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Abstract. We compare some of the properties of CP2 with those of the SU(2)
Yang-Mills Instanton and conclude that CP2 may be regarded as a gravi-
tational pseudoparticle surrounded by an event horizon.

1. Introduction

This paper is one of three concerned with Riemannian solutions of the Einstein
equations with cosmological constant Λ9

RΛβ-ΊRdΛβ + ΛgΛβ = 0. (1)

The first [1] contains the general theory of such spaces and their role in quantum
gravity. The second (this paper) treats a particular example, CP2. The third [2]
deals with generalized spin structures in Riemannian spaces, taking CP2 as a
particular example.

CP2 is a two dimensional complex manifold which may also be given a
Riemannian metric (known to mathematicians as the Fubini-Study metric) which
satisfies (1). The fact that (CP2 has non-vanishing Pontrjagin number has led
Eguchi and Freund [3] to consider CP2 as an analogue of the well known
"Instanton" solution of the SU(2) Yang-Mills equations [4]. What one calls an
instanton outside the domain of SU(2) Yang-Mills theory depends upon which
features of the Yang-Mills solutions one is making an analogy with. In this paper
we shall point out some of the similarities and the differences between the two
cases and relate them to the general discussion of [1]. Before doing so (in Section
6) we shall collect together some properties of CP2. Most of these are well known
to mathematicians but less well known in the physics community. Section 2
contains an account of CP2 as a complex manifold, together with its standard
Kahler structure. In Section 3 we discuss the isometry group (SU(3)/Z3) and a
particular 4-dimensional subgroup. The possession of a 4-dimensional isometry
group acting on 3-spheres is characteristic of the Taub-NUT family of solutions of
the Einstein equations and we show CP2 to be a limiting case of the general form.
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We also discuss the fixed point sets and relate them to the discussion in [1]. In
Section 4 we discuss the geodesies and the spectra of the basic elliptic operators
defined over (CP2. In Section 5 we exhibit some solutions of the Maxwell and SU(2)
Yang-Mills equations on this background and their connection with generalized
spin structure.

Conventions. Greek indices run from 0 to 3 and latin from 1 to 3. The alternating

tensor εaβyδ is ]/# if (α, β, γ, δ) = (0, 1, 2, 3). The Ricci identity is

The Ricci tensor is Raβ = Rσ

ocσβ. A connection on a vector bundle whose curvature
Faβ is either

self-dual: Faβ = ^εaβμvF^= *Fα, or

anti self-dual : FΛβ=- $εaβμvF^ = - *Fα/?

will be called "half flat". "Self-dual" will also be called "left flat". In a two
component SU(2) x SU(2) notation undotted indicies correspond to right handed
objects. The spinor transcription of a self-dual 2-form corresponds to a symmetric
2 index undotted spinor.

2. The Manifold

(CP2 or complex projective two space or the projective complex plane is defined by
identifying the set of triples of complex numbers (Z15Z2,Z3), not all of which
vanish, under the equivalence relation

1Z2,AZ3), (2)

where λ is any non-zero complex number. It may be coordinatized by introducing

(3)

For fixed), provided Z^ΦO, Wij9 zφj, are a pair of complex coordinates. As j runs
from 1 to 3 we obtain an atlas of 3 charts which cover (CP2 and are holomorphi-
cally related to one another. If

ζ1 = W13 = Z1/Z3, (4)

ζ2 = W23=Z2/Z, (5)

then (C^ζ2) cover all points for which Z3ΦO. This region is homeomorphic to
(C2=R4. The points Z3=0 may be regarded as "points at infinity" and are pairs
(Z1?Z2) identified under

( Z l 9 Z 2 ) = (λZl9λZ2), A Φ O . (6)

This is just (CP1 or S2, the familiar Riemann sphere. Thus (CP2 may be thought of
as a compactification of 1R4 by the addition of a sphere at infinity. Considered as a
real 4-dimensional manifold CP2 is compact and simply connected, with Euler
number 3, Pontrjagin number 3 and second Betti number &2 = 1.
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(CP2 is given its standard metric by considering firstly the metric induced on
the 5-sphere

= (7)

from the standard metric on (C3 or IR6

ds2 = \dZ1\
2 + \dZ2

2 + \ d Z 3 \ 2 . (8)

