© by Springer-Verlag 1978

Remarks on the Modular Operator and Local Observables

Carlo Rigotti*

Istituto Matematico "G. Castelnuovo", Università di Roma, I-00100 Roma, Italy

Abstract. In this paper we give a characterization of the modular group of a von Neumann algebra \mathcal{R} , with a cyclic and separating vector, which provides at the same time a necessary and sufficient condition so that two von Neumann algebras \mathcal{R}_1 and \mathcal{R}_2 , such that $\mathcal{R}_1 \subseteq \mathcal{R}_2$, are the mutual commutants, i.e. $\mathcal{R}_1 = \mathcal{R}_2$.

An application is made to the duality property in Quantum Field Theory, and we give a sufficient condition for PCT invariance in a theory of local observables.

1. Introduction

It is known that if \mathcal{R} is a von Neumann algebra with a cyclic and separating vector Ω , then the associated modular operator is characterized by the following conditions:

- i) $\Delta = \Delta^*, \Delta > 0$;
- ii) for each $t \in \mathbb{R} \Delta^{it} \Omega = \Omega$;
- iii) for each $t \in \mathbb{R} \Delta^{it} \mathcal{R} \Delta^{-it} = \mathcal{R}$;
- iv) the automorphism group $\sigma_t = \Delta^{it} \cdot \Delta^{-it}$, satisfies the KMS condition for the state $\omega_0 = (\Omega, \cdot \Omega)$.

Recall that $\Delta^{1/2}$ is the modulus in the polar decomposition of the *-operator $A\Omega \to A*\Omega$, $A \in \mathcal{R}$; the phase J is an antiunitary involution such that $J\Delta^{1/2}A\Omega = A*\Omega$, and $J\mathcal{R}J = \mathcal{R}'$. By these relations $\Delta^{1/2}\mathcal{R}^{\mathrm{sa}}\Omega = \mathcal{R}'^{\mathrm{sa}}\Omega$, where we denote with $\mathcal{R}^{\mathrm{sa}}$ the selfadjoint operators of \mathcal{R} [8].

Conversely the KMS condition is easily implied by the condition

iv')
$$\Delta^{1/2} \mathcal{R}^{sa} \Omega \subset \mathcal{R}'^{sa} \Omega$$
.

In this note we show that condition iv') independently from Tomita-Takesaki theory, implies a commutation theorem, and at the same time characterizes the modular group, producing another proof of the uniqueness of the modular automorphisms.

^{*} Partially supported by C.N.R.

268 C. Rigotti

This is suggested by the proof of duality in field theory [1], and in analogy with that analysis can possibly be further generalized to *-algebras of unbounded operators.

2.

In this paper the Rieffel-van Daele commutation theorem is very important [6]; we will use the following simplified form of the theorem:

Theorem 1. Let \mathcal{R}_1 and \mathcal{R}_2 be von Neumann algebras on the Hilbert space \mathcal{H} , with a cyclic and separating vector Ω . We assume that \mathcal{R}_1 and \mathcal{R}_2 commute. Then $\mathcal{R}_1 = \mathcal{R}_2'$ if and only if the following condition is satisfied: if $\xi \in \mathcal{H}$ and for each $A \in \mathcal{R}_1^{\mathrm{sa}}$, $B \in \mathcal{R}_2^{\mathrm{sa}}$ we have

$$\operatorname{Im}(A\Omega, \xi) = 0$$
, $\operatorname{Re}(B\Omega, \xi) = 0$

then $\xi = 0$.

We shall utilize the following lemma.

Lemma 2. Let \mathcal{R} be a von Neumann algebra with a cyclic and separating vector Ω , and let U(t) be an unitary strongly continuous group such that $U(t)\Omega = \Omega$, and $U(t)\mathcal{R}U(t)^* = \mathcal{R}$ for every $t \in \mathbb{R}$.

If we assume that the unbounded operator $U(i) = e^{-K}$ (where K is the generator of the group U(t)) satisfies the following condition

$$\mathcal{R}\Omega \subseteq \mathcal{D}(U(i))$$
 and $U(i)\mathcal{R}^{\mathrm{sa}}\Omega \subseteq \mathcal{R}^{\mathrm{sa}}\Omega$

then U(t) = I for each $t \in \mathbb{R}$.

