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I. A One Particle Structure for the Stationary Case

Bernard S. Kay*
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Abstract. We give mathematically rigorous results on the quantization of the
covariant Klein Gordon field with an external stationary scalar interaction in a
stationary curved space-time.

We show how, following Segal, Weinless etc., the problem reduces to
finding a "one particle structure" for the corresponding classical system.

Our main result is an existence theorem for such a one-particle structure for
a precisely specified class of stationary space-times. Byproducts of our
approach are:

1) A discussion of when a given "equal-lime" surface in a given stationary
space-time is Cauchy.

2) A modification and extension of the methods of Chernoff [3] for
proving the essential self-adjointness of certain partial differential operators.

§0. Introduction

In this series of papers, we discuss the quantization of the equation

V)φ = Q, (0.1)

— the covariant Klein Gordon equation in a fixed curved space-time (.,//, gμv)
and interacting with a fixed external scalar field V. (We shall always take (.,//, g\ V
to be Cx.)

Notwithstanding much recent work on "quantum field theory in curved space-
times" [6, 12], it is perhaps fair to say that there has been, so far, no satisfactory
statement of what it would mean to quantize our Equation (0.1) on a generic
space-time. For the case of stationary space-times however, there is a well
established procedure — at least at the heuristic level. We ought not to rest content
with this procedure while the generic case remains unsolved (most space-time are
not stationary, and even for stationary space-times, why should we single out

* Present address : Institut fur Theoretische Physik, Universitat Bern, SidlerstraBe 5, CH-3012 Bern.
Switzerland

0010-3616/78/0062/0055/$03.20



56 B. S. Kay

particular coordinates for which the metric is stationary?). However, we shall
show (in subsequent papers) how results on the stationary case play a role in a
possible formulation of a quantization procedure suitable for generic case.

The present paper is concerned with giving rigorous mathematical results on
the existence and uniqueness of quantization for the stationary case.

Sections 1-4 outline our general approach and state the principal results.
Sections 5-7 contain details of proofs and further results.

§1. Stationary Space-Times

Note. 1) We use Hawking and Ellis [10] (H.E.) especially Chapters 1 and 6 as a
reference throughout — except that we choose signature ( H ---- ). 2) All space-
times are assumed to be space and time orientable.

By a stationary space-time, we mean a space and time orientable space-time
(J/ί^ij] together with a global time-like Killing vector field X.

We shall find it convenient to have a representation for such space-times which
picks out a preferred time-coordinate (equivalently a preferred family of equal-
time surfaces) :

Given an (orientable) Riemannian 3-manifold (̂ , 3 g ) and given (α, /?) — α a
scalar field, β a vector field on # satisfying

α>0 α2-3#(/?,β)>0 (1.1)

we define Stat(#, 3#, α, β) to be the space-time (IR x ,̂ 4g) where 4g is given (in local
coordinates (r,x j)) — x1 local coordinates on ^) by

(12)
O 3 \ ' >

"Pi

together with the Killing vector field

(1.3)

) : unit future-pointing normal vector field to #] α and β (sometimes "jV" and
"Nlc") are usually known [17] as lapse and shift fields.

Clearly, Ή (strictly, {s} x ̂  for any seIR) is always a smooth spacelike partial
Cauchy surface in Stat(^, 3#, α,β).

In the sequel, we restrict ourselves to globally hyperbolic stationary space-
times. By a theorem due to Geroch (H.E. Propositions 6.6.3, 6.6.8) global
hyperbolicity is equivalent to the existence of a (smooth, spacelike) global Cauchy
surface.

Thus, a globally-hyperbolic stationary space-time can always be realized as
some Stat(#, 30,α,/J) in which Ή is globally Cauchy: Simply choose some Cauchy
surface ,̂ set 3# equal to the induced Riemannian metric and define α and β in
terms of X by Equation (1.3).