The one-parameter family G of maps of S5 into itself given by

(9)

is evidently an isometry of the metric on S5. The orbits of G are homeomorphic to
circles and the space of orbits may be identified with CP2. (In fact the projection of
points in S5 onto orbits is the Hopf fibration of S5 [5].) Now the orbits may be
given a metric by taking that obtained by projecting the metric on S5 orthogonally
to the orbits. In local coordinates ζ1, (2 this leads to

(10)
υ υ j

d2K Λ -T

= Ad^dζAdζA A = l,2, (11)

K=-lo [l + -(KΊ2 + IC 2 2 ) l (12)

which shows that (CP2 has a Kahler structure [6] with Kahler form

J = ίddK. (13)

ζ1 and ζ2 are related to the coordinates of Eguchi and Freund by

(14)

(15)

where (x, y, z, τ) are Eguchi and Freund's {xμ} and

3
(16)

Their matrix C corresponds to the standard complex structure on (C2.
One may easily establish that CP2 enjoys the following properties:

1. CP2 is an Einstein space satisfying (1) with total volume —γ~.

2. The Weyl tensor is anti-self-dual
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3. The Weyl curvature spinor ΨABCD *s tyPe D That is, it may be factored into
the symmetrized outer product of 2 one index dotted spinors. Details of spinors
and the Petrov classification for complex Riemannian spaces may be found in [6].

The fact that the Weyl tensor is half flat is sufficient to show that CP2 has no
Lorentzian section. Thst is one cannot complexify (CP2, regarded as a real 4-
dimensional manifold, to obtain another real section with real metric tensor with
Lorentzian signature.

3. The Isometry Group

The group SU(3) of unitary 3 x 3 matrices with unit determinant acting on (C3

— {0} in the standard way is a subgroup of SO(6), the isometry group of S5. Since it
commutes with arbitrary multiples of the unit matrix it clearly preserves the Hopf
fibration of S5 and the metric on the fibres. However it does not act effectively on
CP2—the set of Hopf fibres. The set of SU(3) matrices of the form ωl where ω3

= 1 leaves all points in (CP2 fixed. This group is the centre, Z3, of SU(3). To obtain
an effective transitive action on (CP2 which leaves the Riemannian metric invariant
we must factor out the Z3 to obtain SU(3)/Z3. In fact it is the largest such
continuous group. SU(3)/Z3 is 8-dimensional and groups of dimension 10 are
ruled out because they would imply that CP2 had constant curvature and 9
because it is one less than maximal [13].

SU(3) has a (7(2) subgroup which acts transitively on submanifolds of (CP2

which are 3-spheres but for two exceptional orbits—the origin and the 2-sphere at
infinity. This may be seen by considering elements of the form

(U(2) 0

\ 0 [detl/p)]-1

for arbitrary C/(2) matrices. It is easily seen that this subgroup leaves invariant

ICT + lίΨ (19)
and thus acts on 3-spheres unless ζ1 = ζ2 = 0 (the origin) or ζ1 or ζ2 = oo (the sphere
at infinity). (7(2) does not act effectively on CP2 since elements of the form

lω G
n /' (20)

0 ω]

where

ω3 = l (21)

leave every point of (CP2 fixed, nor is it a subgroup of SU(3)/Z3. However by
considering the previous factoring of SU(3) by Z3 we could obtain an effective
action of the corresponding 4-dimensional subgroup which we shall call G. This
group has the same Lie algebra as (7(2). It is advantageous to introduce
coordinates adapted to the group. This we do by defining Euler angles (φ, 5, φ) and
a radial coordinate r by

(22)

(23)



Gravitational Instanton 243

If

(24)

these will cover IR4 except for the obvious trivial coordinate singularities at r = 0
and 9 = 0 or π. The surfaces r = constant φO are homeomorphic to S3 and the
curves r, S, φ = constant correspond to the Hopf fibration of S3. In these
coordinates the Fubini-Study metric becomes

6

+ , ' χ (dθ2 + sin2 Mφ2). (25)

The points at infinity may be covered by introducing the coordinate u = — . (25)
now takes the form

ds2 = -2 + — Try (dip + cos&dφ}2

(26)

At r = oo (u = 0), which is clearly a 2-sphere of area Aao = —-, these coordinates also

break down, however this is rather analogous to the breakdown of plane polar
coordinates on IR2. It is easily seen that if one introduces coordinates x = ucosψ/2,
y = wsinφ/2 the metric is well behaved at x = y = 0.

