
Communications in
Commun. math. Phys. 60, 269—276 (1978) MθthΘΓTΊΘtiCSl

Physics
©by Springer-Verlag 1978

Two-Soliton Solutions of Relativistic Field Equations

O. Steinmann
Fakultat fur Physik, Universitat Bielefeld, D-4800 Bielefeld 1, Federal Republic of Germany

Abstract. Existence of solutions converging for t -> — oo to a superposition
of two solitons is shown for a class of scalar, relativistic, field equations in
two-dimensional space-time.

I. Introduction

Recently there has been considerable interest in the possible relevance of soliton
solutions of classical field equations for the description of elementary particles
(see e.g. the reviews [1-3]). By "solitons" we understand here static solutions
with finite energy of a relativistic field equation, and the time dependent solutions
obtained from them by Lorentz transformation. Note that this definition, which
has become accepted in particle physics, is more general than the one used in
the mathematical literature as reviewed by Scott et. al. [4].

The energy of a soliton remains essentially localized in some finite, non-
expanding region for all times. This feature survives quantization, at least for
the models and in the approximations so far investigated [1-3]. But this is the
behaviour expected from an extended particle, and the question comes up naturally,
whether some of the particles observed in nature may be described with the help
of soliton solutions. Obviously, such an application is meaningful only if it is
possible to introduce states with more than one particle. This presupposes the
existence of solutions of the field equation in question, which can be interpreted
as describing the movement of several solitons.

Such several-soliton solutions are explicitly known for the sine-Gordon
equation [5,6]. They are solutions which are, for large positive or negative time,
approximate superpositions of well separated solitons moving with different
velocities. Number, form, and velocities, are the same for ί -^ — oo as for t -> oo :
the solitons undergo time delay but no genuine scattering. Arguments have been
adduced [7] that solutions of this type may also exist in the φ\ kink model. The
persistence property just mentioned is an essential part of the original definition
of solitons. However, interesting though equations of this type may be from the
mathematical point of view, they are clearly of limited value for applications
to particle physics: realistic particles do scatter.

We must therefore widen our field of inquiry. Any relativistic field equation
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possessing one-soliton solutions in the general meaning introduced above, is a
candidate for investigation. We define a rc-soliton solution of such an equation as a
solution which converges for t -> — oo in a suitable topology towards a super-
position of n spatially separated solitons, whilst nothing is assumed about the
behaviour at t -* -f oo. More exactly, such a solution should be called an incoming
n-soliton solution. Outgoing solutions are defined analogously by prescribing the
t -» + oo asymptotics. In this paper we shall only consider in-solutions. Our proofs
and results are, of course, easily transcribed to the out-case.

Little seems to be known about the existence of n-soliton solutions in the
general case. The present paper is a step towards the elucidation of this problem.
We shall prove existence of two-soliton solutions for a class of relativistic field
equations for a single, real, scalar, field in two dimensions (one space, one time).

Let L/(p),peR, be a real C00 function with the following properties.

a) [/(p) ^ 0 everywhere. (1.1)

b) There exists a (finite or infinite) set of points P = {pχ, p2,...} such that

U(Pι) = U'(Pι) = 0, l/"(Pj) = μ2 > 0 for Pie P,

U{p)φOforp<βP.

We call two elements p. φ pj of P adjacent if no other element of P lies between
them.

Let

H(x, ί) = ±[3tφ(x, t)]2 + |[δ,φ(x, ί)] 2 + U(<p(x91))9 (1.3)

dt = —, d = --, be the Hamiltonian density of a real, scalar, field in two-dimen-
* dt x dx

sional space-time. The corresponding field equation is
0. (1.4)

Let p19p2ePbe two adjacent zeros of U. It is known (see Section II for a
more detailed discussion) that there exists a static, real, solution φϊ2(x) of (1.4)
with

lim φ12(x) = p19 lim φ12(x) = p 2 ? (1.5)

and whose energy H = $dxHί2(x) is finite, where Hί2 is the density (1.3) for
φ = φ 1 2 . The function φ12 is C00 and monotonic. It is uniquely determined up to
translations of the argument, i.e. with φί2(x) also φ12(x — α),αeR, is a solution
of the desired type. In what follows we shall denote with φί2an arbitrary element,
chosen once and for all, of this infinite family of solutions.

