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Abstract. The integrability conditions for a certain second order ordinary
differential equation in two variables are studied via the concept of decom-
posability of the associated differential operator. The results are applied to
regain in a unified manner the known exact solutions for locally rotationally
symmetric, spatially homogeneous cosmological models. In addition, new
solutions are obtained.

1. Introduction

Einstein's equations

R —-Rg + Ag =T (1.1)

for a spacetime metric tensor gab, where Rab is the Ricci tensor, R = Ra

a, and A
is the cosmological constant, can be solved exactly only in cases of rather high
spacetime symmetry, and for relatively simple forms of the energy-momentum
tensor Tab.

In this paper, we consider exact solutions of (1.1) for spacetimes in which
local coordinates (xa) = (ί, xα) (a = 0,..., 3 α = 1,..., 3) may be chosen so that
one or more of the field equations, or combinations thereof, take the generic form

. X . Ϋ , X2 Ϋ2 , X , Ϋ , XΫ

A r Λ: Y X Y XY ( 1 2 )

where >4.6R(Ϊ = 1,...,7), a dot denotes differentiation with respect to ί, and
X(t\ Y(i) are metric component functions. This is the case, for example, when
the spacetime is locally rotationally symmetric and admits a 1-parameter family
of homogeneous hypersurfaces (see, e.g., Refs. [1-3]). If a first integral of (1.2)
can be found, then together with the remaining field equations and the conser-
vation equations Ta

b = 0, this often allows us to obtain a reduction of the system
of equations to quadratures, or to a single ordinary differential equation in one
variable, plus quadratures.
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To study the integrability conditions for (1.2), we define a differential operator
on functions of differentiability class Ck(k ^ 2)

L a : Cfc(R) x Cfc(R) -* C k ' 2 (R)

by

La[u, v] (ί)= α ^ ί ) + α2i5(ί) + a3ύ
2(t) + α4ί)

2(ί) (1.3)

+ a5ύ(t) + α6i>(ί) + a7ύ(ήv(ή

where α2 + α2 φ 0.
La will be said to be decomposable if there exist a function F = F(u, υ, t\ of

class Ck in its arguments, and a function G = G{u,iι,v,v,t), of class C f c + 1 in its
arguments, such that

LΛ[u, Ό] (t) = F(u, v9 t)G(u, ώ, v, ϋ, t). (1.4)

If La is decomposable, then the differential equation

La[«,t;](ί) = 0 (1.5)

is integrable, with integrating factor F~ι. In addition, (1.2), which is of form

where α = log|AΓ|,ι> = log|Y|, and Λ = (A1,A2,A3 + AltAA + A2,AS%A6>AΊ),
then has a first integral

where

In §2, the complete characterisation of decomposability of operators of form
(1.3), is found. Although this does not lead to the full integrability conditions for
(1.5) (since in general an integrating factor for (1.5) will depend also on ti and v),
it is sufficient to lead to the regaining of all known exact solutions for perfect
fluid spacetimes which are locally rotationally symmetric and spatially homo-
geneous (as listed by MacCallum [4]). Together with these known solutions,
new exact solutions are given in §3. §4 contains some remarks on possible exten-
sions of the method.

2. Integrability Conditions

Theorem 2.1. L a is decomposable iff

a\a± + a2

2a3 - α 1 α 2 α 7 = 0 (Dl)

ala4 + ala3 ~ a5aβaΊ == °
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Proof. Necessity. Suppose (1.4) holds. Then, by (1.3)

Fjτ = ai (2.1a)

'%-* < 2 i b >

JdG dG . dGl .2 -2 • /.,« *
F [ ^ ύ + Ύvv + -E\ = a*u + a*v + a*u + a*v + a"uv- { l l c )

By differentiating (2.1) with respect to ύ and v we obtain

d2G _
dύdu 3

= α 4 (2.2b)

1: axa2 ψ 0
By differentiating (2.1a), (2.1b) with respect to u, v (respectively), and using (2.2a),
(2.2b), we obtain expressions, which, with (2.2c), yield (Dl).

Also, these expressions, together with (2.2) and (Dl), give expressions for
α5>α6' which, when differentiated with respect to v,u (respectively), and sub-
tracted, yield

a2a3a6 - axaAa5 = O X - a2

2a3~] — log F

while differentiation with respect to t gives, using (2.1a), (2.1b) and (2.2d), and
subtracting

(a2a5-aίa6)— = 0.