The possession of an isometry group with the Lie algebra of (7(2) acting on 3-
surfaces is characteristic of a family of solutions of (1) usually referred to as Taub-
NUT-de Sitter. These in turn may be embedded in the general class of type D
solutions [7]. The general form with Taub-NUT symmetry and parameters
adjusted to give a Riemannian signature is

o2-L2 4L2A
ds2 = ̂ — - dρ2 + ~2 — F2 (dip + cos Bdφ)2

ZΔ Q L^i

+ (ρ2 - L2)(d$2 + sin2 Bdφ2) , (27)

A = ρ2 - 2Mρ + L2 + Λ(L4 + 2L2ρ2 - ±ρ4) . (28)

(LP2 may be obtained by setting

(29)
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which ensures that the metric has a right (or left) flat Weyl tensor. One then lets
L->oo at the same time introducing a new radial coordinate r defined by

The geometrical reason for this procedure is as follows. The general form (27)
which is valid only in a coordinate patch for which A φ 0 is invariant under a one-
parameter group Gψ generated by d/dψ. Gψ has fixed points at the 4 roots of A. We
label these in increasing numerical order ρ _ _, ρ _, ρ +, and ρ + +. If the local form
(27) is to be successfully extended to produce a non-singular Riemannian space
these fixed point sets must be either zero- or two-dimensional. In the notation of
[1] these are "nuts" and "bolts" respectively. In general (27) contains 4 bolts. If
condition (29) holds ρ_ and ρ+ will coincide and at ρ = ρ+ the coefficient of (dS2

+ sm29>dφ2) will vanish. This is necessary if (27) is to contain an isolated fixed
point or nut at ρ = ρ + . We must also identify ψ appropriately. If A = Q (and hence
ρ_ _ -»— oo, ρ+ + -» + oo) this would be sufficient to produce a regular solution for
\L\ ^ρ < oo. This is just Hawking's solution [8]. If on the other hand L were zero
the roots at ρ± would disappear and we would have to take care of the
cosmological event horizon at ρ+ + or ρ_ _. The resulting solution is of course S4

and has been treated in [9]. One must again identify appropriately. In our case the
periodicities of ψ required to treat both ρ+ and ρ+ + are different in general and
only by taking the limiting case L->oo is it possible to complete the local form at
ρ+ and ρ++ preserving the half-flat condition.

Another possibility is to drop the half-flat condition, set L^O keeping τ = 2Lιp
non-zero and treat the Kottler [10] or Schwarzschild-de Sitter solution

"*""" •"> i ι T . ""c; 2 / J n 2 i ' 2 π ^ 7 2\ / O Ί \

τ£2

Q 3 /

This has a black hole and 2 cosmological bolts or horizons (ρ_ =0). A simul-
taneous completion at ρ+ and ρ+ + is possible only in the limiting case 9M2A = 1,
when ρ+ and ρ+ + coincide. Again one must introduce a new radial coordinate.
The result is S2 x S2 with its standard metric

dr2 1
ds2 = (l-Ar2}dτ2+ 2 +-(A92 + sin2Mφ2) (32)

and τ has period

These metrics may all be cast in the form

where A, B, and are given in Table 1.
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Table 1. Positive definite Einstein metrics of Taub-NUT type with positive or zero cosmological
constant. For comparison we give also the metric on S2 x S2 which is not of Taub-NUT type. In the
fourth case

χ = M arcosh (— I + (r2 - M2)1/2 .
\M/

Space Range of χ

Flat

CP2

-χ [0,oo]

S4 ίeH1*ι/l) l / 3 \ . 2- — sin2

4U/

/ }Γλ\ Γ 1/3"I'N 1 hl/i.

Taub-NUT 4M2 r-M\
r + MJ

(r2-] [0,0)]

S 2 xS 2

4. Geodesies and Spectrum

Since CP2 is an homogeneous space all geodesies are equivalent to those through
any given point — e.g. the origin. But clearly the isotropy subgroup G acts
transitively on the initial tangent vectors and so all must be equivalent.
Consideration of a special case (e.g. r=oo, φ = Qi) shows that they are all closed

curves of length π /— . This is similar to the S4 case when all great circles are of

1/Ϊ2 V A

length π / — -. In S2 x S2 on the other hand, there exists a one-parameter family of

distinct geodesies and only for rational values of the parameter are the curves
closed.

