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Abstract. In this paper we consider the following problem: Given a x-algebra
o/ of unbounded operators, under what conditions is every strongly positive
linear functional f on &/ a trace functional, i.e. of the form f(a)=Trta, ac o,
where ¢t is an appropriate positive nuclear operator. Further, the linear
functionals f on o/ which can be represented as f(a)=Trta (f and ¢ not
necessarily positive) are characterized by their continuity in a certain topology.
Some applications (canonical commutation relations on the Schwartz space,
integrable representations of enveloping algebras) are discussed.

Introduction

In the algebraical frame of quantum theory the observables are symmetric
elements of a x-algebra of (in general unbounded) operators in a Hilbert space. The
states are usually considered as positive linear functionals on this algebra. Many
important examples of states in quantum physics (for instance, the Gibbs states for
free Bose gas) are trace functionals, ie. they are of the form f(a)=Trta with a
certain density matrix ¢. In this paper we are dealing with trace representation of
strongly positive linear functionals and more generally of arbitrary linear func-
tionals. To be more precise, we will study the following problems.

Problem 1. Under what conditions is every strongly positive linear functional f
on an Op=-algebra o/ a trace functional f(a)=Trta, ac.</, t an appropriate
positive nuclear operator.

Problem 2. Characterize the (not necessarily positive) linear functionals on .of
which can be represented as f(a)=Trta. Here the nuclear operator ¢ is in general
not positive.

Problem 1 has already been studied by several authors [16, 21, 4, 18]. For
Problem 1 Sherman [16] proved this to be the case for each countably generated
closed Op=-algebra which contains the restriction of the inverse of a completely
continuous operator. Woronowicz [21] has shown that the algebra L'(%),
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¥ =S(R,) being the Schwartz space, and the Ops*-algebra generated by the
position and momentum operators also have this property. Lassner and
Timmermann [4, 18] obtained results on the continuity of trace functionals. It is
not difficult to see that every strongly positive linear functional on a x-algebra o/
with Fréchet graph topology 7, on & can be extended to a strongly positive
linear functional on L*(2). This suggests the problem to characterize the closed
domains 2 having the property that all strongly positive linear functionals on
L'(2) are trace functionals with positive operator . For Fréchet domains we give a
complete characterization of these domains. Before discussing our results let us
note that in the case of an infinite dimensional Hilbert space 2 = there are
always positive linear functionals on B(4#) which are not trace functionals [15]. A
simple example of such a functional can be obtained by extending a character
g{x):=x(s), se[0, 1], on the commutative C*-algebra C(0, 1) to B(L,(0, 1)).

In this paper Problem 1 is studied in Sects. 2 and 3, while Problem 2 is treated in
Sects. 4 and 5. We will prove that all strongly positive linear functionals on a self-
adjoint Op=*-algebra ./ on & are trace functionals with positive densities ¢ if ./
contains the restriction to & of the inverse of a completely continuous operator
(Sect. 2). This extends the corresponding results of Sherman, Woronowicz, Lassner
and Timmermann. For domains & with Fréchet graph topology /. it is shown in
Sect. 3 that all strongly positive linear functionals on L"(2) (or equivalently, on
each Op=-algebra .o/ on & with /_,= /) are trace functionals if and only if Z[ 7]
is a Montel space. Note that the Montel property of ¢/, is weaker than the
existence of an operator in L"(2) which is the inverse of a completely continuous
operator. If the Fréchet space Z[7,] has an unconditional basis, 2[7,] is a
Montel space iff the domain does not contain an infinite dimensional Hilbert space
as a subspace. These domains are called domains of classI in [5]. Section4 is
devoted to a topological characterization of the trace functionals. We prove that
an arbitrary (not necessarily positive) linear functional f on a closed Op=*-algebra
with metrizable graph topology has a trace representation f(a)=Trta if and only if
it is continuous with respect to a certain topology t5,. In Sect.5 we give some
applications of this theorem. For example, it is shown that each linear functional f
on the Op=-algebra generated by the position and momentum operators ¢;, p;
j=1,...,n, on the Schwartz space ¥(R,) is a trace functional f(a)=Trta.
The definitions and notations used in the following are collected in Sect. 1.

1. Preliminaries

Let & be a dense linear subspace of a Hilbert space s# and ./ a vector space of
linear operators on Z. We call o =-invariant if for each ae .o/ the adjoint operator
a* is also defined on 2 and the restriction a* :=a*!Z is in .«/. For *-invariant
vector spaces &7 the following notations are useful:

D)= () D), D (A):= () D a*), of,:={aee/ a=a"},
aesd ac.d
A ={aed {ap,¢p>=0 forall ¢eP}

and a=biffa—be o/ . of is said to be closed on Z if 9 = P(</) and self-adjoint on
2 if 2=2 () [20,9]. By a strongly positive linear functional f on o/ we mean a
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linear functional f on .7 with f(a)=0 for all ae .o/ ,. Notice that for unbounded
operator algebras this requirement is considerably stronger than the condition
f(a*a)=0Vae .o/ which usually defines the positive linear functionals on &7 (see in
this connection {12]).

Suppose now 7 is a x-invariant vector space of operators on & containing the
identity I =1I,. (It is not assumed that the operators ae .o/ leave & invariant.) We
define

\S(A)={te B(#): the closures of ta and t*a are of trace class for all ae o/},
S(A)={te,S(A): tH D, *H LD},
S, ={te,S(H): 120}, S (), ={1eS (H): 120}.
Further let us write €,(2), instead of &,(L7(2)), .

[t is clear from the definition that te | &(/) (or te S,(7)) implies t*e , S() (or
t*e S ,(/)). Because Ie.o/, all operators te,S(o/) are of trace class on H#. For
te ,S(o/) we define ,f(x)=Trtx and f(x)=Tr(x")*t, xe.o/ (cf. [4], p.298). Since
a*t is of trace class for each te  &(/) and ae.o/ and t# C P (/) (see the lemma
below), the definition of f|(x) make sense. Some basic properties of these notions
are collected in Lemma 1. For simplicity we suppose that # is a separable Hilbert
space.

