" ' *(pp™ *,¢p~ e L' for any 3<t
<o (by the generalized Young’s inequality). Moreover, v;;¢'/*eL? because
¢*eLP, 3<p<12. Finally, since ¢p/*e L3, Theorem 4.4 implies that there is a
unique solution ¢,z x)(z#0) to Eq.(4.17) satisfying ¢'*¢,,eL? (i) By
Lemma 4.7, ¢;;+v;; is a bounded continuous function going to zero at infinity.
Lemma 4.6 shows that v;; is continuous, bounded and goes to zero at infinity
because (¢~ /*¢,) (¢~ '*p,)e L’ for any 1 <s<2and |x|”'eL*+ L. (i) Follows
from Lemma 4.8 because v;; is superharmonic and so is ¢, c; Lemma 4.11(ii)
and (P-7) imply that v,(z,, X)—v,(z,, x) is superharmonic if z, —z,€IR% . Then (iii)
follows from Lemma 4.8(i1) and (iii). [

In order to prove the asymptotic behavior of ¢, (z, x) we will need the following
comparison Lemma. See also [[1], Theorem 4.7].

Lemma 4.16. Assume that f,, f, are continuous positive functions on {x||x| = R} with
the following properties :

(©) f1(x), fo(x)=0 as |x|-co.
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(i) —(dn) " 'Af, =0, —w,f}, —(@4n)" 1 Af, =0, —w,f,, where the derivatives and
equalities are in distributional sense, and ¢,(x)Z0,(x), 0= w,(x) S w,(x).

(i1i) fi(x)=f,(x) for all x such that |x|=R. Then f,(x) 2 f,(x) for all x such that
x|z R.

Proof. Define w= f, — f,. Let S={x|p(x)<0}, which is open. On S —(4n)" ' 4y
=(9, —0,)—wp+ f,(w,—w,)=0. The Lemma follows from MMP since, by (i)
and (iii), p=0 at co and p>0 on 0S. [

Lemma 4.17. ( Asymptotic Behavior of ¢,(z,x)). Let a<(1+ ]/75)/2: 4.77 and let

¢, (2, x) be the solution to (4.17) satisfying ¢'/*¢, € L*. Then there exists an R(x) < oo

such that — @, (z,x) = B(a)|x| ™" for some B(e)>0, when |x|> R(a).
Remark. The remark below Lemma 4.11 also applies to —¢,;.
Proof. Consider the equation,
—(@m) tAf=br* A gy 2f, for r=|x|>R (4.18)

where oo — 1)=4nd, together with the boundary condition f(x)=N for [x|=R.
The solution f(x) to (4.18), going to zero at infinity is,

f(x)=N(R/r)* +4mb(30c—5)" Moo —4) " 'r*R*~*(1 = (R/ry"~%). 4.19)

Given any a(c)<(1+ |/7_3)/2 there exists R(c) < oo such that w(x)*=(3/2)¢(z, x)*/?
=c|x|™* (P-4) and ¢,(z, x) < M(a(c))|x|”*© (Lemma 4.11(iv)) for |x|=R(c). Hence
(3/4)6™ 1., < (3/AM(c)c '[x|> 2% for [x| = R(c). Using (4.17), (4.18) and the
comparison Lemma we get:

— ¢z, %) S[3nM2c ™ (B —5)" o —4) " r R TH(1— (R/r) ™ *)+ N(R/r)*

for |x|=R, with N= max (—¢,(z,x)) which is finite because ¢;; is bounded
x|=R

(Lemma 4.15(1)). [

Lemma 4.18. (Continuity of ¢,(z,x)). ¢;{z,x) is continuous in z for all zeRE\{0},
uniformly in x.