The behaviour of the geodesies is closely related to the spectrum of various
differential operators on CP2 and to quantum fluctuations on this background. We
merely remark here that the various tensor harmonics on CP2 carry zero triality
representations of SU(3) (i.e. in terms of "quarks" the number of quarks minus
antiquarks is zero mod 3). The simplest example is the n quark-antiquark
representation. This is the same as homogeneous polynomials of degree n in Z and
Z . These project down onto CP2 as the (rc + 1)3 scalar eigenfunctions of the

0 A

Laplacian with eigenvalues — n(n + 2) [5]. This is very similar to the ^(n+1)

(ft + 2)(2rc + 3) eigenfunctions on S4 with eigenvalues — n(n + 3) which carry a
representation of 0(5).

Using the eigenvalues of the Laplacian on (CP2 we can evaluate the zeta
functions ζD(s) corresponding to various differential operators D acting on scalars.
If {λn} are the eigenvalues of D then
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For the important case of the conformally invariant operator D = — FαPα + ^R we
readily find

where ζ is the ordinary Riemann zeta function.
In the case of other members of the de Rham complex the situation is more

complicated. However we know on general grounds [11] that there are no
harmonic one-forms and one harmonic 2-form which must be anti-self-dual. As
discussed in [2] CP2 has no spinor structure. This is related to the fact that
SU(3)/Z3 has only faithful and three-valued representations. If CP2 had spinor
structure one could construct spinor eigenfunctions of the Dirac operator and one
would expect these to carry a double-valued representation of SU(3)/Z3 because if
we keep one point fixed in CP2, a rotation of 2π should reverse the sign of the
spinor. However the only possible representations in SU(3) of this rotation are
multiplications by rhe cube roots of unity and we have a contradiction.

5. Electromagnetic and Yang-Mills Fields

In any Kahler manifold the Kahler form J is a solution of Maxwell's equations
since it is covariantly constant. In the case of CP2 it coincides (up to a factor) with
the unique anti-self-dual harmonic 2-form. In local coordinates it is

r -r2

J = - - ~2 dr Λ (dip + cos Bdφ) — - — - - - sin M9 Λ dφ . (33)

Since J is half-flat it has zero energy momentum tensor and so the pair (gμv, 4PJμv)
solves the coupled Einstein-Maxwell equations in a trivial way for all P. The value
of P may be fixed up to an integer by the requirement that 4P Jμv be a connection
on a U(l) bundle over CP2. That is, by the requirement that one can consistently
minimally couple 4PJμv to a complex scalar field with electric charge e. This leads
directly to the Dirac quantization condition

2eP = integer .

P may be regarded as the magnetic monopole moment threading the r, ip surface.
This surface is in fact homeomorphic to S2 and is not homotopic to zero. Using
this field one can construct a generalized spin structure over CP2.

One might also like to consider non-abelian Yang-Mills fields — e.g. SU(2).
Charap and Duff [12] have given a local prescription for obtaining half-flat SU(2)
Yang-Mills fields from solutions of (1). This amounts to setting

(34)

, (35)

where ωμv and Θμv are the connection forms and curvature forms in a tetrad basis
of forms {ωμ} and * denotes the dual operator. The upper sign corresponds to the
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self-dual case. These have Pontrjagin numbers.

pYM=±h-^, (36)
where χ and τ are the Euler number and Hirzebruch signature of the manifold. In
the present case this leads to

^YM = ! or £. (37)

If we choose the obvious basis {ωμ} along dr, (dιp + cosQdφ\ d9 and dφ the second
case corresponds to the trivial Maxwell solution we discussed above. The first is
obviously not globally well behaved if regarded as a connection on an SU(2)
bundle since PYM is not an integer. This appears to be the same pathology as is
encountered with the consistent definition of spinors [2].