A soliton moving with velocity v, | v\ < c = 1, is obtained from φ12 by Lorentz
transformation:

<PU*> t) = φί2(β(x - υt)\ β = (ί-v2)~ W. (1.6)

Clearly, this is again a solution of (1.4).
Let ρ3eP be adjacent to p 2 , so that either p3 = pί9 or p 2 lies between ρχ and
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ρ3. We denote as R the smallest closed interval of the p-axis containing pί9p2,ρ3.
In analogy to φ\2 we define φv

23. Let the velocities υ19v2, satisfy -I<v2<vί<l.
We introduce the asymptotic two-soliton function with velocities υt:

φin(x, ί) = φγ2(x, t) + φv

2%(x, t)-p2. (1.7)

φin satisfies

lim φin(x9t) = ρ1, lim φin(x, t) = p3,
X-> — 00 ΛI-> 00

lim φin(υt, t) = p2 if v2 < v < v1.
ί->-oo

Due to the monotonicity of φ.. we have φineR for all x and sufficiently small
ί. No restriction on t is necessary in the case ρxφ p3.

The inequality vx Φ υ2 is essential, since for υx = v2 the two solitons would
always remain at a finite distance and never become independent. Actually we
shall have to introduce the condition that vλ and v2 be "sufficiently different"
from each other.

We can now state our main result:

Theorem. Let U(p) and φm(x, t) be the functions introduced above.
Then, for any non-negative integer L and any two velocities v19v2, sufficiently

different from each other, there exist a positive number α, a real number T, and a
C0 0 solution φ{x,t) of (I A) defined for t ^ T, such that

lim sup I xιe-atD[φ(x, t) - φ in(x, ί)] | = 0 (1.9)
t-f-oo x

for all derivatives D = dr

xd
s

t,r,s ^ 0, and all integers I with 0 ^ / ̂  L.

Remarks, i) We only prove existence of the solution φ in the half plane t ^ T.
However, according to results of Parenti, Strocchi, and Velo [8] this solution can
be continued to a global solution (i.e. a solution defined everywhere), if U is an
entire function. Nothing is known about the behaviour of this solution for t -> + oo.

ii) The choice L ^ 1 ensures that the energy §dxH(x, t) of φ is finite.
iii) Our proof of the Theorem uses quite crude methods. Hence our result

is certainly not optimal. In particular, one would expect the Theorem to hold,
possibly with a different form of the approach condition (1.9), for any vx Φ v2

irrespective of their closeness. This expectation is borne out by the known two-
soliton solutions of the sine-Gordon equation.

iv) Our methods are in principle generalizable to more than two solitons,
but may then lead to conditions on the velocities which cannot be satisfied.

The remainder of the paper is devoted to the proof of the Theorem. In Section
II we discuss some relevant properties of one-soliton solutions. The proof proper
will be given in Section III.

II. One-Soliton Solutions

Let us first recall some elementary facts about static soliton solutions (see e.g.
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Ref. [1]). A static solution φ(x) of (1.4) satisfies the ordinary differential equation

(2.1)

This is simply Newton's equation of motion for a one-dimensional particle moving
in the potential - 17, x playing the role of time, φ of position. Under the conditions
of Section I we are interested in a particle moving in the potential trough limited
by the two maxima of — U(φ) at ρx and ρ2. A soliton corresponds to a solution
with total energy zero:

E = ±φ'2-U(φ) = 0. (2.2)

Such solutions obviously exist. They are obtained by solving the simple differential
equation

^=[_2U(φ)r112 (2.3)

in the interval / = ] p l s p 2 [ a n d inverting the resulting function x(φ) to get φ(x).
(This φ was called φί2 in Section I.) Note that U(φ) > 0 in /, hence the right-hand
side of (2.3) is regular and non-vanishing in /, so that x(φ) is invertible. The mono-
tonicity of the resulting φ(x) is obvious. If ρx < ρ2 we must take in (2.3) the positive
square root, and x{φ) and φ{x) are increasing functions. If p 1 > p 2 the negative
root applies and φ(x) is decreasing. Infinite differentiability of x{φ\ and therefore
of φ(x), follows easily from (2.3) and the properties of U. For φ -> pγ 2 we find
x -* ± oo due to the non-integrability of U~1/2 at the boundaries of/. The solution
φ(x) is unique up to translations in x, the translation parameter being the one
integration constant present in the general solution of the first order differential
Equation (2.3). As mentioned in the introduction, we select an arbitrary solution
for further consideration.