Proof. Let $A \in \mathcal{R}'^{\mathrm{sa}}$ and $B \in \mathcal{R}^{\mathrm{sa}}$. Since $B\Omega \in \mathcal{D}(U(i)) \subseteq \mathcal{D}(U(z))$, for $z \in \mathbb{C}$ and $\mathrm{Im} \ z \in [0,1]$ we can define the function

$$f(z) = (A\Omega, U(z)B\Omega)$$

by the spectral theory of selfadjoint operators f is analytic for $\text{Im } z \in (0,1)$ and continuous for $\text{Im } z \in [0,1]$. On the real axis f is a real function, because $AU(t)BU(z)^*$ is selfadjoint; on the axis Im z = 1 we have

$$f(t+i) = (A\Omega, U(t)U(i)B\Omega);$$

but there is $\hat{B} \in \mathcal{R}^{sa}$ such that $U(i)B\Omega = \hat{B}\Omega$, hence f(t+i) is real. By [10], Lemma 1.6, f is bounded on the strip. By the principle of analytic reflection we can extend f to an entire bounded function, and by Liouville theorem f is constant. We have proved

$$\forall t \in \mathbb{R}(A\Omega, U(t)B\Omega) = (A\Omega, B\Omega)$$

but Ω is cyclic and separating for \mathcal{R} , and we obtain $U(t) \equiv I$.

The following lemma is well-known [8]:

Lemma 3. Let U be an unitary operator such that $U\Omega = \Omega$ and $U\mathcal{R}U^* = \mathcal{R}$, where Ω is a cyclic and separating vector for the von Neumann algebra \mathcal{R} . Then U commutes with the modular group associated to Ω .

Modular Operator 269

3.

The following gives a density condition, and at the same time a characterization of the modular group:

Theorem 4. Let R_1 and R_2 be von Neumann algebras with a common cyclic vector Ω . We assume that R_1 and R_2 commute, and there is a strongly continuous unitary group U(t) satisfying the following conditions:

- i) $U(t)\mathcal{R}_l U(t)^* = \mathcal{R}_l$ for $l = 1, 2, t \in \mathbb{R}$;
- ii) $U(t)\Omega = \Omega$, $t \in \mathbb{R}$;
- iii) $\mathcal{R}_1 \Omega \subseteq (U(i))$, $U(i)\mathcal{R}_1^{\mathrm{sa}} \Omega \subseteq \mathcal{R}_2^{\mathrm{sa}}$.

Then
$$\mathcal{R}_1 = \mathcal{R}'_2$$
 and $\Delta^{-it/2} = U(t)$.

Proof. We utilize the Rieffel-Van Daele commutation theorem. Let $\xi \in \mathcal{H}$, and suppose that for $A \in \mathcal{R}_1^{\text{sa}}$ and $B \in \mathcal{R}_2^{\text{sa}}$, $(\xi, A\Omega)$ is real, and $(\xi, B\Omega)$ is pure imaginary. We want to show that $\xi = 0$.

We define on the strip $\overline{I} = \{z \in \mathbb{C} | \text{Im } z \in (0,1) \}^-$ the function

$$f(z) = (\xi, U(z)A\Omega)$$
.

By [10], Lemma 1.6, f is analytic on I, continuous and bounded on \bar{I} . Moreover $f(t) = (\xi, U(t)A\Omega) = (\xi, U(t)AU(t)^*\Omega)$ by condition ii, hence f is real on the real axis by condition i.

On the axis Im z=1, we have $f(t+i)=(\xi, U(t)U(i)A\Omega)$, but by condition iii) there is $\hat{A} \in \mathcal{R}_2^{\text{sa}}$ such that $U(i)A\Omega = \hat{A}\Omega$. Hence $f(t+i) = (\xi, U(t)\hat{A}\Omega)$ is pure imaginary because $U(t)AU(t)^* \in \mathcal{R}_2^{\text{sa}}$.

Since f is real on the real axis and pure imaginary on the axis Im z = 1, by the principle of analytic reflection, we can extend it to an entire function. By Liouville Theorem f is constant; but f is real on the real axis, whereas it is purely imaginary on the axis Im z = 1, hence $f \equiv 0$.