In §5, we use results on the causal structure of space-times to find some simple
conditions guaranteeing that ^ is Cauchy in Stat(^, 3g, α, β). For instance, it is
always true when ^ is compact. The results obtained are interesting in their own
right, and in any case are needed in §7.
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§2. The Classical Theory as a "Linear Dynamical System"
(Stationary Case)

Given some Cauchy surface, ,̂ let us denote by D(^) the space of real smooth
Cauchy data of compact support :

#). (2-1)

Then we have

2.1. Leray's Theorem. Let (Jrf.g) be an oriented globally hyperbolic space-time ^
some Cauchy surface — unit future pointing normal

Then, the Cauchy data ΦeD(^) given by

define a unique solution in C°°(,/^) having compact support on every other Cauchy
surface. In fact, the solution has support in J + (suppΦ)uJ~(suppΦ) — the union of
the causal future and the causal past of the Cauchy data.

For the proof, see Leray [15], Choquet-Bruhat [4], and Lichnerowicz [16].
Thus, representing our space-time as Stat(^, 30,α,β) for some Cauchy surface ,̂
we may view time-evolution as a one-parameter group :

Moreover, the existence of the conserved current jμ = φί£'μφ2 f°r anY pair of
solutions φ l 5 φ2 of (0.1) guarantees that 9~(ί) preserves the symplectic form

(2.2)

^
where

φ =

denotes the Riemannian volume element on (#, 3g). Equivalently, we shall
sometimes write

l ί), (2.3)

where

β=\-l 0,

We shall use the term linear dynamical system to denote any real symplectic space
(D, σ) together with a one-parameter symplectic group 3~(i).
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Note that, in our case, ,T(t) is generated in the sense of classical mechanics by
the Hamiltonian:

/, p) = \ f dη(<g)z(p2 + V'δί/δ,./ + (m2 + V)f2)

where

, -(cloί)c + y.(m2 — A(^)+ V) —
A = ' if 8,

where A(^) is the Laplace-Beltrami operator for (#, 3#); Vt denotes the covariant
derivative for (^, 3g).

The first order form equations can be written

= - Λ Φ , (2.5)

where /ι= —

β. Although it is not made manifest by our formalism, it is clear that the linear
dynamical system we obtain depends only on the stationary space-time in question
[i.e. on (.M, 4g,X}], and not on the choice of Cauchy surface c£. More precisely, if
we chose a different Cauchy surface W [realizing our space-time as
Stat(r<f, V' α',/0 the resulting (D(^'\σ' ,.T'(t)) would be equivalent to

§3. Quantization of Linear Dynamical Systems [2, 5, 8, 14, 21-23, 25]

To quantize a linear dynamical system (D,σ^T(i)\ one seeks a " quantization"
(Jf , FK £2, K(ί)) [25] where ff is a (separable) Hubert space, W a map from D into
unitaries on ?Γ, Ω a vector in JΓ and K(ί) a strongly continuous unitary group on
ff satisfying:

1) W(Φ+Ψ) = exp(-iσ(Φ, Ψ)/2)W(Φ+Ψ),

4) V(ί) has positive energy1,

5) W(sΦ) is weakly continuous in

6) Ω is cyclic for the W(Φ)'s VΦ, ΨeD .

I.e. its generator is positive
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Such a quantization is determined (up to equivalence) by its generating
functional :

(Ω\W(Φ)Ωy.

We now briefly explain the reason for this definition of quantization : For the
generators R(Φ) of W(tΦ) and H of V(t\ (3.1) above is a rigorous version of:

2) lH,R(Φ}]=-iR(hΦ), (3.2)

3) HΩ = 0 (h:=~^-.
\ dt

Here, R(Φ) may be thought of as σ(φ, π /, p) where φ, π are the equal-time

quantum fields corresponding to /, p. (The usual canonical momentum is ]/\/ π.)
In (3.2), 1) expresses

bί[φ(x),φ(v)]=0, [π(x),πO>)]=0, [φ(x),%)] = /<5 3(x,yΓ,

2) are the quantum Hamiltonian equations of motion; and 3) gives the in-
terpretation of Ω as the vacuum vector — or lowest energy state of the positive
Hamiltonian H.

Roughly speaking then, seeking a quantization in our sense amounts to
seeking a representation of the CCR in which a positive Hamiltonian exists
generating the dynamics (with a vacuum vector Ω cyclic for the CCR).