Proof. Let z*eRK\{0} such that z—z*eRY. Let z,, z,e(z*+R%) with
(z, —z,)eR% . Lemma 4.15(iii) and Eq. (4.17) imply

0=z, X)— Pz, x) SI(x) + (%), (4.20a)
with
1) =G/4)flx =" {2, )2 P22, ) (25, Y)
—Plz,,9) " 2z, 1) (24, Y)}dy (4.20b)
and
J(x)=(3/2)fbx = yI7 (= difz*, Y215 Y)V2 — Pz, )2 1dy . (4.20¢)

To estimate J(x) we use (4.12) to get.
J) =z, —2,13%9,(x), (4.21)
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k
where g,(x)=(3/2)fIx—y|" (= ¢, (z*, ») Y |y—R,)""*dy. Since for z0 ¢,; is
n=1
bounded everywhere [ Lemma 4.15(1)] and since it goes to zero at least as fast as
r~*3 at infinity (Lemma 4.17), |y|”"?¢,;e L? for any 1<p<6. In particular
ly—R,|""2¢, e L**NL* and therefore, by Young’s inequality g,eL* because
x|~ LeLA 42, I(x) is decomposed as,

Ix)=1,(x)+1,(x)+15(x) 4.22)
where

L(x) =G/ lx—=y17 Pz, 1) = Plz1, )7 )bz, Nz )y, (4230)
L(x)=3/4)f1x = yI” (di(z5, )

=iz, (21, )2z, V), (4.23b)
L) =G/4(x =y (z5, )
~ ¢z, WPz Y P dizy, y)dy. (4.23¢)

To find a bound for I,(x) we use Lemma 4.11(ii) and the following estimate:

Pz 9) 2= Plzy, )12
=[Pz, )= 22 V121, 1) 25, 0) " bz, 1) 2+ blzp, y) P17

3 b RY(1200070).

§ “Z1 "Zz”z

which follows from Eq. (4.1) and (P-7). Hence we have
L) =z —2,0,9,2(%), (4.24)

with  g,(x)=(3/8) [ Ix—yI"'dlz*, 1) > 2di(z*, y) o (z ,y)le R,|"'dy. Since

¢¢~'eL? for any pz6, (¢:p~ ) (§p~ ")eLF, p23. Also, ¢' Z [x—R,|" el

n=1
1<gq<2 and therefore ¢~ *?¢,0; Z Ix—R,| teL®, 1<s<2. Since |x|”'el*

+L%%g,eL* by Young’s mequahty Equations (4.12) and (4.23) and
Lemma (4.13) imply

L(x)SG/M4) [Ix—y7 g Iz, — 2,113 d2*, y) " 12 ¢ (2%, y)dy
with

9 =G x=yI"" Y =R~ " ydye L”

because of Lemma 4.13. Then
L(x) =z, —2205295(%) (4.25)
with
93() =G/ gl § 1x =37 2%, )" 2 (2, y)dy
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Since ¢~ ''*¢,e L* for any (3/2.5)<p <6 [Lemma 4.11(iv) and (P-4)] and |x| " 'e L*
+ L? we have g;e L. Then the lemma follows from Egs. (4.20a), (4.21), (4.24),
(4.25) and Theorem 4.12. [

We conclude with the proof that ¢eC*(R%\0) uniformly in x, with the
following

Lemma 4.19. (Convergence of ¢i(z,x) to ¢;(z,x)) : Let
bz, x) =2 [z + e, X) — bz, %)]

wit.h e;= [6;:] unit vector in R:. along z;and ez —z;. Then ¢z, x)~ ¢, (z, x) as e -0,
uniformly in x.

Proof. (i) Consider first ¢>0. As in Lemma 4.14 we prove first:
¢ij(2> X)= ¢fj(Z> X) = ¢ij(Z +ée;,x). (4.26)

Let p(x)=¢i(z,x)—¢;j(z,x). By Lemmas 4.11(i) and 4.15(1), y is continuous
everywhere and goes to zero at infinity. Then S={x|yp <0} is open and p=0 on
0Su{co}. Since £>0, using Lemma 4.11(ii) we get,

—(@m)Ap= —(3/2)dlz, x) "y
+(3/2e) iz +ee;, x) [Pz, X)"2 — Plz + e, )" +(6/2) bz, x) 2 (2, x)] -

Moreover, ¢(z,x)''* — P(z +ee;, x)'* +(1/2) p(z, x) " 2P (2, x) 2 0 because ¢'/*(z, x)
is concave (P-9), and ¢ is C3(IR%) for each x. Therefore, on S —(4n) ' A4y =0 and
by the MMP the first inequality in (4.26) follows. The other one is proved in the
same way. Lemma 4.18 and (4.26) then imply [ ;(z, X)— ¢, (z, x)|| , —0 as |0 for
z+0.