Lemma 1. (1) For eachte (/) the operator a*t is of trace class and t# S D (oA).

(2) If o is self-adjoint, then |S(of)=C () and S(A), =S, (H),.

(3) If te © (), then f(x)=Trix=Trxt=f(x) for all xe /.

(4) For each teS (), f(x)=Trxt (=Trtx) is a strongly positive linear
functional on .

(5) Suppose </ is an Opx-algebra. Then every te € (/) can be written as t
=t, —t,+i(ty—t,) whereby t,€ S (/) ., j=1,....,4.

We shall sketch the proof of the lemma.

Let te,S(o7) and ae.o/. Since t*e,S(o/), t¥a is an operator of trace class.
Because of (t*a)*2a*t, a*t is of trace class. t# C9,(o/) is an immediate
consequence of the boundedness of ta. This proves (1). (2) is obvious because
tH C D (A).

The proof of (3) and (4) is similar to the bounded case. Here we carry out the

proof of (4). Suppose te S, (), and ae.</,. We have Tria= ) {iap,, $,> for

each orthonormal basis {¢,}, .y of #. We choose an orthonormal basis consisting

of eigenvectors ¢, to the non-zero eigenvalues 4,, of t and of elements ¢} e Lin

(¢, me N)*. Since the vectors ¢, =/~ 't are contained in t# and t# C P for

te @ (), it follows Trta= Y {ta¢,, ¢,>+ Y. Fady, ¢i>= " 1, ad,, ¢, > =0 be-
k

m

cause the eigenvalues 4, are positive. Thus (4) is proved.
Next we show (5). By the s-invariance of S,(.«/) we may assume that t is
hermitian. As already used in (4) we have Trta= ) 1,<{ad,, $,>. Denote by 1}

m
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(4) the positive (negative) eigenvalues of ¢ and by ¢ (¢,,) the corresponding
eigenvectors. Putting

=Y 1K di>dy and t_p=Y —2, b, b,

we have t=t, —t_. Because te S, () the series ) [<Ta¢,, d,>|= Y. |i.{ad, . >,
hence also ) A'[<ag,:, d,5 >, are convergent for all ae.o/. Putting a=xx", xe.o,

(# was assumed to be an Opsx-algebral) we see that Y Af<{xx" ¢t ¢l

m

=Y x* Vi, %= Ix" |/t, ¢,|*><oo. This means that x™ |/, is an oper-
+ ¥m + 7'n

ator of the Hilbert-Schmidt class for each xe.o/. Hence ]/ng(x+ [/Z:)* and
]/f: (because Ie.o) are also of the Hilbert-Schmidt class. Thus, ¢, x= [/i: r.Xx
is of trace class for all xe.«, ie. t, €S, (),.

Similarly, ¢t _e &, (), which finishes the proof of (5).

Remark. For each operator te,S(«/) the functionals ,f(x)=Trtx and
f{(x)=Tr(x")*t are well-defined linear functionals on .«/. But without the ad-
ditional assumptions t# C D, t*# C 9, the assertions of Lemma 1, (3) and (4), are
no longer true even if o7 is a closed Op=-algebra. We include a simple counter-

example.
2

75z on the invariant domain & of all
S

infinitely differentiable functions with support strictly inside the interval [0,1] in
the Hilbert space s = L,(0, 1). Let Z(x) be the Op=-algebra on &, consisting of all
polynomials p(x) in x. The extension p(x)— p(X)t D of Z(x)to D:= () 2(p(x)) is

pe?(x)

~1—) se C*(0,1)
12

we have x*y =iy. Hence, pe 7 (). Clearly, p¢ 2. Now take the one dimensional
operator P &=(&y)y on #. Since P ap=<ad,pyp= Lo, a*pyy for aed,
pe, it is clear that P a is nuclear for all ac /. Thus, P e,&(/),. We see that
TrP a=<y,a*y) and Tr(a*)*P ={(a")*p,p) for all ae,szi Putting a=x we get
TP, »X=—ilw|? and Trx*P —1|11p1|2 hence TrP,x=+Trx*P,. Therefore neither
TrP a nor Tr(a™)*P,, are hermltlan linear functlonals on /. In particular, they
are not strongly positive because xe.2/ |

Finally, we collect some definitions about unbounded operator algebras (ct.
[3]). L7 (2) is the set of all linear operators a which are together with the adjoint
operator a* defined on & and leave & invariant. L' (2) is a s-algebra with the
multiplication (ab)¢:=a(bd), e 2, and the involution a—a™ :=a*} 2.

An Op=-algebra o/ on 9 is a x-subalgebra of L' (2) which contains the identity
I=1,. The locally convex topology ¢, on & defined by the seminorms
ol :=llad|l, ae o, is called the graph topology of of on 2. For brevity we write
¢, instead of #; . 4. An Opx-algebra .o/ is closed if and only if the space Z[# ] is
complete. The domain Z is said to be closed if L(2) is closed on .

Consider the differential operator x = —

. r
a closed Op x-algebra .o on 9. For the function y(s): =exp (% +i
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By Z(#) we always denote the =-invariant vector space of all bounded
operators a on # whose range is contained in a finite dimensional subspace of .
F(9D) is the x-invariant subspace of all ae #(#) with range aC 9.

2. Op=-Algebras with a Compact Embedding

Let o7 be an Op=-algebra on & and & a =-invariant linear subspace of % () with
F 2F(9). By o 5z we denote the linear span of ./ and & regarded as operators on
the dense domain Z. Clearly, &/ 5 is *-invariant.

Lemma 1. Let f be a strongly positive linear functional on <o 4, i.e. f(a)=0 for all
ae.sf 5. Suppose the Hilbert space A is separable.

Then there exists an unique operator te ,&(&f), such that f(a)=Trta for all
ae F . Furthermore, we have Tra*ta<f(a™a) for all ac.o/.

Proof. Since all operators ae #(#’) are bounded and Ie.«/, o/ ;_is cofinal in the
ordered vector space .o/ . By the classical Krein-Rutman theorem the
functional f can be extended to a strongly positive linear functional on .« 5, and
by linearity on .« z(,,,. This means that we may assume without loss of generality
that # =7 (#).