To construct a quantization for a given linear dynamical system (D, σ, T(t)\
one seeks first a "one particle structure" (K, Jf , C/(r)) for (D, σ, -^(f)) where J^ is a
separable Hubert space, and U(t) a unitary group with strictly positive energy2

and K a real linear map from D to $' satisfying :

1) ranK is dense in 2? ,

2) 2lm(KΦ\Kψy = σ(Φ,Ψ) (i.e. K is symplectic), (3.3)

3) K(^(t)Φ)=U(t)(K(Φ)) [i.e. K intertwines ,T(t) and U(t)~].

We may then quantize using the Fock representation over jήf (Segal's "free
Weyl process"). E.g. we can choose for jf Fock space over tf :

jf - &(je ) = c +
whereupon we have:

where

RF(KΦ)= -i(a*(KΦ)-a*(KΦ)*)

[α*( ) the usual creation operator on J^(jf)].
2 I.e. it has positive self-adjoint generator ft with dense range
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This quantization is characterized by the generating functional:

It is known that when a one-particle structure exists, it is unique up to unitary
equivalence: The proof, though not explicitly contained, may easily be extracted
from Weinless [25] (see [13]).

For theorems on the existence and uniqueness of a quantization as such, see
again Weinless [25]—where again the concept of a "one-particle structure" plays
an important role.

§4. Existence of a One-Particle Structure for Equation (0.1)
on a Stationary Space-Time

The main result of this paper is on the existence of a one-particle structure for the
linear dynamical system we constructed in §2 for our equation:

4.1. Theorem. Given Equation (0.1) on a (globally hyperbolic) stationary space-time
(Jί^cj,X\

Suppose i) V is stationary and satisfies V(x) > —m2 + ε everywhere for some ε > 0.
Suppose also that there exists a Cauchy surface Ή in (,//ί,4g) (thus realizing

(,//,4g) as Stat(^, 30,α,/J)j such that
ii) α is hounded below away from zero: α>ε 1 >0 everywhere on (β for some ε^

iii) a — βlβι/% is bounded below away from zero: α — βlβί/%>ε2

>Q everywhere
on <6 for some ε2. (y and β being defined in terms of (J4,g,X) and ^ by Equation
(i.3)J

Then, on the corresponding linear dynamical system (as in §2) there exists a
(unique) one-particle structure (K, J^, U(i)).

Moreover, letting a be the self-adjoint generator of U(t)\U(t) = e~ltή

1) a has bounded inverse (i.e. there is a "mass gap"),
2) KD + iKD is an invariant domain of essential self-adjointness for A.

Note, a) that condition i) may be interpreted as avoiding "Klein paradox"
situations; condition ii) prevents the Killing vector from becoming arbitrarily
small condition iii) prevents it from approaching a light-like vector.

b) In the case of compact ,̂ ii), iii), are automatically satisfied.
In §6 we prove this theorem, and in §7, we give a more detailed discussion of

the static case when it is possible to construct (K, ̂ , U(t)) in a more concrete way.

§5. When is cβ Cauchy in Stat(^, 3 #,α,/Γ>?

We use the

5.1. Lemma. Lei f/ be a partial Cauchy surface in some space-time (J/ί, g] then
a global Cauchy surface if and only if every inextcndible null geodesic in
intersects ,9*.

Note. With slightly different definitions for the technical terms, this would be a
special case of "Property 6" of Geroch [9]. A proof m our case (i.e. following the
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definitions of H.E.) can easily be constructed by combining the Corollary to H.E.
Proposition 6.5.3 with the easily proved fact that a partial Cauchy surface is a
global Cauchy surface if and only if its Horizon is empty. For details see [13].

Firstly, in the "special static case of lapse 1 and shift 0", we have:

5.2. Proposition. <& is Cauchy in Stat(#, 3g, 1,0) if and only if (^\3g) is complete.

(Recall: [11], p. 56: for Riemannian manifolds, geodesic completeness is
equivalent to metric space completeness in the metric of geodesic length.)

