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Abstract. For infinite classical systems a class of spatially homogeneous
perturbed states is defined, and used to give a direct proof of the fact that
global thermodynamical stability implies the (classical) KMS-condition.

§1. Introduction

The classical KMS-condition or the equilibrium condition on the state of a
classical finite system is known for a long time (see e.g. [1]). It is however only
recently [2,3] that it has been studied as equilibrium condition for an infinite
system. This equation for an equilibrium state should be supported by its connec-
tion to properties of stability. It has already been proved [4] that dynamical
stability, supplemented with cluster properties leads to KMS-states, exactly
as in the quantum mechanical case [5]. It is known that the variational principle
for the free energy, yields the KMS-property.

This property can be seen to hold true, via an indirect proof, through D.L.R.
equations, Kirkwood-Salzburg equations under some conditions [2,3,5,6,7].
In this paper we close the circle by giving a direct proof which gives itself an insight
in the physical mechanisms which are involved, in particular we present the
variational principle as a notion of what could be called thermodynamical stability.

We formulate the variational principle for infinite classical systems under
some conditions which are general enough to include the results of [8] and [9].
The main point is now that we give explicitly a class of states of the system which
are spatially homogeneous, slightly perturbed from the equilibrium states in a
dissipative way. The physical idea behind this dissipative perturbations, in contra-
distinction with automorphic perturbations, (see the notion of dynamical stability
in [4,5]) is that the system can be looked upon as a subsystem in interaction
with a heat bath. As such the variational principal becomes then a notion of
thermodynamical stability or "open system stability", exactly as in the quantum
mechanical case [10,11]. We do not give the perturbations in terms of a semigroup
of positive, unity perserving maps of the algebra into itself, as in the quantum
case, but we perturb the states.
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§2. Homogeneous Perturbed States

First we introduce the algebra of observables and a set of states associated with a
family of density distributions as in [12].

The algebra, a suitable class of functions on the phase space, is not at all
unique. We choose the algebra of [13] which is generated by the exponential
of a class of testfunctions.

The use of this algebra was essential in [3]. We denote by A always a bounded
open set of (Kv, veN. Let Jf* be the set of infinite countable subsets x of Uv x Uv

such that xnA x Uv contains only a finite number of elements. JΓ is called the
set of configurations. Let Θ be the set of real C°°-functions of compact support
in Uv x Rv. For each element feO define the function S/from JΓ to U by: for

We denote by W{f) the bounded function on JΓ defined by

W(f) = exp iSf.

Finally the algebra of observables J f is the abelian algebra generated by the
set {W{f)\feΘ}.

Now we consider a subset of states #". For every A c Uv and ne N, let μn

Λ be a
positive measure on (Λ x [R?v)", symmetric in its arguments; (μn

Λ)™=0 is a family
of density distributions, if the following conditions are satisfied:
a) normalization:

b) compatibility:

iίfeΘ

with support in A x Uv then for all A' ZD A

Σ i^(x 1 ? . . . ,x> fc=i k = Σ ί^(χ 1 5 . . .,χ> fc=i

«=0 n=0

Given any family (μn

Λ\ a state ω on ^ is determined as follows: for each
feΘ with support in A x Uv

ω(W(f)) = Σ ίdμn

A(Xl,...,xn) exp i Σ /(**)•

The set of states obtained in this way is denoted by # \ A subset # of ^ is
the set of states satisfying moreover the following conditions:
(i) The measures μn

Λ are absolutely continuous with respect to the Lebesgue
measure, with differentiable weight functions σn

Λ i.e.
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where X = (xί,...,xw),dX = dx1... dxn.
(ii) The states are translation invariant i.e. for all aeUv

where X + a is a shorthand notation for (gχ + α, p 1 , . . . , qn + α, pn).
(iii) For/= (J 1 ,/ 2 , . . . ,/k) where the/" are real bounded differentiable functions
on (U2v)n with ^-support in A, define Sf on Jf as