(ii) If —z;<e<0,(4.26) is replaced by ¢,z +¢e;, X) < ¢ii(z, X) = ¢, (z, x) and the
lemma follows from that. []

IV.3. Proof of Theorems 2.8-2.11: Properties of K, A,R,e, and X

We begin by proving that K(z) is in C}(IR%) and C*(IR%\0).

Lemma 4.20. (Existence of K(z)). Let K(z)=(3/5) | $(z.x)**dx. Then
Kiz)= lime™ '[K(z +e¢) — K(z)]

exists and is equal to (3/2) | Pz, x)*'* ¢,(z, x)dx, where e;=[61] is a unit vector along

Z;.

Proof. (i) Consider first the case £=0. Then
e ' [K(z+ee)—~K(2)]=(3/5) [ e '[Pz +ee; )7 — pl(z,x)>*]dx. (4.27)
Now,

e [z +ee, x)°2 — dlz, x)° ] =c ' P(w) [(z + e, x) — dlz, X)] Pz + ce;, x)V'7
(4.28)
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where P(u)=(1+ %3 " "1+ u+p*+ 1> +p*) and p=¢(z,x)Pp(z+¢e, x)" ' <1 by
(P-7). Hence P(u)<5/2. Moreover, because of (P-9) and Theorem 2.6,

Pz +ee;, x) — Plz, X) S ez, x) (4.29)
Using (4.29), (4.27), and (4.28) we get:

8_ ! [¢(Z + Sgi’ X)S/z - d)(_Zn X)5/2] §(5/2)¢1(z’ X) ¢)(Z + ggi’ X)3/2

S(5/2)x =R ' dlz+e;, %),

where the last inequality follows from (P-7) (assuming ¢<1) and Lemma 4.11(i1).
Since ¢3*(z,x)e L'nL? at least, |x—R,| '¢>?*(z+e¢,x)eL’. Hence the lemma

follows by Theorem 2.6 and dominated convergence. (ii) In the case —z;,<¢=<0, an
analysis similar to the above yields

6™ '[Pz + e, %)% — p(z, %)Y 2] £5/2¢ (2 +ee;, X) Plz, X)*?
S(5/2)x—R| Pz, x)*?el'. [

Lemma 4.20 assures us that the derivatives of K(z) along the axis exist. The
proof that K(z) is in fact in C'(R¥) is provided by the following:

Lemma 4.21. (Continuity of K(z)). K{(2)=(3/2)| $(z,x)**$z, x)dx is continuous
for all zeRX..

Proof. Let us prove continuity at z Let z*=2 max, (z)(1,1,...,1). Let
A={zeRk |z*—zeRE }. Obviously ze A. Consider z’€ 4, z'—z. By Corollary
2. 7(Gi),

D2, %) Pz, x) S [x— R (¥, x)* e L".

Moreover, as z'—z, ¢z, x)>2¢p (2, x) > P(z, x)*'*¢,(z, x) everywhere (Theorem 2.6).
The lemma follows by dominated convergence. [

The following is a useful alternative expression for K,(z).

Lemma 4.22.

K (2)=3 Jim {¢(z, 0= Y 5 x)}- (4.30)

Note. Because of (P-3) and Theorem 2.6(iv), the above limit exists.

Proof. From Egs. (4.1) and (4.2) we have
k

F(Z,X)_—_—(f)(_Z,X)— Z Zj¢j(g’x)

j=1

k
=(3/2) Zl Flx=yI7 bz, 9)' P2, 2, y)dy — [ Ix =y~ lz, ) *dy. (4.31)
j=
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The two integrals on the right side of (4.31) are bounded and continuous
everywhere, therefore,

F(z,R)=(3/2) 2, [ly=R|™'2;00(2, )bz, 5)"*dy = Iy =R " $(z, y)**dy.