Let P, be the one dimensional operator on & defined by P, ,{=<&,y) ¢ for
¢, peA. Then P, e F(H)C oA 5y, for all ¢,pet. Let B(o,y):=f(P, ) for
¢, peA. Since O0=P, =< |21, the strong positivity of f implies
0=B(¢,9)=f(P, ;) =I¢|I” f(I). The usual polarization decomposition of B(¢, )
gives us |B(o, )| S Cld| |yl Vo, pe#. Hence B(¢,y) is a bounded quadratic
form on . Thus there is a bounded operator teB(#°) such that {t¢,v)
= B(¢, p) Vo, pe # . Because B(¢p, p)=0Vpe A, t is a positive (hence self-adjoint)
operator.

Our next step is to prove that te,&(/),. Suppose that ae./. By the
separability of s we can choose an orthonormal basis {¢,},.y for # of vectors

k
$,€9. Let us consider the operator b,:= Y P, ., €7(%). Then
j=1

k o0
Cbap.wy = ; (ad,, ) <, ad,» < ;1l<¢n,a+w>|2=ila+w|tz=<aa+w,w>

for all e 2 which means that b, <aa™. Using the strong positivity of /' we get

Sb)= 3 f(Pupyu5)= Y. 109,,09,> = flaa)

and

Y. Ctagad,y= Y. ||)/1ag,|* <f(aa"). (1)
j=1 j=1
Hence |/t a is a Hilbert-Schmidt class operator for all ae o/. In particular, ]/t is of

Hilbert-Schmidt type because Ie.«/. Consequently, ta= [ﬂ ]ﬂa is of trace class
which proves te ,S(),.
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Now we verify that f(a)=Trta for ae #. By f(P, )=td,p)=TrtP, , thisis
true for the one dimensional operator P, . Since each operator ae #(#) is a
linear combination of one dimensional projections we get f(a)=Trta for all
ae F(A). Obviously, the bounded operator ¢ is uniquely determined by the
requirement {t¢, ) =f(P, ) for all vectors ¢, of the dense domain &. Because

tAH CD (), (1) gives us Tra*ta= ) {a*ta¢,, ¢,><f(aa™). Now the proof of the
ji=1
lemma is complete.

Remarks. 1. Lemma 1 (in a different form) is due to Uhlmann [19].

2. Let o =L () and F =F(2). Then o/ , =L (2). If [ is a strongly positive
linear functional on L*(2), then according to Lemma 1 there is an unique trace
functional g(a)="Trta, te ,S(/),, on L' (Z) such that f and g coincide for all finite
dimensional operators ae #(2). We call g the trace part of f.

The main result in this section is

Theorem 2. Let .o/ be a self-adjoint Op=-algebra on 9 and f a strongly positive linear
Sfunctional on /. Suppose, there is an operator ce .o/ such that the embedding map
i,:9(C)—>H is completely continuous.

Then f is a trace functional on o/ with positive density matrix t, i.e. f(a)=Trta
with te © (), for all ae.of.

First we note a simple lemma the proof of which is easy and will be omitted.

Lemma 3. Let ¢ be a closable densely defined linear operator in the Hilbert space # .
Then the embedding map i,:9(c)—# is completely continuous if and only if
(c*c¢+ D)~ is completely continuous in H.

Here %(¢) denotes the domain of the closure ¢ of the operator ¢ endowed with
the scalar product {¢,yp) =<C¢,cp>+{¢,p). In the proof of Theorem2 we
extend an argument due to Woronowicz [21].

Proof of Theorem 2. First let us note that the Hilbert space J# is separable because
the dense domain %(c) is the range of the completely continuous operator i.. Since
</, is cofinal in .o/ 5, , the functional f can be extended to a strongly positive
linear functional on ./ ;. We will denote this extension by the same symbol f. In
virtue of Lemma 1 there is a trace class operator te,&(o/), such that f(a)=Trta
for all ae #(A). Since te,S(), we know that 14 C Y (/). Because o/ was
assumed to be self-adjoint, we have t# C 2 and hence te S (/) (see Lemma 1.1).

By assumption and Lemma3 the operator (c*c+1)"! is completely con-
tinuous. Denote by {1,},.n the eigenvalues of this operator (taken with multip-
licity) and by {¢,},.y an orthonormal system of the corresponding eigenvectors.
Without loss of generality we may assume that 4,= 4, | for allneN. {¢,},.y is an
orthonormal basis because (c*¢4I)"! is invertible. Thus we have (¢c*¢+1)"1¢
=Y 2,4}, ¢,> P, for each pe.# [10]. Putting p=(c*c+ )y, pe2Z, we get

=22 c+Dp,,>P,.
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We wish to show that f(x)=Trtx for all xe.oZ. It is enough to prove this for
hermitian elements x=x"e.e7. Let us regard the finite dimensional operator y,
defined by

k
ykw: Z An<(C+C+1)XU)a ¢n>¢n .
ji=1

Since we could replace ¢*c+1 by ¢*c*y*y+1 (which has also compact inverse)
and 7 is the linear hull of the elements of the form ¢"c+y* y+1, ye o, it suffices
to consider x=c" ¢+ 1. Then y, is a bounded hermitian operator, i.e. y,e Z (#),.
For e Z we get

a0

Y ALt e+ Dxy, ¢, <¢n,w>]

n=k+1

< s x){ s l<(c+6+1)xw,¢n><d>n,w>i}

nxk+1 n=k+1

Kx = yw, pol=

1
2

<ho] Tl e nxnopPf | T K]

=il e+ Dxpll [l S 4., LI e+ Dxypl? +[lw]?]
=’1k+1<[X(C+C+1)2X+I]1P>1P>'
Hence i(x—yk)g[x(c+c+l)2x+1]. By the strong positivity of f on .o z , it
follows that
)= fONE Ay SX(cTe+ P x+1T). 2

Since te ©,() ,, Trta is a strongly positive linear functional on .7 ;- by Lemma
1.1, (4). Therefore by the same reason we have

ITrix—Trty| <Ay, Trilx(c e+1)*x+1). 3)
(2) and (3) together give

()= Trix| ] f(x) = f )l + 1/ () = Trey] +[Trix—Trey,
Sy fx(cT e+ DPx+ D+ Tre(x(c e+ 1)*x + 1) = Ay 4 { -const. .