(S/)(x1,...,xB)= Σ Σ - Σ/PK — V '
00

the following sequence Σ I^J^f) converges (see also [3] where an analogous
n = 0

condition is imposed).
(iv) Finally a condition on the existence of the kinetic energy density the following
limit exists

where m is the mass of the particles and V(Λ) = jrfx. The limit Λ -• αo will always
A

be understood in the sense of increasing cubes.
Our next task is to introduce a suitable class of homogeneous perturbed

states. For each ω e # and t element of U small enough (see later) we define a
new state ωt also belonging to #\

Let u and v be any pair of elements of s$ of the form

u = φ(Sf);v = φ(Sg) (1)

where ψ,φ are real linear combinations of sin and cos on [R / a n d g elements
of & with g-support in Ao.

For any heΘ with support in A x Uv and for t small enough, let

cot(W(h)) = Σ ίdμ1{X)W(h)(Xt) (2)

where
n d d

W(h)(Xt) - exp i V h{q, +tiu(X)—v (X)da, p.-t \ u(X)ir-v (X)da)
k=i κv 5pfc

 a it* v<lk

and

Mfl(X) = u(X - a), va(X) = υ(X - a),

Γ^Ά = A + Γ(0);Γ(0) is the unit cube in Rv with center zero; the summations
in the arguments of h are understood to be component by component.
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Remark that

φ'\
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(3)

where

= sup|u(x)|

= sup dp

Analogously

\ua(X)~va{X)da <N (4)

where M and N are finite constants. Hence for t satisfying

each configuration (x1,...,xt)fi(λx

-ήua--vada)φ(Λx My.
0(l

T yields (qι + ήu—vada,...,Pn

Therefore outside of the support of W(h). By the compatibility condition
of {μn

Λ)n, definition (2) is independent of Γ and therefore defines a state on <$/.

Lemma 2.1. For any ωeβ' and small teR, the state ωt on s$ determined by (2)
belongs to # ; the corresponding family of measures (μ"A>o ^s defined by: for
all heΘ with q-support in A,

\dμ"tJX)W{h){X)= Σ ldμ"Ά(X)W(h)(Xt). (5)

Proof The family {μn

uΛ}n>0 of density distributions is uniquely determined by
the relation (5) as the induced cylinder measures which are also absolutely conti-
nuous with respect to the Lebesgue measure by (i). That the weight function
is differentiable is ensured by the assumptions on u and v.

As the perturbation is homogeneous, also ωt is space translation invariant.
Using the boundedness of the functions in Θ, condition (iii) is immediate.
Finally we verify (iv):

1
Σ ί Σ .
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1 Σ

The first term converges as A -> GO by (iv).

Using the translation invariance and the compatibility of (μ^), the second

term converges to - 2tωί Ψ{Sf)φ\Sg)s(pγ

The third term equals

and so converges—for the same reason as the second term—to

where the last integral is over a bounded set.
For any pair W(h) and W{ΐ) of generators of the algebra J/, their Poisson

bracket is given by

u ,, ΊXί Λ dh di dh di
where {h9l}{x) = —m- •—.

dq dp dp oq
Remark that the right hand side of formula (2) is differentiable with respect to

t at t = 0 term by term.
After summation of the differentiated terms

\)da. (6)

Because of (iii) and

I \ω{ua{W{h), va})da\ £\\u\\ \\ φ' \\ \daω(S\{h,ga}\)

formula (6) converges.

Finally we remark here that if the map ω->ωt is formulated as a map of
00

0 (R2")n into itself, it is clear that it does not always represent a physical evolution
because the local finiteness condition might be violated after an infinitely small
time delay t.

§3. Variational Principle and KMS-Condition

We start with a formulation of the variational principle or the global thermo-
dynamical equilibrium condition.