4.32)
Because of Eq. (4.2) and Theorem 2.6(v) we have
Fly=R{I™ 'z )¢ (z, y)dy=[ly—R| Pz, »)"*d{z,y)dy (4.33)
for all i,j. From Egs. (4.32) and (4.33) we get,

k
Fz,R)=(3/2)[(z,9)'*$iz.y) 3. zjly—R|"dy—[ly—R|™ " ¢(z, y)**dy.

j=1
Combining the last equation and Eqgs. (4.1) and (4.2) we finally get
F(z,R)=(1/2) [ $(z,)*?d(z,y)dy =K (2)/3,
which is Eq. (4.30). Note that to get the first equality we have used
[dyd(z, )iz, y) [[ dwlw—yI™  p(z, w)*'2]
= [dy¢(z, )2 [[ dwlw —y|™ T d(z, w)' 2 (2, w)],

which is true by Fubini’s theorem, since ¢(z,y)"?¢,(z, y)e L' (Lemma 4.10) and
[dwlw—y|"'¢p(z,w)¥*e L* (Theorem IV.1, [1]). [

The right side of (4.30) can be written in terms of the right sides of the integral
Egs. (4.1) and (4.2). Using the same kind of dominated convergence argument as in
the proof of Lemmas 4.20 and 4.21, it is easy to check that K is differentiable and

k
Kij(Z)z -3 Z Zz¢zj(Za R)
=1

k
=-3Y) 2¢:(z R), (4.34)
=1
where the last equality follows by using Theorem 2.6.
Proof of Theorem 2.8. KeC!, KeC*R"Q) follow from Lemmas 4.20, 4.21,
Eq. (4.34) and Theorem 2.6. (i) is proved in Lemma 4.22 and (ii) is Eq. (4.34). O

Proof of Theorem 2.10. (i) Let us start with the convexity of R(z). Define z=0z,
+(1—a)z,, 2e[0,1]. Consider now the following identity:

2[R(z)—aR(z,) = (1 =) R(z,)]
=2 [ dxdy[P(z, ) —op(z,,X)>* — (1 =) Plz, X)* T Ix—yI 7 dlz, )
—a fdxdy[ Pz, x)*"* = p(z;, )2 [x = |7 [Plz, 1)** = dlz,, )]
—(1—0) fdxdy[p(z, x)*'* = b(z5, x)* ] |x = Y7 [z, y)*'* — dlz,, )*'*].
(4.35)
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The last two terms of the left side of (4.35) are negative because |x| ! is a positive
kernel. Moreover from Eq. (4.1) we get the following identity

Jdxdylx =y [dlz, x)*"* —o(z;, %)% — (1~ 0) bz, x)**1 (2, )*'
= — [ dxdy[d(z, x)—u(z). x) — (1 = 0) bz, x)] d(z, y)** =0, (4.36)

where the last inequality follows from the concavity of ¢(z, x) (P-9). From (4.35)
and (4.36) the convexity follows. The SSA is proved in a similar way. The Virial
theorem (Theorem 11.23, [17]) yields

A(z)=(5/3)K(z)+2R(2), (4.37)

and hence the convexity and SSA of A follow from those of K [Corollary 2.9(ii)]
and R. (ii) That e(z) is WSA on R¥ is proven in [1], Theorem V.7. See also [3],
Theorem 1. (This is in fact Teller’s Theorem [5]). []

Proof of Theorem 2.11. Equation (2.4) and Theorem 2.8 imply

k

X{2)=2K{2)— ), z;K (2). (4.38)
j=1
Using now (2.2), (2.3), and (4.38) we get
X(z)= J}Ln}}i 6N(z,x), (4.39)
with
k k
NG9=¢z 0= Y 202 0+0) Y 2262 (440)
j=1 =