In particular for every $A \in \mathcal{R}_1^{\text{sa}}$ we have $(\xi, A\Omega) = 0$; then $\xi \in (R, \Omega)^{\perp}$ and we obtain $\xi = 0$. By Theorem 1 $\mathcal{R}_1 = \mathcal{R}'_2$. We know, by Lemma 3, that Δ^{is} and U(t)commute for every $t, s \in \mathbb{R}$. Trivially the unitary group $V(t) = \Delta^{it/2} U(t)$ is a strongly continuous unitary group satisfying the following conditions:

- $V(t)\Omega = \Omega$ $t \in \mathbb{R}$; i)
- $\begin{array}{ll} \text{ii)} & V(t)\mathcal{R}_1V(t)^* = \mathcal{R}_1 & t \in \mathbb{R} \; ; \\ \text{iii)} & \mathcal{R}_1\Omega \subseteq \mathcal{D}(V(i)) \, , & V(i)\mathcal{R}_1^{\operatorname{sa}}\Omega \subseteq \mathcal{R}_1^{\operatorname{sa}}\Omega \, . \end{array}$

Hence $V(t) \equiv I$ by the Lemma 2, and $U(t) = \Delta^{-it/2}$.

Remark. Note that the implication $\mathcal{R}_1 = \mathcal{R}'_2$ in the theorem is independent from Tomita-Takesaki theory. If \mathcal{R}_1 is a *-algebra (not a von Neumann algebra) fulfilling the assumption of Theorem 4, then we can conclude $\mathcal{R}''_1 = \mathcal{R}'_2$, by the Rieffel-Van Daele commutation theorem [6].

4.

We want to apply the previous result to proof of the duality for the von Neumann algebras $\mathcal{R}(W_R)$ and $\mathcal{R}(W_L)$ associated with a hermitian scalar field φ , satisfying the

C. Rigotti

Bisognano-Wichmann condition [1]: for every real test functions $f, g \in \mathcal{S}(\mathbb{R}^4)$ such that supp f and supp g are space-like separated, the field operators $\varphi(f)$ and $\varphi(g)$ have selfadjoint closure whose spectral projectors commute.

Let V(t) be the representation of the group of the velocity transformations whose action is described by the matrix

$$\Lambda(t) = \begin{pmatrix} \cosh t & \sinh t & 0 & 0\\ \sinh t & \cosh t & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Furthermore define $J = \vartheta U(R_{e_1}(\pi))$, where ϑ is the PCT conjugation, and $R_{e_1}(\pi)$ is the rotation of π about the x_1 axis.

If $W_R = \{\chi \in \mathbb{R}^4 | \chi_1 > |\chi_0| \} = -W_L$, we denote $\mathcal{R}(W_k)$ (for k = L, R) the von Neumann algebra generated by the spectral projector of the operators $\overline{\varphi(f)}$, where f is a real test function of $\mathcal{S}(\mathbb{R}^4)$ whose support is contained in W_k . By the condition of Bisognano and Wichmann $\mathcal{R}(W_R) \subseteq \mathcal{R}(W_L)'$; in [1] they prove that for each $A \in \mathcal{R}(W_R)$

$$A\Omega \in \mathcal{D}(V(i\pi)), \quad V(i\pi)A\Omega = JA*\Omega.$$

By the action of the PCT operator ϑ on the field we have $J\Omega = \Omega$ and $J\mathscr{R}(W_R)J = \mathscr{R}(W_L)$; hence by Theorem $4\mathscr{R}(W_R) = \mathscr{R}(W_L)'$. Trivially the operator $JV(i\pi)$ is the S operator of the Tomita-Takesaki theory (note that $\mathscr{R}(W_R)\Omega$ is a core for $V(i\pi)$, since it is invariant for the group $\{V(t)\}$). If $\mathscr{A}(\mathcal{O})$ is the local net generated by the field operators, we have for a double cone \mathscr{O} contained in W_R

$$\mathcal{R}(W_{R}) = \{ \bigcup_{t \in \mathbb{R}} V(t) \mathcal{A}(\mathcal{O}) V(t)^{*} \}'' = \{ \bigcup_{\emptyset \subseteq W_{R}} \mathcal{A}(\mathcal{O}) \}''$$

because these von Neumann algebras have the same S operator [8]; we also obtain

$$(*) \quad \mathscr{A}(\mathcal{O}')^{-W} = \left\{ \bigcup_{\varLambda W_R \subseteq \mathcal{O}'} U(\varLambda) \mathscr{R}(\mathbb{W}_R) U(\varLambda)^* \right\}_{}'',$$

where $\mathscr{A}(\mathcal{O}')$ is the C^* -algebra generated by the von Neumann algebras $\mathscr{A}(\mathcal{O}_{\alpha})$ with \mathcal{O}_{α} space-like separated with \mathcal{O} .