6. Discussion

Outside the strict confines of SU(2) Yang-Mills theory an "Instanton" is usually de-
fined to be a finite action solution of the Euclidean or Riemannian equations. In this

sense CP2 is definitely an instanton since its action is —. The notion of duality

still holds for gravity but the half-flat classification is finer than for SU(2) Yang-
Mills theory since the Weyl tensor rather than the entire Riemann tensor may be
half-flat. If /IφO this is the most one can expect and this is the case for CP2. The
analogy between Yang-Mills instantons and CP2 (or Hawking's solution) goes
rather further. Just as the Yang-Mills solution with PYM = 1 may be thought of as a
"pseudoparticle" we can view the Hawking half-flat solution as a pseudoparticle
immersed in ]R4, and (CP2 as a combination of this solution and the conformally
flat S4 or de Sitterί! solution. That is, we wish to regard CP2 as a half-flat
pseudoparticle surrounded by a cosmological event horizon, the A term serving to
close up space. These ideas will be given a more precise form in [1]. The basic idea
is to consider Riemannian spaces which admit the action of a one-parameter
family of isometries Gξ. The nature of the fixed point sets is determined by the
quantity

L*β = ξ*;β (38)

at the fixed points, where d/dξ = ξαd/dxα generates the group. Bolts occur when Lαβ

is degenerate and nuts when it is not so. Nuts may be self-dual or anti-self-dual. In
both the Hawking and CP2 cases the group generated by d/dψ has an anti-self-
dual nut at the origin and in addition CP2 has a bolt at the sphere at infinity. (In
fact in Hawking's solution Lαβ is an everywhere anti-self-dual Maxwell field.) One
might object that the choice of d/dιp is arbitrary. Since (CP2 is an homogeneous
space the nut could have been located anywhere in it, using a suitable group
transformation. Further, one might have chosen a non conjugately related
subgroup—e.g. that generated by d/dφ which in (CP2 has nuts at the origin and at
the north and south poles of the sphere at infinity. Nevertheless the numbers of
nuts and bolts are constrained by certain topological theorems. For instance the
number of nuts plus the sum of the Euler numbers of the bolts equals the Euler
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number of the manifold. In (CP2 one has 1 nut and a bolt of Euler number 2, or
alternatively 3 nuts, giving an Euler number of 3 for the manifold. This will be
elaborated in [1].

We have shown that CP2 shares many of the properties of the Yang-Mills
instanton and have put it in a more general setting. What remains to be
investigated is its possible role in dominating the functional integral for Quantum
Gravity.

Acknowledgements. We should like to thank S. W. Hawking for valuable discussions. G. W. G. would
like to thank Prof. J. Ehlers for his hospitality at M. P. I. Mϋnchen where some of this work was begun.
We also thank P. J. McCarthy for a helpful discussion on Section 3.

Since writing this paper we have become aware of work by A. Trautman [Int. J. Theor. Phys. 16, 561—
565 (1977)] who also considers the Ϊ7(l) bundle over CP2 that we have treated, and its relation to the
Hopf fibering of S5.

References

1. Gibbons,G.W., Hawking, S.W.: In preparation
2. Hawking,S.W., Pope,C.N.: Phys. Lett. 73B, 42 (1978)
3. Eguchi,T.,Freund,P.G.O.: Phys. Rev. Letters 37, 1251 (1977)
4. 't Hooft,G.: Phys. Rev. D14, 3432 (1976)
5. Berger,M., Gauduchin,P., Mazet,E.: Le spectre d'une variete Riemannienne. In: Lecture notes in

mathematics, Vol. 194. Berlin-Heidelberg-New York: Springer 1971
6. Flaherty,E.J.: Hermitian and Kahlerian geometry in relativity. In: Lecture notes in physics, Vol.

46. Berlin-Heidelberg-New York: Springer 1976
7. PlebanskiJ, Demianski,M.: Ann. Phys. (N.Y.) 98, 98 (1976)
8. Hawking, S.W.: Phys. Lett. A60, 81 (1977)
9. Gibbons,G.W., Hawking, S.W.: Phys. Rev. D15, 2738 (1977)

10. Kottler,F.: Ann. Phys. (Leipzig) 56, 401 (1918)
11. Gibbons, G.W.: Functional integrals in curved spacetime. Preprint (1977)
12. CharapJ., Duff,M. J.: Phys. Lett. 69B, 445 (1977); Charap,J., Duff,M.J.: Spacetime topology and a

new class of Yang-Mills instantons. Q.M.C. Preprint (July 1977)
13. Eisenhart,L.P.: Continuous groups of transformations. Princeton, NJ: Princeton University Press

1933

Communicated by R. Geroch

Received March 21, 1978