Proof. It is easy to see that the null geodesies in 3 can all be

parametrized:

fh->(j,7(ί)), (A)

where t^y(t] is a geodesic in (̂ , 3g) parametrized by its Riemannian length. We
have, (Lemma 5.1) ^ is Cauchy <=> the image of every inextendible null geodesic
cuts every {t} x^<=>[by (A) above] every inextendible geodesic t\-±y(t) is defined
for all te( — x, co)o(^, 3 g ) is complete. D

For more general lapse and shift, we have partial results:

5.3. Proposition. A sufficient condition for (£ Cauchy in Stat(r^, 3g,cc,β] is if (cβ, 3g)
complete and α bounded on c€.

Proof. We first prove the

Lemma. Suppose ^ is complete in some Riemannian metric 3h (perhaps, hut not
necessarily 3g) and Ξ£>0 s.t. 3hijn

lnj/n()2 <ε for every null-vector (n°,nl) in the
tangent bundle. Then, % is Cauchy in Stat(#, 30,α,/?).

Proof. Parametrize null geodesies in Stat(^, 3g, α, β) by t [thus ίt->(f, y(0)] Suppose
an inextendible such geodesic has l.u.b. {ί} —T. Let if->T, then {7(^)1 is Cauchy
since

Therefore y(tt)->y(T) (say) [since t^^y(t) continuous and (̂ , 3 h ) complete]. Also,
[using 3h(y(ti),y(tj))<£ again] we easily have (1,}'>(/.))—>(1,7(T)) [)XT) "left tangent
at T"] in the tangent bundle to our space-time whereupon, we can extend the
geodesic beyond (T,7(T)) contra, hypoth.—so the geodesic is defined for all t>T.
Similarly, it is extendible into the past.

Therefore every inextendible null geodesic takes on all values of t.
Therefore ^ is Cauchy.

Proof of Proposition. It remains to verify the conditions of our Lemma. Now,
given a null vector (;?°, nl), we have [using Eq. (1.2)]

i.e.
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Completeness
f a i l s here

Fig. 1 Fig. 2 Fig. 3

In other words: calling nl/n° ςW and writing
tangent space:

for the Euclidean norm in our

< α so D

on

also, α2-β%>0=

5.4. Corollary. (€ compact implies c$ Cauchy in Stat(r^, 3c/, α, β) for any

Proof. (^, 3 g ) complete, since in metric spaces compact => complete.
Finally, C6 compact and α continuous => α bounded. Π

5.5. Examples. Intuitively, (6 fails to be Cauchy in Stat(<*ί, 3ί/,α,β) if signals (null or
timelike curves) can hit the "edge" in a finite time. We give a series of examples for
2 dimensional space-times.

1) Choose rfί = (0,1) with usual metric, α= 1, β = Q/& is not Cauchy (see Fig. 1).
2) We could also envisage the lapse function growing too fast at "infinity" on a

complete manifold:
Take the previous example under a conformal transformation which sends

(0,1) (usual metric) to (— x, oc) (usual metric) i.e. stretches it out lengthways thus
making ((£,g) complete but preserving the causal structure. (Note: conformal
transformations on a space-time always preserve the causal structure.) See Figure
2

3) Finally, we show that if the lapse function shrinks fast enough, (^\g) need
not be geodesically complete for ̂  to be Cauchy. Take the "Rindler Wedge" i.e.
one of the connected pieces of 2 dimensional Minkowski space-time which is

spacelike separated from some origin 0. Define α and β by taking for —- the Killing

vector tangent to Lorentz boosts.
^ = (0, x) is clearly Cauchy. See Figure 3.

§6. Proof of the Existence Theorem

In this section, we prove Theorem 4.1. At a heuristic level, the strategy is well
known (introduction of "complex structure" etc. [1, 2, 6, 12, 22, 23]). The main
technical steps involve proving the essential self-adjointness of certain Hubert
space operators related to our differential equation. For these essential self-
adjointness proofs, it turns out that Leray's theorem combines nicely with a well
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known Lemma of Nelson [18]. In fact, in §7, we shall need to use a generalization
of Nelson's Lemma due to Chernoff which we now state:

6.1. Chernoff s Lemma [3]. Let T be a symmetric operator with dense domain & CJtf
a (complex) Hubert space. Suppose T maps 2 into itself. Suppose in addition that
there is a one-parameter group V(t) of unitary operators on -^ such that V(t)@C&,
V(t)T=TV(t) on 2 and

— V(t)u = iTV(t)u; ue@.
at

Then Tn is essentially self-adjoint for all n. (We shall refer to "Nelson's Lemma"
when we only use the case n = 1.)