Here we applied Lemma 1 which gives f(y,)=Trty,. Since (¢*¢+ 1)~ ! is completely
continuous, klim 2, =0. Consequently, f(x)=Trtx. This completes the proof of

Theorem 2.

Remarks. 1. Sherman [14] has made the assumption that there is an operator in
of which is the restriction to & of the inverse of a completely continuous operator.
This condition is equivalent to our assumption of a completely continuous
embedding i, : 9(c)— A for an operator ce.o (see Lemma 3).

2. Suppose in Lemmal that the Op=-algebra .o/ is self-adjoint. Then f(a)
=Trta is true for all operators ae.«/ ; whose real and imaginary parts are in the
1o-closure of Z,. Here 7, denotes the order topology of the real ordered vector
space . 4. This statement follows immediately from Lemma 1 and the fact that all
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strongly positive linear functionals (in particular, f(x) and Trtx) are 7,-continuous
on of ;.

In the preceding proof of Theorem 2 it was shown that (under the assumptions
of the theorem) Z(#), is to-dense in . 5.

3. There are some analogies with the classical moment problem. Each positive
linear form on Cy(X), X a locally compact Hausdorff space, is given by a positive
Borel measure. Every strongly positive linear functional on # () is given by a
trace class operator. In the classical problem of moments each positive linear
functional on an adapted vector subspace &/ of C(X) can be represented by a
positive measure [22]. An equivalent definition of an adapted vector space .o is
that C,(X) is dense in C,(X)+ .o with respect to the order topology 1,. Calling an
Op=-algebra .of adapted if F(H#) is t,-dense on .o/ ; ), then similarly each
strongly positive linear form on an adapted Op=-algebra is a trace functional.

4. If we replace & ,(«), by ;S(«), in Theorem 2, then the assertion of this
theorem is valid without the assumption of selfadjointness of /. This can be
shown by using some results about operator idaels in Op=-algebras.

3. Op=*-Algebras on Montel Domains

In the preceding section it was proved that all strongly positive linear functionals
on a self-adjoint Op=-algebra .of are trace functionals if there is an operator in &/
which is the inverse of a completely continuous operator. We shall see below that
(even for L"(2)) this condition is not necessary. However, it is often applicable in
quantum physics. The most important physical application which was already
covered by the results of Woronowicz and Sherman is the Op-algebra generated
by the Schrodinger representation on the Schwartz space #(R,) of the canonical
commutation relations for a finite number of degrees of freedom. Here the number
operator is the inverse of a compact operator. This example is a particular case of a
more general one which arises from the representation theory of Lie groups. Let U
be a strongly continuous unitary representation of a Lie group G. Suppose that the
operator U(f) is completely continuous for all functions fe L,(G). (Note that this is
fulfilled by definition if G is a CCR group in the sense of Kaplansky and U is
irreducible.) Then the associated representation dU of the enveloping algebra &(G)
of the corresponding Lie algebra satisfies the assumptions of Theorem?2. If 4
denotes the Nelson Laplacian in &(G), then dU(4 — 1) has a compact inverse by a
theorem of Nelson and Stinespring ([7], Theorem 4.1). Clearly, dU(&(G)) is self-
adjoint on Z = () 2(dU(4—1)").

neN
In the present section we turn to the characterization of the domains & with

the property that all strongly positive linear functionals on L*(2) can be given by
density matrices. Our main results are contained in the following theorem.

Theorem 1. Let 9 be a dense domain in a Hilbert space . Suppose D[/.] is a
Fréchet space. The following are equivalent :

(1) 9[¢.] is a Montel space.

(2) For each Op=-algebra of on @ with {,=4¢, all strongly positive linear
Sfunctionals are trace functionals Trta with te ©,(9),.
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(3) Every strongly positive linear functional on LY (D) is a trace functional Trta
with te ©,(9),.

If 9[¢,] admits an unconditional basis, then each of these conditions is
equivalent to (4).

(4) @ contains no infinite dimensional Hilbert space as a subspace, i.e. 9 is of
class I in the sense of [5].

For the sake of completeness we recall some notions used in the theorem. A
system {¢,},.n of elements of a locally convex space E[1] is called a basis of E, if

each element ¢peE can be represented in the form ¢= .Y f(¢)¢, with uniquely
n=1
determined coefficients f,(¢). The basis {¢,} is said to be unconditional if the series
is unconditionally convergent for each ¢eE. A barreled locally convex space is
called Montel space ([2], p. 372) if each bounded set is relatively compact. Since
Fréchet spaces are always barreled, in our case the Montel property of 2[7, ] is
equivalent to the requirement that the bounded sets are relatively compact.
The proof of the theorem will be given in several steps.

Statement 2. Suppose o/ is an Ops-algebra on a domain & and D¢ ] is a Fréchet
Montel space. Then all strongly positive linear functionals on o/ are of the form Trta
with te S (o) .

Further, we have ¢ ,=¢ .. Hence the implication (1)—(2) in Theorem 1 is true.

Proof. Sherman [16] has shown that all strongly positive linear functionals on a
closed Op=-algebra o/ of countable dimension are trace functionals Trta with
te S (), if the following condition is fulfilled:

There is an operator in ./ which is the restriction to & of the inverse of a (+)
completely continuous operator on #.
By a closer examination of Sherman’s proof one can see that the same assertion is
true if the weaker condition (+ +) is satisfied.

9[¢,,] is a Montel space. (++)

Let us verify this. The assumption (+) was only used in Sect. 4 of Sherman’s paper
at two points. Firstly, (+) was used to conclude that the underlying Hilbert space
H is separable ([16], p. 305). Since the Fréchet Montel space 9[¢,,] is separable
([2], p. 373) and the topology #,, is stronger than the Hilbert space norm topology
(because Ie ), (+ +) also implies the separability of #. Secondly, (+) is applied
in proving Lemma 16 in [16]. (This is the essential point in applying (+)). Here
(+) is used in order to conclude that if a sequence {,},n, W,€ %, converges
weakly in # to pe P and the set {y,} is Z,-bounded, then {y,} converges to p
in the topology #,,. This is already true if each bounded set in 2[7,,] is relatively
compact. Hence the Montel property of 2[#,] is sufficient for this argument and
for the whole proof of Sherman’s result.