Let \mathscr{A} be a net of local algebras [4]. One may define a dual net by setting $\mathscr{A}^d(\mathcal{O}) = \mathscr{A}(\mathcal{O}')'$ [7]. The net \mathscr{A}^d satisfies the properties:

- i) $\mathscr{A} \subseteq \mathscr{A}^d$.
- ii) \mathscr{A} is local [i.e. $\mathscr{A}(\mathscr{O}_1)$ commute with $\mathscr{A}(\mathscr{O}_2)$ if \mathscr{O}_1 and \mathscr{O}_2 are space-like separated] iff $\mathscr{A} \subseteq \mathscr{A}^d$.
 - iii) \mathscr{A} satisfies the duality iff $\mathscr{A} = \mathscr{A}^d$.
 - iv) If \mathscr{A}_1 and \mathscr{A}_2 are two net of local algebras, and $\mathscr{A}_1 \subseteq \mathscr{A}_2$ then $\mathscr{A}_2^d \subseteq \mathscr{A}_1^d$.

We say that a net of local algebras satisfies assential duality if $\mathcal{A}^d = \mathcal{A}^{dd}$. Now if \mathcal{A} is a local net, i.e. if $\mathcal{A} \subseteq \mathcal{A}^d$, then essential duality is fulfilled if and only if \mathcal{A}^d is a local net $\lceil 7 \rceil$.

In the Bisognano-Wichmann analysis, the condition (*) implies that \mathcal{A}^d is a local net; hence the local net generated by a hermitian scalar field satisfies essential duality.

Modular Operator 271

The above discussion can be generalized to a theory of local observables. Let \mathscr{A} be a local net of local algebras Poincaré covariant, i.e. there is an unitary strongly continuous representation \mathscr{U} of the Poincaré group \mathscr{P} , such that

$$\forall \{\Lambda, a\} \in \mathscr{P} \qquad U(\Lambda, a) \mathscr{A}(\mathcal{O}) U(\Lambda, a)^* = \mathscr{A}(\{\Lambda, a\} \mathcal{O})$$

for every double cone \mathcal{O} . Let Ω be the vacuum (it is Poincaré invariant). The following theorem give a sufficient condition so that the local net \mathscr{A} satisfies essential duality, independently from the existence of a Wightman field generating the net, and from the PCT invariance of the theory.

Theorem 5. Let \mathscr{A} be a local net of local algebras Poincaré covariant, Ω the vacuum state. We call $\mathscr{R}(W_R)$ and $\mathscr{R}(W_L)$ the von Neumann algebras generated by the algebras $\mathscr{A}(\mathscr{O})$ with $\mathscr{O} \subseteq W_R$ ($\mathscr{O} \subseteq W_L$ respectively). Then \mathscr{A} fulfills essential duality if for each double cone $\mathscr{O} \subseteq W_R$

$$(**) \quad \mathscr{A}(\mathcal{O})\Omega \subseteq \mathscr{D}(U(i\pi)), \qquad U(i\pi)\mathscr{A}(\mathcal{O})^{\operatorname{sa}}\Omega \subseteq \mathscr{R}(W_L)^{\operatorname{sa}}\Omega,$$

where $U(t) = U(\Lambda(t), 0)$ implements the pure Lorentz transformations along the x_1 axis.

Proof. By remark to Theorem 4 we have that U(t) is the modular group of $\mathcal{R}(W_R)$ associated with the cyclic and separating vector Ω (note Ω is an analytic vector for the energy) [2]; moreover $\mathcal{R}(W_R) = \mathcal{R}(W_L)'$. By an argument similar to Bisognano-Wichmann proof, this implies essential duality.

Note that in the Bisognano-Wichmann situation condition (**) takes the more specific form:

for each double cone $\mathcal{O} \subseteq W_R$

$$(***) \quad \mathscr{A}(\mathcal{O})\Omega \subseteq \mathscr{D}(U(i\pi)), \qquad U(i\pi)\mathscr{A}(\mathcal{O})^{\operatorname{sa}}\Omega \subseteq \mathscr{A}(\mathcal{O}^{j})^{\operatorname{sa}}\Omega$$
 where $\mathcal{O}^{j} = \{ \chi \in \mathbb{R}^{4} | (-\chi_{0}, -\chi_{1}, \chi_{2}, \chi_{3}) \in \mathcal{O} \}$.

This more restrictive assumption implies in the general case that there is a PCT operator ϑ such that for every Poincaré transformation $\{\Lambda, a\}$ we have $\vartheta U(\Lambda, a)\vartheta = U(\Lambda, -a)$.