Suppose that for all A c 1RV, the local Hamiltonian HΛ with open boundary
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conditions is given by: for any configuration X = (xχ,..., xn% xteA x [Rv,

HΛ(X)= Σ fj-+ Σ <κn (7)

The interaction part is determined by the potential φ, a real function on the
non empty finite subsets of the physical space 1RV φ can be considered as a symme-
tric function on (J (Uvf:

Furthermore we suppose
(i) translation in variance; for all aeUv :φ(X) = φ(X -f a)
(ii) at most ίe-particle interactions: φ(qί,..., qt) = 0 if / > k
(iii) there exists finite sequence of functions e(φ) = (e 1 ,^ 2 , . . . ,ek); the έ are real
bounded differentiable functions on (ίR2vy with compact support and such that
for A large enough

Σ φ{Y) = \daSe{φ){X-a). (8)
Y£X A

The motivation for these conditions is found in [9] and [8] where they are
proved to hold for bounded pair potentials respectively for the hard core system.
However we have the more restrictive condition of finite range interaction.

Remark further that the kinetic energy TA:

TΛ(*)= Σ

also can be written as follows: for A large enough up to boundary effects,

a) (9)
A

p2/where t{q,p) = s(q)p2/2m, and ε is a C00-function on (Rv with support in Γ(0) such
that j &{q)dq = 1.

Γ(0)

Conditions (iii) and (iv) imply now:

Condition 3.1. We restrict & to the states ω,for which the following limit exists

This set is also closed under the perturbations.

Definition 3.2. Let ω be an element of # and φ an interaction as defined above;
and s(ω) finite, where s(ω) is the entropy density of the state ω [14] given by

= lim i n § ^

ω is called globally thermodynamically stable (G.T.S.) at inverse temperature
β if for a l lpeJF:

βp(S(t + <#))) - s(p) ^ βω(S(t
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SJΛ) Σ MXσ"Λ(X)logσ"Λ(X).

Remark that, if X a (Ax W)n then for all A' z> A the expression {HΛ>, W(h)} (X\
heΘ is independent of Λ\ expressed by

{H, W(h)} (X) = lim {HΛ, W(h)} (X).
Λ,

/ί->oo

Furthermore ω(W(f){H, W(g)}\fgeΘ exists as can be checked analogously
as was done for formula (6).

Definition 3.3. Any state ω e # is said to satisfy the static KMS-condition [1,2,3,4]
at inverse temperature β for a Hamiltonian H if for &\lf,geΘ:

βω(W(f){H, W(g)}) = ω{{W{f\ Wig)}).

Now we formulate our main result:

Theorem 3.4. Ifωeβ satisfies GTS (Definition 3.2) then ω satisfies KMS (Defini-
tion 3.3) for the same temperature and the same interaction.

The proof of this theorem is based on the following steps.

Lemma 3.5. With ωs,seR defined as in (2):

^ l ^ ω(u{H, v}).
s->0 S

Proof. From (6) and condition (iii) and (iv) on ω

= $ω{ua{S(t + e(φ)),va})da.

Using the spatial invariance of ω and the relations (8) and (9) we get the lemma. D

Lemma 3.6. With the notations of above:

ί->0+

Proof. Consider (Γ(m))m>0 an increasing absorbing set of cubes of 1RV. First
suppose that ω is such tEat for all n and A,σn

Λ(x) > 0 for all xe(A x Uvf. Using
the definition of the entropy density (Definition 3.2)

δs(ω) = lim inf -^—^ —

r Aϊr *Sωt(Γ(m)) r Sω{Γ(m))Ί
= lim inf - lim mf τ * ,v '' -h lim sup - τ ^ '' .