Note that in order to obtain (4.39) we have used ¢e C* and also Theorem 2.6(v).
Note also that the limit in (4.39) in fact exists because of (P-2), Theorem 2.6(iv) and
(ii). Let us compute N(z+¢, x)— N(z, x) for ge IR . Using (P-9) and ¢eC"' we have,

k

blz+ex)—zX)Z ), e z+ex). (4.41)

ji=1
From (4.40) and (4.41),

k

Niz+ex)~NEzx)z = Y z[z+8X) —z,%)]
k

k
+(1/2) Y e zte)¢uztex)—(1/2) X zz$,(z%). (4.42)

j.l=1 Lj=
The ray-convexity of ¢, [Theorem 2.6(iii)] implies:

k k

Z 'de)ij(za X)SQfz+ex)— @z, x)= Z ‘9j¢ij(2 +£X).

Jj=1 j=1
We conclude that

k

N(z+egx)—N(z,x)=(1/2) Z 313j¢j1(2+§a x), (4.43)

Jl=1
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since ¢;(z+e x) = ¢z, x) [Lemma 4.15(iii)]. Although the right side of (4.43) is
negative, it is second order in ¢. The following Lemma 4.23 shows that under these
conditions N(z,x) must in fact be increasing. Hence X (z) is increasing and by
Lemma 2.1 X is SSA. [

Lemma 4.23. Suppose f:[a,b]—R is a real-valued function such that for every
xe[a,b] there is a c(x) such that f(z)— f(x) = c(x)(z — x)? for all ze[a,b] with z=x.
Suppose further that ce L*([a,b]). Then f is increasing, i.e. z>x=f(z) = f(x).

Proof. Let N>1 be an integer and let Ij, for j=1,...,n be the interval
I;=(x+(j—1)(z—x)/n, x+j(z—x)/n). Then

0= -F= 3 (0, )-10)

with yo=x, y,,, =z and y,e ;. Without loss of generality we can assume ¢(x) =0,
all x. Then

52 {n*l > c(y,»} {4z — /)

j=0
z b
because y;,; —y;S2z—x)/n. Let d;= [c(x)dx and d= ) d;=[c= [e>—o0.
I, j=1 x a
For each j, there exists y,e1; such that ¢(y,) | 1=d,, otherwise [ c<d,. Using these

J IJ
y; we have

5= {n'lc(x)~|—n‘1 zn: dj((z—x)/n)“‘}{4(Z—x)2/n}.

Taking n— oo proves the lemma. []

Appendix A

Properties of Superadditive and Convex Functions on IR,

The definition of superadditive and convex functions on IRY,, as well as many of
their properties, were stated in Section II. Those properties, Lemmas 2.1 to 2.4 and
Corollary 2.5, will be proved here.

Proof of Lemma 2.1. (i) = is trivial because fe C*(R%). To prove <, define
F(A,W=f(z+ Az, +pzy)—fz+7z,) = fz +pz,) + f(2). Then, for z,,z,eRE,

k
Fy(AwW=0F (4, w/oX)= Y (z,); [ filz+ 4z, +uz,)— flz +2z,)]. (A.1)
i=1
and
k
Fo (A 0= Z )i (2,)fifz+ Az, +pz,) 20, (A2)
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where the last inequality follows from £:;20 all i,j. But F,(4,0)=0, and hence
F,(4, 0)=0. Also, F(0, u) =0, and hence F(4, 1) 2 0. (ii) = follows immediately from
the definition of an SSA function and the fact that fe C!(IR%). To prove <= note
that if fe C*(R%) and f; is increasing we get, from (A.1), F,(4, 1) =0. But F(0, 1)=0
and therefore F(4,u)=0. [

Proof of Lemma 2.2. This is similar to the previous one, taking into account that
fi;z0alli,j, i%j,and z,-z,=0 imply

i

K
z (z1)i(z,);/;;20. O

Proof of Lemma 2.3. If f is SSA, taking z,=z,, in definition (iii) we have that
S/ 2z, +(1/2) (2, +22,)) =(f(z)/2) +(f(z, +22,)/2). O

Lemma 2.4 is a well known fact for differentiable convex functions. See [8], for |
example.