Proof of Theorem 4.1. We proceed in 5 stages:

1) <Φ|/1Φ>L2 + L 2>£| |Φ| |^2 + L2 for some ε>0.

Proof. By Equation (2.4):

L2 + L2 = f dηa(p2 + y%/5/ + (m2 + V ) f 2 +2

^ Jj^{ε2p
2+ε1ί;/2}(ε,ε1,ί;2 as in §4)

<6

^ min(β2, ε :̂) J dη(p2 + f 2 ) .

2) Define j/: the completion of D(#) in A norm
(A norm: | |Φ| | 2 /: = <Φ|ΛΦ>L 2 + L2) then

a) /ι:D-»D and is skew symmetric on DCs/,
b) cr is continuous in Λ norm i.e.

c) T(t)'.D-*D extends to a strongly continuous unitary group T'(t] with

d.T'(t)

at
= —h on D and &~'(t)h = h^~'(t) on D.

r = 0

Proof, a) Clearly, h:D-^D since /ι= — gA and both r̂ and A are matrices of C00

differential operators. Let Φ, ^eD then ^Φ\hψy^ = {Φ\A(-gA)ψyL2 + L2

= (gAΦ\AψyL2 + L2 (since ^r4 = -g on L2 + L2)= -(hΦ\ψy p,.
b) σ(Φ, (F)-<Φ|^ lF>L2 + L 2 ^ | |Φi | L 2 + L 2 l |^l | L 2 + L2 (since ^ bounded in L 2 +L 2 )

— o2 U/ by 1) above.

c) Follows easily after checking that .^(t) is :
i) isometric on D

ii) strongly continuous on D

= -h on D.

f = 0
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i) Follows from

d
— (

ii) from lim \\(,T(t)- 1)Φ||2 - lim
r - > 0 r^O

)- {)Φdη = 0 and

iii) from

lim
ί-»0

+ h\Φ

In each case, the last equality following by interchanging the derivative in i) or
limit in ii) and iii) with the integral sign and applying the pointwise results

' ' ' dί
In each case the conditions justifying the interchange being that the integrand

[and its t derivative for i)] is a jointly continuous function of t and x and that the
integral over x is over a compact set with finite measure (cf. Dieudonne [7], I, p.
176, §VII. 11). These conditions holding thanks to Leray's theorem.

3) a) h is essentially skew-adjoint on D.
b) h~l exists and is bounded.
c) σ extends uniquely to σ' on j/. Moreover

cτ'(Φ, Ψ) = (Φ\h~1 ψy

Proof. 3a) follows by Nelson's lemma3 using 2a and 2c. 2b and the Riesz lemma
imply 3 a bounded skew adjoint operator T s.t.

— call the extensionThis last equation then extends σ uniquely by continuity to
σ'. Now note :

Φ, = σ(Φ, -gAΨ)

2 = (Φ,ψy i.e. Th = on

Therefore ranT dense and T"1 is an unbounded skew-adjoint operator with
Z)(T-1) = RanT(seee.g. Rudin [20], Theorem IS.llb)) W^T" 1 =h on D.

Therefore T~ 1 — /ί since /r essentially skew-adjoint on D. We have thus proved
3b), 3c).

Note. By this stage, we have extended dynamics to the linear dynamical system
(jaf, σ', .^~'(t)) — (stf, σ') represents physically the phase space of all finite-energy
classical solutions. Mathematically, the fact that our enlarged symplectic space is a

Applied to the ^'natural complexification" -<z/^ of ..ς/ : i.e. .$/ + -r/ with z(x, y) = (- y, x).
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(real) Hilbert space (and not just a prehilbert space) allows us to complete the
construction of K and Jtf* :

4) Construction of (K, J^, U(ί)). Firstly, we seek a ''complex structure" J on stf i.e.
a real unitary operator satisfying

i) J 2 =-l,

The following constructions for J are easily seen to be equivalent and to satisfy
i), ii), iii) above :

Either define J via the polar decomposition

Or, equivalently, note that ί(A + A) on ̂  (see Footnote 3) is self-adjoint. Defining
P + , P~ the projections onto the positive and negative parts of its spectrum, we
have

restricted to
(This is the appropriate generalization of the familiar "positive/negative

frequency decomposition".)
Finally, we define (K,J^, U(t)\ K\.stf-+3tf using J:

a) (a

b) (K(Φ)\K(Ψ)y#, : = I σ'(Φ,JΨ] + \ iσ(Φ, <

c) Jf is the completion of K(<$#) in Jf; norm given by b) [it being easily
checked that K(stf] defined by a), b) is a complex prehilbert space]

d)