Theorem 6. Let \mathscr{A} be a local net of local algebras Poincaré covariant, Ω the vacuum. If condition (***) is fulfilled the anti-unitary operator $\vartheta = U(R_{e_1}(\pi))J$ (J is the modular conjugation associated to the von Neumann algebra $\mathscr{R}(W_R)$ for the cyclic and separating vector Ω ; $R_{e_1}(\pi)$ is the rotation of π about the axis determined by the unit vector $e_1 = (0,1,0,0)$) satisfies the following conditions:

- 1. $\vartheta^2 = I$, $\vartheta \Omega = \Omega$:
- 2. for each double cone $\mathcal{O} \, \mathcal{A}(\mathcal{O}) \, \mathcal{O} = \mathcal{A}(-\mathcal{O});$
- 3. for each Poincaré transformation $\{\Lambda, a\}, \Im U(\Lambda, a) = U(\Lambda, -a)\Im$.

In particular ϑ is independent from the wedge region which we use to define it.

Proof. By an argument of analytical extension J commutes with $U(R_{e_1}(\pi))$ and we have 1. We want to prove that for $a \in \mathbb{R}^4 U(I, -a) = \vartheta U(I, a)\vartheta$. As $\{U(I, a)\}$ is a

group, it suffices to prove the equality

$$U(I, a^j) = JU(I, a)J$$
,

where $a^{j} = (-a_0, -a_1, a_2, a_3)$, for $a \in W_R$.

If $z \in \mathbb{C}$ we define

$$\Lambda(z) = \begin{pmatrix} \cosh z & \sinh z & 0 & 0\\ \sinh z & \cosh z & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix};$$

this is an extension of the pure Lorentz transformations along the x_1 axis, and $z \to \Lambda(z)$ is an analytic entire function. By a simple computation if $\operatorname{Im} z \in (0, \pi)$ and $a \in W_R$, $\Lambda(z)a \in \mathscr{I} = \mathbb{R}^4 + iV_+$.

By spectrum condition [2] there is an extension $T(\zeta)$ of the translations group on the tube $\overline{\mathscr{I}}$. The function $\zeta \in \overline{\mathscr{I}} \to T(\zeta)$ is analytic on \mathscr{I} , strongly continuous on $\overline{\mathscr{I}}$, and for $x \in \mathbb{R}^4$ we have T(x) = U(I, x).

If $a \in W_R$ then $a + W_R \subseteq W_R$; hence if $A \in \mathcal{R}(W_R)$, $U(I, a)AU(I, -a) \in \mathcal{R}(W_R)$. In particular $A\Omega$, $U(I, a)A\Omega \in \mathcal{D}(U(i\pi)) \subseteq \mathcal{D}(U(z))$ for $\operatorname{Im} z \in [0, \pi]$.

If $a \in W_R$ we define on the strip $G = \{z \in \mathbb{C} | \text{Im } z \in (0, \pi) \}$

$$f(z) = U(z)U(I, a)A\Omega - T(\Lambda(z)a)U(z)A\Omega$$

this function is well-defined, analytic on G and continuous on \overline{G} . One easily see that for every $t \in \mathbb{R}$ f(t) = 0, and by the principle of analytical continuation $f \equiv 0$. In particular $f(i\pi) = 0$, i.e.

$$U(i\pi)U(I,a)A\Omega = T(\Lambda(i\pi)a)U(i\pi)A\Omega$$
;

but $\Lambda(i\pi)a = a^j$ and by Tomita-Takesaki theory we have

$$JU(I, a)A^*\Omega = U(I, a^j)JA^*\Omega$$
;

 Ω is cyclic for $\mathcal{R}(W_R)$ and 4) is proved. (Note that we have used condition (**) only).

If $\mathcal{O} \subseteq W_R$ is a double cone, then

$$\vartheta \mathcal{A}(\mathcal{O})\Omega \subseteq \mathcal{A}(-\mathcal{O})\Omega$$

because of the action of $U(R_{e_1}(\pi))$ and condition (***).