Our next aim is to show how we can drop the assumption that the Op=-algebra
=/ 1s of countable dimension. Now suppose .o/ is an Op=-algebra on & and 2[7,]
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is a Fréchet Montel space. Let f be a strongly positive linear functional on .«7. By
the closed graph theorem we have /, =7, because Z[¢ ] is a Fréchet space. In
particular, it follows that for each b=b" e L" () there is an operator ae .o/ such
that <bg, $> <||bd| ||| <l|ad| |d] ={(a"a+1)¢, ¢ for all peZ. This means
that .o/, is cofinal in L*(2),. Hence f can be extended to a strongly positive linear
functional on L*(2). We prove that there is an operator te S,(</), with f(a)
=Trta for all ae.o/ (this is actually true for all ae L*(2)).

Suppose the topology of the Fréchet space Z[¢,] is defined by the countable
system of seminorms |||, , a,€.%/, ne N. Fix an orthonormal basis {¢,},.y of
vectors ¢,e 2 which is possible by the separability of #. Take an arbitrary xe.of.
By 7, we denote the *-algebra generated by a,, Py, ,n,meN, and x. Cledrly, o/,
is a closed Op=-algebra of countable dimension. Since ¢,=7,_, (+ +) is fulfilled.
Therefore by our modified version of Sherman’s result there is an operator
t=t,eS,(,), such that f(a)=Trta for all ae/,. We claim that ¢_ actually
depends only on f and &/ but not on x. If x,, x,es/, then Trt P, ,
=Trt,Py .. because Py s € NS, This means that
<tx’qbn, d)m) {t,, 9 P, for all n, meN Smce the operators t, , t, are bounded,
this implies ¢, =t . Hence ¢, doesn’t depend on x and f(x)="Trtx for all xe <.

(2)-(3) is obvious.

Statement 3. (3)—(1).

Proof. Assume the contrary, @[] is not a Montel space. Then there exists a
bounded set .# in 2[7,] which is not relatively compact in Z[#,]. Hence .#
contains a sequence {i,},.y Which has no cluster point in Z[7,]. Since {,} is
bounded in the Hilbert space norm (because the identity is in L"(2)), {y,} has a
weakly convergent subsequence in 4. For simplicity suppose that {y,} is weakly
convergent to we.#. We want to verify that we 2. Let ae L'(%). Since {ay,} is
bounded in #, there is a subsequence {ay, } which is weakly convergent to ¢e 7.
For ne2(a*) we get <ayp,.n) =<y, a*ny—><{¢,n)={p,a*n). Hence
e P(a**)=2(a). This implies pe & since the Opx*-algebra L' (2) is closed.

The set A ={y,, ne N} endowed with the induced topology by Z[7,] is a
Tychonoff space. Hence there exists the Stone-Czech compactification p(4") of A
([11, p. 153). The functions h,(¢)={a¢p, ¢ for ae L"(Z) are continuous bounded
functions on the topological space . Thus they can be extended uniquely to
continuous functions k() on (). The set f(A)| A" is not empty because 4" is
not compact. Let se f(#)|.#". We define a linear functional on L(2) by setting
fla):=hs). lf ae L (D), then h,(¢p)=(ad, ¢> =0 for all pe#" and hence h(s) =O0.
Consequently, f is a strongly positive linear functional. s is a cluster point of A4
because A is dense in B(#). Since the functions h,(-) are continuous on f(A),
fa)=h,(s) is a cluster point of the set {{ay,,y,> ne N} for each ae L' (Z). By the
assumption f is a trace functional, i.e. f(a)=Trta for a certain te &,(2) .. Suppose

€
&ne? and ¢>0. Since ,— v, we have [{y,,n> (&> =<y, 0y &< 5 for
n=ne(e). On the other hand, there is a k2 n(e) such that | f(P,,) — {P: . w0l < %
because f(P,,) is a cluster point of {{P.,p,,y,>,neN}. Combining these in-
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equalities we get |f(P.,)—<y,n) < w)|<e. Since £>0 is arbitrary, we obtain
<w,ny & py=f(P:,)=<tny. This means that the bounded quadratic forms
<t&,n» and {y,n» (& y) coincide on & x Z. Hence t= P, because Z is dense in
2. Now we claim that we 2 is a cluster point of # ={y,,neN} in 9[7,]. Take

ae L*(2) and £>0. Then y,— 1 implies that [(a™*ay, p)> —a™ap,p, > < % for all

n=n,(¢) with a suitable number n, (¢). Further choose an integer k=n,(¢) such that
& .
If(a™a)—<a"ayp, pl< 3- Since fla*a)=TrPa"a=ayp|? and |la(y, —y)|*

=llay, > —<a*ap, ) —<LaTap,p,>+|lay|? this implies [la(yp, —y)|*<e.

Consequently, v is a cluster point of # in 2[/,] which is a contradiction. This
completes the proof.

Lassner and Timmermann [5] proposed a classification of domains of
unbounded operator algebras. They called a domain & of class I if 9 contains no
infinite dimensional Hilbert space as a subspace. These domains are closely
connected with the Montel property of 2[/,] as we shall see by the following
lemma.

Lemma 4. Consider the following properties of a dense linear subspace 9 in the
Hilbert space A :

(@) 9[¢.] is a Montel space.

(b) @ contains no infinite dimensional linear subspace &, such that the topology
£, on 9, is normable.

() 2 is of class I.

Then we have (a)—(c) and (b)—(c). If 2 is closed (i.e. L' (D) is closed), then
(c)—=(b). If 2[¢.,] is a Fréchet space with an unconditional basis, then (b)—(a) and
hence (a), (b), (c) are equivalent.