We need to check that KD is dense in Jf : we have

verifying K continuous from DC-stf to Jf .
The result follows since in topological spaces, D dense in Sl and K:D-^S2

continuous ^-KD dense in S2> That K is symplectic follows from b).
U(t) as defined in d) is clearly an isometric group on K(j/) in ffl in fact it is

easy to check it preserves both real and imaginary parts of the inner product since
//, I A I, e~ht all commute. We extend it by continuity to .ff calling the extension U(t)
also.

The strictly positive energy is verified in :

5) Verification of Last Paragraph of Theorem. Using K:,s/3D-»Jf continuous
[proved in 4) above] and e~Tίt:D->D ^βΓ'(i]^e'hl by 2c), 3 a) and Stone's
theorem] we have by 4d) that U(i) is strongly differentiable on KD. Writing
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U(t) = e~ί*t we have from 4d)

- i/ιK(Φ] = K(- hΦ) = - K(hΦ) .

Clearly, all the hypotheses of Nelson's lemma then hold for U(t), A by taking as our
invariant (complex linear) domain K(D) + iK(D) so έ is essentially self-adjoint on
K(D) + iK(D) ( = K(D + JD)).

To show that // has bounded inverse we proceed as in the proof of 3b) above.
Firstly, we show that F\ = iKh~lK~ l =K\ίt\~lK'1 is bounded and positive on
K(.δ/) C 3f . Note : K(stf) is a complex linear domain containing K(D) + ίK(D) and F
is easily seen to be complex linear:

F bounded:

F positive on KD :

Calling the continuous extension of F, F also — which is then a bounded positive
operator we easily have ¥ A = 1 on KD + iKD whereupon F' 1 D (4 on KD + iKD)
and hence (since A is essentially self-adjoint on KD + iKD)

F~l=ϊ. D

§7. The Special Static Cases

When our space-time is not just stationary but static, we can find a time
coordinate such that the equal-time surfaces ^ are orthogonal to the Killing
trajectories. In other words, we can realize our space-time as Stat(^, 3c/, α,0) — with
lapse but no shift. It is known [26] that if such a space-time possesses a Cauchy
surface at all (i.e. if it is globally hyperbolic) then these particular surfaces are
Cauchy. Now the matrix A [Eq. (2.4)] becomes diagonal :

) 0\

0 αj (7 1}

and we can construct K and ̂  in a more concrete way. The simplest case to deal
with is when the lapse function is actually 1 i.e. when the unit normals coincide
with the time-like Killing vectors :

(72)

7.1. Theorem (cf. Chernoff [3] last paragraph). Let V satisfy i) of Theorem 4.1 and
(^^g) be complete. Then m2 — Δ((^)JrV is essentially self-adjoint on

) — its closure being positive, inυertible.
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Proof. Completeness of (<&, 3 y ) gives ^ Cauchy in Stat(^, 3g, 1,0) by Proposition
5.2. Calling m2-Δ(<#)+V "A\ we have

<x\Ax)L2 ^ ε<x|x>L2 XE C%(<g) . (7.3)

ε as in i) of Theorem 4.1.
Now, 2 a) and 2c) of the proof of Theorem 4.1 allow us to conclude by

Chernoffs lemma that h2 is essentially self-adjoint on CQ '(#') + CJC?) in j/

Here: </1,p1 |/2,p2>^ = </1|>4/2>L2 H-<P1 |p2>L2 i.e. ,o/-,o/1 +L2, where ja^ is
the completion of C J in < \A >L2 and L2 is L2(#, /;).

Also

o -

whereupon (by projection) ^4 essentially self adjoint in
Furthermore, A being a unique s.a. extension must coincide with the Friedrichs
extension (see Reed and Simon, II, [19], §X.3) which, having the same lower
bound as A, has by Equation (7.3) lower bound to its spectrum ε. D

We then obtain a concrete form for (K, Jtf*, U(ή) (easily checked to satisfy the
necessary properties and therefore equivalent to the unique one particle structure
constructed in Theorem 4.1).