But $\Re(W_R) \Im = \Re(-W_R) = \Re(W_L)$, hence $\Im(\mathcal{O}) \Im \subseteq \Re(W_L)$. Now if $A \in \mathcal{A}(\mathcal{O})$ $\Im A \Im \in \mathcal{R}(W_L)$, but $\Im A \Im \Omega = \Im A \Omega = A'\Omega$ where $A' \in \mathcal{A}(-\mathcal{O})$ and so $\Im A \Im \in \mathcal{A}(-\mathcal{O})$, as Ω is a separating vector for $\Re(W_L)$. Hence $\Im(\mathcal{O}) \Im \subseteq \mathcal{A}(-\mathcal{O})$. If \mathcal{O} is a double cone there is $a \in W_R$ such that $a + \mathcal{O} \subseteq W_R$; then

$$T(-a)\vartheta \mathscr{A}(\mathcal{O})\vartheta T(a) = \vartheta T(a)\mathscr{A}(\mathcal{O})T(-a)\vartheta = \vartheta \mathscr{A}(\mathcal{O} + a)\vartheta$$
$$\subseteq \mathscr{A}(-\mathcal{O} - a) = T(-a)\mathscr{A}(-\mathcal{O})T(a).$$

This implies 2.

We want to prove that for every $A \in L_+^{\uparrow} \mathcal{G}$ and U(A) commute. If R is a rotation, the von Neumann algebra associated with the wedge region RW_R is $\mathcal{R}(RW_R) = U(R)\mathcal{R}(W_R)U(R)^*$, the modular group of $\mathcal{R}(RW_R)$ is $U_R(t) = U(R)U(t)U(R)^*$, and

Modular Operator 273

the modular conjugation is $J_R = U(R)JU(R)^*$. If e is the unit vector Re_1 [where $e_1 = (0, 1, 0, 0)$], we denote $R_e(\pi)$ the rotation of π about the axis determined by e. Trivially $R_e(\pi) = RR_{e_1}(\pi)R^{-1}$. If we denote $\theta_R = U(R_e(\pi))J_R$, θ_R satisfies assumption 2. Since the local net is covariant θ_R commutes with $U_R(t)$.

Let $V_R = \vartheta_R$; then for each double cone $\mathscr{O}(V_R \mathscr{A}(\mathscr{O})V_R^*) = \mathscr{A}(\mathscr{O})$ because ϑ and ϑ_R satisfy 2; moreover $V_R \Omega = \Omega$. By Lemma 3, V_R commutes with the modular group $U_R(t)$ (each wedge region is invariant for V_R). Because ϑ_R commutes with $U_R(t)$, we have proved that ϑ commutes with $U_R(t)$. Hence for every pure Lorentz transformation $\Lambda \vartheta$ commutes with $U(\Lambda)$.

The group generated by the pure Lorentz transformations is a normal subgroup of L_+^{\uparrow} , and L_+^{\uparrow} has only trivial normal subgroup; so L_+^{\uparrow} is the group generated by the pure Lorentz transformations, and ϑ commutes with $U(L_+^{\uparrow})$.

Acknowledgements. I wish to thank Professor S. Doplicher for his help in the course of this work, and the continuous encouragements. I am also grateful to C. D'Antoni for interesting discussions on the applications of Rieffel-Van Daele commutation theorem to the proof of duality for quantum fields.

References

- 1. Bisognano, J., Wichmann, E.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985 (1975)
- 2. Borchers, J.: On the vacuum state in quantum field theory. Commun. math. Phys. 1, 57 (1965)
- 3. Dixmier, J.: Les algebres d'operateurs dans l'espace hilbertien (les algebres de von Neumann). Paris: Gautier-Villars 1969
- 4. Doplicher, S., Haag, R., Roberts, J.: Local observables and particles statistics. I. Commun. math. Phys. 23, 199 (1971)
- 5. Reed, M., Simon, B.: Fourier analysis. Selfadjointness. New York-London: Academic Press 1975
- Rieffel, M., Van Daele, A.: The commutation theorem for tensor products of von Neumann algebras. Bull. Lond. Math. Soc. 7, 257—260 (1975)
- 7. Roberts, J.: Local cohomology and its structural implications for field theory. Preprint (1977)
- 8. Takesaki, M.: Tomita theory of modular Hilbert algebras and its applications. Lecture notes in mathematics, Vol. 128. Berlin-Heidelberg-New York: Springer 1970
- 9. Wightman, A., Streater, R.: PCT, spin and statics and all that. New York: Benjamin 1964
- Araki, H.: Positive cone, Radon Nicodym theorems, relative hamiltonian. Proceedings of the International School of Physics "Enrico Fermi", Varenna 1973 (Course LX)
- Rieffel, M.: A commutation theorem and duality for free Bose fields. Commun. math. Phys. 39, 153—164 (1974)

Communicated by R. Haag

Received December 20, 1977