We need to know how fast φ(x) approaches its limits p 1 2 if x -> ± oo :

Lemma 1. Let U(ρ) satisfy the conditions stated in Section J, and let φ(x) be the
soliton solution discussed above.

Then, for |x| -> oo the following functions: φ(x) — p x {for x -> — oo), φ(χ) — ρ2

(for x -> oo), I7(φ(x)), U\φ(x)\ U"(φ{x)) — μ2, as well as all their derivatives with
respect to x, decrease of order O(e~v^)for every positive number v < μ.

Proof of Lemma 1. In order to fix the ideas we consider the case x -> + oo,
pί<p2. Define i/φc) = p2 - φ(x\ so that φ(x) > 0 is monotonically decreasing,
and ι̂ (x) -> 0 for x -• oo. Equation (2.2) becomes

2 < 2 . (2.4)

Let v be a positive number smaller than μ. Then we have by (1.2)

(2.5)

for x sufficiently large, the minimal x above which this inequality hold depending
on v. Introducing this estimate into (2.4) we find φ'(x) ̂  — vι̂ (x), hence (log ψ)' ^
— v, from which we obtain ψ(x) ̂  const-e~vx for x sufficiently large. This proves
the lemma for φ(x) — p2. Writing U(φ(x))= U{ρ2 — φ(x)) and using the mean
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value theorem we find U(φ(x)) = O(e~vx). The same argument applies to U\φ)
and U"(φ) — μ2. Equation (2.1) yields then the desired estimate also for ψ", and
by integration for ψ (note that ψf -> 0 for x -> oo by (2.2)). Differentiation of
(2.1) gives φ"' = U"(φ)-φ\ which again has the claimed behaviour. Continued
differentiation gives the desired result for arbitrarily high derivatives of all the
functions mentioned in the lemma.

It is clear how the statements of Lemma 1 transcribe to the functions φ?.
and φin of Section I. In Section III we shall need information on the function

uo(x, t)=-

= U'(φί2) + U'(φ23) - Uf(φ12 + φ23 - p 2 ) . (2.6)

(For typographical convenience we omit the upper indices vx 2.) Define υ = ^(v1 +
υ2). Consider the half space L = {(x,f):x ^ vt}. According to Lemma 1 the
estimate

I φ23(x, t)-p2\£c exp( - vβ2 \x - υ2t |) g c Qxp(vβ2(v - v2)t) (2.7)

holds in L for sufficiently small t9 with β. = (1 - vf)~112 and c a positive constant.
Introducing this estimate into (2.6) we find

ιιo(x, t) = Uf(φ12) + U'(p2 + O(e^)) - U'(φ12

0 - U'{φ12) -

for t -> — oo, uniformly in x, with αL = |vjS2(ι;1 — v2). In the same way we obtain
in R= {{x,t):x^vt} the estimate uo(x,ί) = 0(exp(αRί)), uniformly in x, with
αj? = 2 ̂ 1(^1 ~ 2̂)* ^ n e convinces himself easily that the same sort of argument
also applies to all derivatives of u0 and their products with any positive power
of x. In the latter case we must remember that Lemma 1 also holds with v replaced
by v', v <vf < μ.

Thus we have proved

Lemma 2.

| x ^ δ > 0 ( x , ί ) | = 0(βαί) (2.8)

for t -» — 00, uniformly in x, with

α = ±v(v1-v2)mm{βί,β2) (2.9)

and N, r, s, any non-negative integers.
Note that α can be made arbitrarily large by choosing vt,v2, of different

sign and letting both |ι?.| approach the limiting value 1.