Proof. (a)—(c) and (b)—(c): Assume that & is not of class I, i.e. 2 contains an
infinite dimensional Hilbert space J#, (endowed with the scalar product induced
by #!) as a subspace. Let S, be the unit ball of #,. By the closed graph theorem
all operators ae L™ (%) are bounded on ;. Therefore the restriction of #, to #
coincides with the usual norm topology of the Hilbert space ;. This contradicts
(b). Thus (b)—(c) is proved. Further, S, is a bounded set which is not relatively
compact in Z[7,]. This is a contradiction to the Montel property of Z[#,].
Hence we have (a)—(c).

Suppose now that the domain & is closed. We show (c)—(b). Assume the
contrary of (b). Let Z,[# ] be an infinite dimensional topological linear subspace
of 9[¢,] such that the topology ¢, on &, can be defined by a norm | -||". Since
4y S, there is an operator a,eL’(2) with [¢|' <l|la,d| for all ¢eZ,.
Conversely, 7, S7. implies that [ay,¢| <C|¢|" on 2,. Hence the norm
[$ll,,:=llaopll defines the topology 7, on Z,. Let (#, | - |,,) be the completion of
(@2, 11l,,)- Since Z[7.] is a complete space, #; can be identified with the
topological closure of #, in Z[/,]. Thus #, C . Clearly, (#, | -||,,,) is a Hilbert
space. Therefore #,:=ay#, equipped with the Hilbert space norm ||| is an
infinite dimensional Hilbert space. Since #, CZ and a,e L (9), we have #,C 9
which is a contradiction to (c).
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Next we show that if 9[#,] is a Fréchet space with an unconditional basis,
then (b)—(a). Let {¢,},.y be an unconditional basis of 2[¢, ]. The topology 7,
can be given by a countable system of Hilbert space norms | - |, ke N, a,€ L' (2).
According to ([6], Prop. 1, p. 117), the space 2 is isomorphic to the Kdthe space

L bida) = {(a) 3 Il b0 = ) <oo}.

and the seminorms q,, ke N, define the graph topology /.. Thus 2[/,] is a
“Stufenraum” of order p=2 in the sense of K&the [2]. Suppose (b) is fulfilled. In
particular, there is no subspace &, of & such that &,[/,] is topologically
isomorphic to the Hilbert space 1,. By a theorem of K&the ([2], p. 424) thisimplies
that 2[7.] is a Montel space??

The statements and the lemma together prove the theorem.

Problem. Suppose the domain & is of class I and Z[#, ] is a Fréchet space. Can we
conclude that @[/, ] is always a Montel space??

Remarks. 1. The assumption that 2[7,] is a Montel space is properly weaker
than the existence of an operator ce L (%) with compact embedding map
i,:9(c)- . First we claim that a Fréchet domain 2[7,] is a Montel space if
there is an operator ce L™ (2) such that the map i, is compact. Indeed, let .# be a
bounded subset of Z[ 7, ] and ae L' (2). Then, in particular, the set (¢ ¢+ I)a. is
normbounded in the Hilbert space #. Since the operator (c*c+ 1)~ ! is completely
continuous (cf. Lemma 2.3), the set a.# is relatively compact in the Hilbert space
A . Using the fact that the domain & is closed we see that .# is a relatively com-
pact subset of 2[ £, ].

The following example showing that the converse implication is not true is a
slight modification of an example due to Kothe ([2], p.436). Let us consider the
infinite matrices

x(")z(y“‘) ’yik)l k"e kk+1 )
where
("’ =(1,2F3% . ) e=(1,1,1,...),j=1,..,k—1,keN.

By a diagonal procedure we write each matrix x* as a sequence. Then x®
corresponds a diagonal operator g, in the Hilbert space 1,. Let

= () 2@} daz. a4y

rkjnjeN

be the intersection of the domains of all finite products of operators a,, keN.
Clearly, the operators a;...a;" are in L' (2). This implies that @[A] is a Fréchet
space. From the definition it is clear that for all operators a;'...a;” the embedding
map lan, ap is not completely continuous. Using the closed graph theorem, it
follows that the embedding map i, : 2(a)—# is not compact for each ae L*(2).

9[¢.] is a Fréchet Montel space by Ko6the’s criterion ([2], p. 424). Hence & is
of class I according to Lemma 4, (a)—(c). But there is no operator ce L'(2) such
that 2(c) is of classl. Otherwise we would have the existence of a compact

1 Added in proof. The answer to this question is affirmative (P. Kroger, oral communication).
Hence the basis assumption in Theorem 3.1 can be dropped
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embedding (cf. [5], Prop. 1, p. 160) which is impossible according to the preceding
discussion.
2. Notice that for domains of the form 2= (") 2(a"), a selfadjoint operator,

neN
2[¢.,] has always an unconditional basis. This is a consequence of the spectral

theorem. In this case the following conditions are equivalent :

(a) The embedding map i, : D(a)—H# is compact.

(b) (@®>+1)~ ! is completely continuous.

(c) 2[#.] is a Montel space.

(d) The spectrum of a consists of a countable set of eigenvalues A, with
}1_)12 [ =+ 0.

(e) 2 is of class 1.

Let us add few remarks concerning the proof. (a)«(b) is clear by Lemma 2.3.
(c)(d) was proved by Pietsch [8]. Finally, (b)«>(d) is well-known from operator
theory in a Hilbert space.

4. On the Continuity of Trace Functionals

The main purpose of the present section is to characterize the (not necessarily

positive) trace functionals on an Op=-algebra .of by the continuity in a certain

locally convex topology 15, on /. First we shall define the topologies under

discussion. The uniform topology 7, on an Op*-algebra .o7 (see [3]) is given by the

seminorms p ,(a):= ¢Su€ﬂ [<a¢, p)| taken for all bounded sets .# of Z[¢_,]. The
spe

well-known decomposition

Cag, ) =3 {Kaldp+ ), d+ ) —Lald—v), d—p)
—ia(¢+iy), ¢ +iy) +idald—ip), ¢ —iy)}

implies that 7, can also be defined by the equivalent system of seminorms
p'(a): = supl{ap,d>|. If we restrict ourselves to relatively compact (bounded)
e

subsets .4 of Z[7,], then the seminorms p ,(a) (or equivalently, the seminorms
p’4(a)) define a locally convex topology denoted by 1. Clearly, 7,215 If 2[4,] isa
Montel space, then we have 19, =1,

Since the image a.# of a relatively compact subset .# of 9[/,] is relatively
compact, the right and left multiplications in o/ are t5-continuous. The continuity
of the involution is trivial. Therefore, o/[1¢,] is a topological x-algebra.