Let je = L2(^\η) and define k (replacing K):

fe(/,p) generalizes the familiar Newton-Wigner wave-function—note we have a
preferred complex conjugation on M". [The natural one on L£(^, 77)!] representing
time-reversal. Finally, U(t) is represented by exp( —L41 2 /) i.e. a becomes Άlί2.

We now deal with the slightly more complicated general case [Eq. (7.1)].
Abbreviating -(ί'α^. + αO??2 — Δ(^)+ V) to A also, we have

HO :
7.2. Theorem. Let V satisfy i) of Theorem 4Λ ((6\ 3 g ) be complete and α be bounded
above and below away from zero

Then A(= —(dltt)dl + (x.(m2 — A((£)+V) and α are essentially self-adjoint on
2(^, η) -their closure being positive, invertible.

Proof. Completeness of (#„ 3 g ) together with α bounded above gives by
Proposition 5.3 that Ή is Cauchy in Stat(^, 30,α,0). V satisfying i) of Theorem 4.1
and α > ε t > 0 gives

<x|Ax>L 2^e'<x|x>L, for some ε'>0. (7.4)



Now, note α bounded above and below away from zero gives immediately that—
as a multiplication operator on L2(^, η\ ά is bounded, invertible, positive self-
adjoint. We can deal with A by an extension of Chernoff s method (see previous
theorem) exploiting the "very nice properties of α":

Write

where ̂  is the completion of CJ in < \A ) norm and ,c/2 is the completion of CJ
in < |α > norm. Also

k=-βA = (° -'y (A o
therefore

-aA 0

0 -Aα

By restriction, Ax is ess. s.a. on CJ C j/2.
Now, U:-s^2^L2(^,η) defined by C^(^,^)9pι->α1/2p is unitary. Moreover

Hence, α 1 / 2 /4α 1 / 2 is ess. s.a. on CQ CL2 (since it is unitarily equivalent to A on
CQ C -£/2) Now, using Equation (8.4) and the fact that is bounded below away from
zero: we get (Friedrichs extension = s.a. extension since unique) α 1 2Ax1/2 positive
s.a. invertible.

Now, α1 2 is bounded invertible and maps CJ onto CJ. We therefore have
α ι / 2 / l α ι / 2 = -ι/2 / 1 -ι/2 = -1/2^-1/2 (proof that ά1 l2Ax112 = α1 l2Άxl / 2 :

Note that ά 1 2 :L 2 -»L 2 homeomorphism in norm topology. Therefore

{5Γ 1 2p, (

is a homeomorphism sending the graph of A to the graph of dΓ 1 / 2 y4α 1 / 2 . Therefore
it sends the graph of A to the graph of α 1 / 2 Aα 1 ; 2 which must therefore equal

W2.)
Finally, then, A must be self-adjoint (and positive with bounded inverse) since

which is bounded, self-adjoint, positive. Π
We_sketch a "concrete" description of (K,^, U(t)).
1) ,̂ ά positive, self-adjoint, invertible allow us to identify stf as L2(^,η)

+ L2(V,η) l^^C^)Bf^Al!2fEL2(^^)9 and .^2DCJ(^)9p^>α1/2pGL2(^,^)
define unitaries]. With this identification, it is easy to follow through the
construction in §6 to get

'-(,* o!
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where the real-unitary operator 7 = A 1 / 2α 1 / 2(α 1 / 2^4ά 1 / 2)~ 1/2. Ashtekar and Magnon
[1] have previously given an equivalent (non-rigorous) formula.

2) From J above, there are several (unitarily equivalent) analogues to Newton-
Wigner fields in which M? appears as £&-(#, η). Take

<g)^Lϊ(<g,η)

1/2

where X is closed and satisfies :

X + ̂ -α-1 / 2 j+A1 / 2-α"1 / 2(α1 / 2^α1 / 2)1 / 25(-1 /

E.g. let

A:=(α 1 / 2 Xά 1 / 2 ) 1 / 4 ά- 1 / 2 .

We then have the one particle Hamillonian

(cf. Klein [14], Theorem 2: which gives a unitarily equivalent construction in a
special case, see [13]).
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