III. Proof of the Theorem

In order to solve Equation (1.4) with the initial conditions at t = - 00 stated
in the Theorem, we write φ as

t). (3.1)
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Insertion of this ansatz into (1.4) yields

dfδ -d2

xδ=- U'(φin + δ)~ d2φin + d2

xφ
in, (3.2)

We wish to prove existence of a solution δ vanishing for t -> — oo in the sense
indicated in the Theorem. Solving (3.2) for such a δ is equivalent to solving the
integral equation

δ(x,t) = - IdξdηDΐet(x -ξ,t-η)[l/'(φin(&η) + δ(ξ,η)) + (d2 - d2

ξ)φin(ξ,,)],
(3.3)

where

DJx,t) = iθ(t-x)θ(t + x) (3.4)

is the retarded Green's function of the operator df — d%. We shall use the notation

D^F = idξdη DrJx -ξ,t- η)F(ξ, η) (3.5)

for convolution integrals of the form occuring in (3.4).
Equation (3.3) can be written

] , (3.6)

with u0 as defined in (2.6). We solve this equation by iteration. Define

δo(x,t) = 0, Λ

o1(x,t) = i» re t*M0, I (3.7)

^w + χ(*> t) = δ1 - D^lUXφ1" + δn) - U'(φin)l n > 1. J

We have then

δn+! " K = - D r e t *[ l/V n + δ j - t/'(<Pin + δn_,)-]. (3.8)

For any fixed, real, T there exists, by Lemma 2, a positive constant M o such
that

\uo(x,t)\^Moe
at (3.9)

for ί < T. M o remains bounded for T -> — oo. Starting from this estimate we
find by induction with respect to n that the integrals in (3.7) exist and that there
are positive constants Mn,Nn, depending on T but remaining bounded for
T -• - oo, such that

\δn(x,t)\ SMne«\ μ^^ή-δ^ήl^N^ (3.10)

for t < T.
The sequence δn converges for n ~» oo towards a solution δ(x, t) of (3.6) if

< oo. We shall now prove that this is the case if α is sufficiently large and
T is sufficiently small. Let a be an arbitrarily chosen positive number. Define

.x,ί)|<oo, r = sup \U"{p)\. (3.11)

Assume 2α2 > r. Since α becomes arbitrarily large for sufficiently different v( (see
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the remark after Lemma 2), there exist values of v. for which this assumption
is satisfied. Finally, choose T such that M0(2α2 — r)~ 1eaT < a. Under these assump-
tions we can prove the following results by induction with respect to n:

i) \δn{x,t)\<a inί<T, (3.12)

hence
00 M

N=ΣNn = ̂ - < c o . (3.14)
»=o 2α - r

From (3.7) and (3.9) we find easily that JV0 = M χ = M0(2a2)~1 < M0(2α2 - r)~1.
Hence (3.12) holds for n = 1. Assume (3.12) to hold in all orders up to n. We have
then

+ δn) - C/Vn + δ,,^ ^ r l ^ - ^ . J ^ rNn_ie*<.

Inserting this in Equation (3.8) we find after an easy calculation the relation (3.13).
Using this result we find, for t < T, that

i = 0 0 Z 0 C '

the estimate (3.12) holds also in order n -f 1.
From (3.14) we conclude uniform convergence of δn in t < T towards a function

δ(x, t) with I <5(x, ί)| :g Ne**. It is easy to see that δ solves the integral equation (3.3)
and that φ = φin + δ satisfies (1.9) for r = s = I = 0.

The case / > 0 is treated by multiplying (3.7), (3.8), with |x | z and using on the

right-hand side the identity xι=Σ{ , )ξ\x ~ ζf~k- W i t h the help of (2.8), written
k V /

for Â  = /,r = s = 0, we can then find estimates for \xιδn\ by a similar iterative
method as for |<5j itself. For increasing / the iteration possibly converges only
under increasingly stringent conditions on a and T. This is the reason for introduc-
ing a finite upper limit L for the allowed values of /. Validity of (1.9) for general
D follows by successive differentiation of (3.3), using on the right-hand side the
information already obtained for δ itself and its lower derivatives. For instance,
for the first ί-derivative we find

•δ(t - η + x - ξ)-] { - lΓ(φin(ξ,η) + δ(ξ,η)) - (d2

η - d2

ξ)φin(ξ,η)}.

(3.15)

But the expression in the curly bracket is absolutely bounded by | w o | + r|(5|.
From the known estimates for u0 and δ we obtain exponential decrease oϊ {...}
for t -> - oo, uniformly in x, and inserting this result in (3.15) we find existence
and exponential decrease of dtδ. Repeated application of this method leads to
D's of arbitrarily high order, and the same method applies if / > 0.
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Since the second derivatives of δ exist and are well behaved, our solution

δ of (3.3) solves also the original differential equation (3.2), hence φ = φin + δ

solves (1.4).
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