Now we are in position to establish our results. We assume in the following
that the underlying Hilbert space is separable.

Proposition 1. Let of be a closed Op=-algebra on the dense domain 9. For each
continuous linear functional f on o/[15,] there exists an operator te S, () such that
fla)y=Trta for all ac.o.

Proof. Since fe o/[15]’, there is a relatively compact set .4 of 2[¢,,] such that | f(a)|
<p',a)= sup|<{ag, ¢>|. Without loss of generality we may assume that .# is closed
e

in 9[¢,]. Then .# endowed with the topology ¢, is a compact Hausdorff space.
Each operator ae.o/ corresponds to a function h,(¢): =<a¢,¢) on 4. These
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functions are continuous on .#[¢,,] for all ae oZ. By putting F(h,)=f(a) we define a
linear functional on the vector space 7~ of the functions h,, ae.«/. This definition is
correct because h(¢p) =0 for all ¢ € .# implies f(a) =0by|f(a)]| =p’,(a). By the Hahn-
Banach theorem we extend F to a continuous linear functional (also denoted by F)
on the C*-algebra C(.#) of all continuous functions on the compact Hausdorff
space 4. F can be written as a linear combination F=F, —F,+i(F;—F,) of
positive linear functionals F,...,F, on the C*-algebra C(.#). Obviously, for all
clements ¢, ne A the functions hy,, (¢)=<{& ¢) {¢,n) are 7, -continuous on .#
(they are even continuous in the Hilbert space norm). Since each ae % (#) is a linear
combination of operators P, ,, where ¢, ne #, C(.#) contains all functions h,(¢)
=<{a¢, ¢y for the operators ac F(#) and hence for ae.o/z . Therefore F,
j=1,...,4, induce strongly positive linear functionals f; on .7, by the definition
fla)=F (h,), ac Lz . 1t is sufficient to prove the assertion for the strongly
positive linear functionals f}, j=1,...,4, because f=f, — f, +i(f;—f,) and S,(/) is
a vector space.

By the Riesz representation theorem there exists a positive Borel measure y; on
the compact space .# such that

Fih)= | h)du )
M

for all functions he C(.#). In particular, for the functions h,, a€.o 5 4, it means
that

Fih)=fla)= Jfﬂ Cag, pyduf¢).

In virtue of Lemma 2.1 there is an operator t;e,S(7), such that f(a)=Trta for
all ae Z(#). We claim that fi(a)=Tr¢;a for each operator ae.oZ, j=1,...,4.

Take an orthonormal basis {¢,},.y on # of vectors ¢,€Z. Suppose ae./.
Then we have

Trt a= Z <t a¢n9 ¢n> Z TrtJPIKI’ s Pn

=1

= ¥ Pano)= L Py 0 6d1f0)

=

8

5| b8 Db ()= | 3 a6 < 0> o)

n=1 M

J,l (p,a" ¢>dufd)=f{(a).

To interchange the summation and integration we could apply the Lebesgue
theorem, because

2 [<ag,, §> <h, ppI=la” o[l 19l =<(aa™ + 1), b>

I

and the function h,, . ()= <(aa™ +1)¢,¢) is u;-integrable.

It remains to show that the ¢;is in &,(.7) for j=1,...,4 but not only in ; S(+/).
[Notice that for self-adjoint Op=-algebras this is automatically fulfilled by
Lemma 1.1, (2).]
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Take an arbitrary vector ée#. Let ae/. It is enough to check that
tCe P(a**) because o/ was assumed to be closed on & and hence

G = anz D(a)= an 9(a**). Suppose ne Z(a*). Since hy, . eC(4), we have

& atny =fi(Pe ) = £<5,¢> ¢, a*nyduf¢)
= J/é’@ Cad,nydp ().

Now we estimate

Kt;é a*nyl = Jfﬂl(é,@ Cag.myldu¢)
=N il g{ lagll | ¢lduf) =<l i!nll;((a+a+l)¢,¢>duj(¢)

=const.- ||5]].

This means that ¢;e Z(a**). Therefore ¢, C 2 and hence e S, ().

This finishes the proof.

For Montel spaces 2[7,] the topologies 7, and 1, coincide. Thus we get the
following corollary which generalizes Theorem 3 in [4] because the existence of
the inverse of a nuclear operator in ./ implies the Montel property of Z[¢_,] (see
Remark 1 in the preceding section).

Corollary 2. Let o/ be a closed Op=-algebra on <. Suppose D[7 ] is a Montel
space.

Then all uniformly continuous linear functionals f an o (ie. fe A[1,]') are of
the form f(a)="Trta with te S ().

The following proposition deals with the converse problem.
Proposition 3. Suppose .o/ is an Op=-algebra with metrizable graph topology ¢ ,.
If te © (), then the linear functional f(a)="Trta is t4-continuous on of .
The proof of Proposition 3 is a modification of the argument used in proving
Theorem 2 in [4].

Proof. Since each operator te S,(./) is a linear combination of positive operators
t,€S,(/), [Lemma 1.1, (5)], it only remains to prove the tg-continuity of f(a)
=Trta for positive operators te &,(«/),. Suppose the topology #_, is defined by
the countable set of seminorms | - ||, a,€ -/, ke N. Since te S,(/), there are an
orthonormal system of vectors ¢,€% and positive numbers 4, such that

fl@y=Trta= Y A<ad,, ¢,> for all ac.o/. '

We show that there is a sequence {a,},.y of positive numbers such that
(1) lim o,/a,¢,[*>=0 for all ke N

and
(2) Zinan‘l <o0.