Proof of Corollary 2.5.

Sz, +Zz)‘f(§1)= (f(Z1 ‘i‘)@z))d/1

(9

Oy b O ey
™M= &=~

k
(z):fl Az, +2)dA = _; (z2)iflz, +2)

1

[

i

because f; is increasing, by Lemma 2.4. The other inequality is proved in the same
way. [

Appendix B

Positivity of the Pressure Under Separation Relative to a Plane
(in the Symmetric Case)
Consider 2k nuclei with coordinates R,,...,R, and R_,,...,R_, and strictly
positive charges z,, ..., 2, Z_4, ..., Z_ satisfying (for i=1, ..., k)
z,=7_;
R}!=R', R?=R?

— — i

—R},=R}>0.

Let e(l) denote the TF energy for this molecule when R} is replaced by R} +1,i>0
and by R? —1, i<0. The electron charge 2 is immaterial but is fixed at some value
k

AL2) 7,

=1
Theorem B.1. The pressure is strictly positive, i.e.,
e()<e(0) for 1>0. (B.1)

Proof. The proof consists of showing that if the charge distribution (electron and
nuclear) is cut in two parts at the x> =0 plane, and then pulled apart by a distance
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2I, the energy is lowered. Let g(x) be the TF density when [=0. Define g,(x) by

Ql(x) = Q(x - (09 07 l))’ x3 z Z

o) =0(x+(0,0,1), x* < —1

0,(x)=0, —I<x*<I.
Clearly {g,=[o=4, and we will use g, as a trial density for the | problem. We will
show that &g, <&(e)=e(0), where &, (resp. &) is the energy functional for [
(resp. 0). Obviously, K(g;,)=K(g).

Let DCIR® be the domain {(x*,x?, x°)[x* 20}. For any function f: f: D—C, let
Wif)= If) If) dxdy f(x)f(D) K (x, ),

K, y)={(x" =y +(x* =22 + (3 +y> + 202 712
In other words, Wj(f) is the Coulomb interaction energy between a charge

distribution f, supported on the x*=0 side of the xy plane, and its (complex
conjugate) reflection through the plane x*= —1. It is easy to see that

ée)— &)= W) — Wyu),
where p is the charge density for x® =0 for the /=0 problem, namely for x*=0

(B.2)

k
1(x) = —o(x)+ 'Zl z8(x—R)). (B.3)

Since u=+0, and Wo(u)——-lliln(r)l W(u), the following Lemma B.2 completes the

proof. [

Lemma B.2. (Reflection Positivity of the Coulomb Potential). Let f be a non-null
Sfunction with support in D ={x|x* =0} and with fe L*(D). Then, for >0, W(f)>0,
and W{f) is a finite, strictly decreasing function of |. Moreover, W(f) is a log convex
function of 1, vanishing at 1= co.

Proof. Using the well-known representation for |x| ™!, we have that
K(x,y)=(2n*)"" [d’plpl~ ? exp{i[p'(x' —y") +p*(x* — y?)
+p2(x° +y°+ 201}
=Q2n)~* [ d?plp| ™' §,(x)g,(y) exp(—2lpl])
with g (x)=exp[ip'x' +ip’x*> —|p|x*].
We have used the fact that
§ dp’[(*)* +a’1" texplip(x® +y* + 2] =(n/a) exp[ — a(x* +y* +20)]

when x*+®+2/>0, as it is here. For peR% let h(p)= [ f(x)g,(x)d*x. Since

D
feL*(D), lh(p)|=|fll,, and h(p) is null if and only if f is null. For >0 Fubini’s
theorem yields

W(f)=2m)~" {d*plp|~ " |h(p)|* exp(—2pl]). (B.4)

The representation (B.4) proves the lemma. []
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Note Added in Proof

In a recent related work [12], H. Brezis and E. H. Lieb have proved that the interaction among neutral
atoms in Thomas-Fermi theory behaves, for large separation I, like I'l 7.