ίL ^(Π)) P F ( Γ ( ) ) JV(Γ(m)) J

There exists a subsequence (Γ(mα))me< such that

Sωt(Γ{m)) , λ
h m s u P n~Λ = 5 ( ω ' )
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hence

w w r . , r Sω(Γ(m)) - S(Γ(m))
δs(ω) ^ hm mf lim sup — Λ ** / ^ v *n

ί ίi
= lim mf lim sup< - lim 2, J dx[σ" Γ ( m α ) (x)J log σ^Γ(lBβt)

ί-»-0+ mα-^oo I iV-*oo « = 0 (Γ(mα)x 1R)M

There exists a net (Ωπ Jj of compact subsets of (Γ(mJ x Kv)" such that

(Γ(mα) x R v ) " ΩnJ->(Γ(ma) x P ) " β n J

As we supposed that the weight functions are strictly positive on compact sets
the function

s-+ J dxσlΓ{rna)(x)logσlΓ{mκ)(χ)

is differential^, and using g f ^ m « ) W = \da{υa,uaσ
n

uΓ{mJ(x) + ̂ Cn(7) for some

Y between x and x f, obtained from (6), after partial integration, Cn is obtained
from the mean value theorem. Because of (3), (4): | C"( Y) \ £Ξ nP where P is a constant.
As the correction term vanishes if Γ(ma) -> oo in (10), from now on we disregard
this contribution, and:

lim i j
nn,j^(r(ma)xU-rlQn

= lim-]ds- j
β n > J

 C 0 a S Ωn j

= lim - \ds\dx\da[_{υa,uaσlΓ{mJ(x) log <Γ ( M β )(x)

The second term of this expression adds up to — ωs(l) = 0. Therefore we

drop it from now on.
Due to the compact support of/and g (see (1)) for Ωn . large enough the right

hand side of (11) is independent of this domain of integration. Remark that all
integrals are over compact sets, such that the orders of integration can be inter-
changed. Then performing partial integration we get, using (10) and (11):

^ liminflimsup lim Σ
ί ^ 0 + m«->oo 2V->oo n =
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Using the compatibility and the translation invariance of the states:
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N i l ί

δs(ω) ̂ liminflimsuplim ]Γ —-§ds
ί->0+ ntoc-^oo N n = 0 U ' ^ 0

Γ V(S(mJ)

lV(Γ(ma))

1
J

Ί
\U , V j \X) I

J
where S(mJ = {aeΓ(mJ- Λo\Γ(ma) -a 2 Λo} and R(mJ is the complement
of SimJ in Γ(mα) - yl0. Remark that

therefore by condition (iii) only the first term survives and

00 1 1 '
δs{ω) ̂  lim inf £ —- - j ds \dxσn

stΛo{x) {u, v} (x).

The lemma is proved if we prove that the map s -> ωs({u,v}) is continuous.
This follows from:

\(ωt-ωs)({u,v})\S Σ $dμ"Λ(x){u,v}(xs)

N-l

+ Σ$dμ»Λ(x)\{u,v}(xt)-{u,v}(xs)\-

The first and second term are small for N large enough independent of t and
s in some small interval around zero by (iii) and the boundedness of the derivatives
of φ,φ, f and g. The last term is small for \t — s\ small enough by the uniform
continuity of {u, v) (x), x = (xx,..., xn\ n< N.

Finally we eliminate the positivity condition on the weight functions. If ω
does not have this positivity property consider then the state ωτ = (1 - τ)ω + τp;
τe(0,l)
where p is the state with weight functions (see [13])

σ\(x) = exp[ - - £ pfj.

It is clear that peβ and that the state ωτ has the positivity property for all
τe(0,1). From the above argument we have

δs(ωτ)^ωτ({u,υ});τe(O,l).
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As the entropy density is affine [14] we get

(1 - τ)δs(ω) + τδs(p) ^ (1 - τ)ω( {u9 v}) + τp( {u9 υ})

Because δs{p) is finite, we get the result, letting τ tend to zero.

Proof of Theorem 3.4. Suppose that ω satisfies GTS, then for ωs as in (2)

lim inf^ ( C° s~ ω\s{t + e(φ)) ^ δs(ω)
s->0 + 5

by Lemma 3.5. and 3.6. we get

As this also holds for u replaced by — w,1 we get the equality

βω(u{H,v}) = ω({u,v}). (12)

Choose subsequently u = cos Sf sin Sf and v = cos S#5 sin S#. By linearity of
the Equation (12) we get the theorem.
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