For the sake of continuity we shall verify the existence of such a sequence
below. Using this sequence, let us consider the set .# = { ]/a_nqbn, neN}. Clearly, .#
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is relatively Z,,-compact because each countable subset of .# is converging to zero
in 9(¢,]. We have

(a)l: n 'Tl(xn<a¢n’ ¢n>
< (Z Al 1) sup<al/a, ¢ /2, o |=Cplyla) for all ae.of.

n’

Hence f is tg-continuous.
Now we construct the sequence {a,},.y by induction on n. Put

Prp=max{1;{(a{a,+aja,+...+a a) P, p>}.

Leto,=2""f7 1, 0,=2""p71,..,, =2""f,_", | where the number n,eN is
chosen so large that ),/3“:2 "2, This is possible because f(a; a, +aj a,)

F2ny

= Zln«afal +a3a,)p,, o> = Z/l,,ﬁn‘z < 0. Further, put

=2 n22’ o5 Oy — 1_2 n3 1,2

ny will be chosen such that )’ 2,8, ;<27 %" Continuing this construction, we
r=nj3

obtain a sequence {u,},.y. We check the conditions (1) and (2). First we get

Z’lna; =/1121ﬂ1,1 +'122 ﬁ2,1+"'+/1n2~12 ﬂn2—1,1+ Z{ Z }'kzsﬁks}

s=2|ns<ksSns+1—1

<const.+ ), 2°{27**} <0
s=2
which gives (2).
Next we show (1). By the construction we see that for j=1,....s B, 1)
g<a}+ aj¢n3+k’ ¢ns+k> and hence

ans+k|laj¢ns+k“2zzﬁkﬁn_s})-k,s”ajqbns'%knz—éz_k'

Obviously this implies (1).
Propositions 1 and 3 together give us Theorem4.

Theorem 4. Suppose .« is a closed Op-algebra on & with metrizable graph topology
¢ . Suppose the Hilbert space # is separable.

A linear functional f on </ is of the form f(a)=Trta with te S,(H) if and only if
it is Tg-continuous on /. If D[/ ] is a Montel space, then the t,-continuity of a
linear functional on <f is a necessary and sufficient condition that f is a trace
functional f(a)=Trta whereby te S (/).

We note a corollary of the preceding results.

Corollary 5. Suppose o/ is an Op=-algebra on & such that 9[/_,]) is a Fréchet
Montel space. Then each strongly positive linear functional f on o/ is T4-continuous.

According to Theorem 3.1 (more precisely, Lemma3.2) f(a) is a trace
functional Trta with te € (/). Thus Proposition 3 gives the t,-continuity.
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5. Some Applications

In this section we apply the results of the preceding section to some concrete Op -
algebras. Furthermore, we want to demonstrate how one can get results on the
structure of the state space and of the linear functionals on unbounded operator
algebras by topological methods.

Example 1. Let &/ be the Op=-algebra generated by the position and momentum
operators q, pj, j=1,...,n, on the Schwartz space ¥(R,).

Then each linear functional f on o/ is a trace functional f(a)=Trta, ac.of,
whereby te S ().
First Proof. The uniform topology 1, on .o/ is equal to the strongest locally convex
topology t,, on .«/. This was first shown in [17]; another proof is contained in
[14]. The graph topology ¢, is the usual topology of the space #(R,). Since the
Schwartz space is a Montel space, we have 7,=15 and hence 7, =1, Now the
assertion follows from Theorem 4.4 or from Proposition 4.1.

To illustrate how the topological method works we include a second proof
which avoids the application of Theorem 4.4 or Proposition 4.1.

Second Proof. Since 1,=1,, the cone .«/, is 1 -normal and hence each linear
functional on .7 is a linear combination of strongly positive linear functionals on
o/ [11]. Thus it is enough to show the assertion for strongly positive linear
functionals. But in this case we can apply Theorem 2.2.

Example 2. Let G be a compact connected Lie group and §(G) the enveloping algebra
of the Lie algebra 4 of G. Let dU be the realization of &(G) as a closed Op#-algebra
of left invariant differential operators on G with the domain 9 =C*(G)NL,(G, 1); u
denotes the Haar measure of G.

Then every linear functional f on dU (6(G)) is a trace functional f(a)=Trta with

te S (dU(&(G)). If f is strongly positive on the Op=-algebra dU (6(G)), then there is
an operator te € ,(dU (8(G))), such that f(a)=Trta.
Proof. Let x,,...,x, be a basis of 4 and A=x}+...+x}. Since the group G is
compact, the operator dU (4 —1) has a compact inverse. Hence 2[4y 5] is @
Montel space. By ([13], Theorem 1), the uniform topology t,, is equal to the
strongest locally convex topology t, on dU,(&(G)). Therefore 19,=1, because
1, =15 for graph topologies with Montel property. From Theorem 4.4 follows
that f(a)=TrtaVae o/ where te S,(dU ((G))). If f is strongly positive, then we
obtain the assertion from Theorem 2.2.

Both examples are contained in the following general theorem. Using Lie
group representations or differential operators on R” or on manifolds it is possible
to derive further applications from this theorem.

Theorem 3. Let o/ be a countably generated, closed Op=-algebra on 9. Suppose the
following assumptions are satisfied :

(1) 2[¢,]1 is a Montel space.

(2) For every xe .o/ the vector space

Noi={ae o/ :[<ad, p)|SC,,lIx$|* Ve 7}

is finite dimensional.
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Then for each linear functional f on o/ there is an operator te S (/) such that
flay=TrtaVae o.

Proof. According to Theorem 1 in [14], condition (2) is equivalent to t, =1, Since
14 ="1% by the Montel property of ¢, this implies 7§, =7,. Further, the Fréchet
Montel space Y[ ¢, ] is separable [2]. Hence the underlying Hilbert space must be
separable. Now the assertion is an immediate consequence of Theorem 4.4.

Remarks. 1. Clearly, it is enough to check condition (2) for a sequence {x,} of
operators in .o/ for which the seminorms [¢], :=|x,¢| already define the
topology ¢, on 9.

2. By considering examples it is not difficult to see that neither condition (1)
nor (2) can be dropped in Theorem 3.
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