Hence

(a2a5 - aγa^{a2a3a6 - axa4as) = 0 (2.3)

(D2) follows from (Dl) and (2.3).

Case 2: a2 = 0
By (2.1b) and (2.2b)
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which is just (Dl) for a2 = 0.
(D2) is obtained by steps similar to those in Case 1.

Sufficiency

Case 1: a1a2 φθ

Case l(a): α3 = 0 = α4

(Dl) implies aΊ = 0, and hence we can set

G = aγύ + a2v + a5u + a6v.

el(b):a2

3 + al=/=0
(Dl), (D2) imply (2.3), and hence we can set

F = exp αί — - u — - v
L ai a2 J

G = F~ί(aίύ + a2v + β)

where α and β are defined as follows:

if a2a5 — axa6 = 0then α = L= ^-and β = 0
a1 a2

iϊa2a5 - axa6 φ 0 then α = 0 and β = [°^- if α3 φ 0

The remaining case (Case 2: a2 — 0; Case 2(a); a 3 = 0 = a 7 , Case2(b): a\ +
a 7 ^ 0) is treated similarly.

In all cases we obtain F(w, v, t)G(u, ύ, v, v, t) = La [w, v\ (t). D
We now investigate the behaviour of the decomposability conditions (Dl),

(D2) under transformation of variable. Define differentiable functions

Dσ:R
Ί-+R (σ=l,2)

by

D^x1) = (x1)^4 + (x2)2x3 - x1x2xΊ

_ χ 5 χ 6 χ 7

where

Then
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is a 6-dimensional differentiable variety of R7, and {La |ae^} is, by Theorem 2.1,
the set of all decomposable operators La.

A transformation of variable (u, v, t) |-> (w', ι/, t'\ given by

v = φ2(u',vf,tf) (2.4a)

t = φ3(u',v',t')

results in a transformation

If

..,O = La,[i/,ι/](O (2.4b)

where a'eR7, the transformation will be said to be form-preserving. Let 9 denote
the group of form-preserving transformations, and denote by ^* the group of
parameter transformations a K a'of R7 induced by ^. (2.4b) implies that φ3 =
Φ3(tr) and hence it is shown readily that 9 preserves the property of decompos-
ability. 2 is therefore an invariant variety of ^* : if La is not decomposable, no
form-preserving transformation (2.4a) of the variables can render it decomposable.

(Explicitly, ^ is given locally by the transformation equations

v = g3u' + #V + gηtf + g9

t = g5t' + g10

where gAeR(A = 1,..., 10), (g'g* - g2g3)g5 φ 0, and

Then

D2(af

i) = to V - gVngΎDM) + (4*3*4 " a2

7)^[(^)ί> ( ^

verifying that 3) is an invariant variety of 9*).

3. Examples

In this section we show, by means of illustrative examples, how in a cosmological
context the foregoing results sometimes allow a reduction of Einstein's field
equations to one or more ordinary differential equations involving only one
dependent variable. We shall assume throughout that the large scale matter and
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radiation distribution in the universe is represented by a perfect fluid obeying the
equation of state p = (y — l)μ, where 1 ̂  y rg 2.

Example 1: Orthogonal, Locally Rotatίonally Symmetric,
Spatially Homogeneous Models [1]

For these models, there exist co-moving co-ordinates (ί, x, y, z) such that

ds2 =-dt2 + X2(t)dx2 + Y2(ή[dy2 +f2(y)dz2] - X2(t)h(y)[2dx - h(y)dz~]dz

where

f(y) =

and c,/ceR are parameters related to the symmetry group of the space-time.

The fluid 4-velocity is u = —, and the field equations are

siny
y

sinhy
,w=

2c cos y

~c2y2

— 2c cosh y

fork =
1
0

- 1

dt9

X XY Y

7 y 4 (3.1a)

while the conservation equations reduce to

Iμ X Ϋ Λ

(3.1b)

(3.1c)

(3. Id)

Using the reduction technique described in this paper, we have been able to
regain all the hitherto known exact solutions of (3.1) (of which we are aware [4]).
These are:
c = 0: Bianchί I(k = 0): General solutions for 1 ̂  y ̂  2; Vacuum.

Kantowski-Sachs I(fe = + 1), Π(/c = — 1): General solutions for y = 1,| (Λ =
0),2(Λ = 0); Vacuum.

cφθ\ Bianchί Π(/c = 0): Special solutions for l ^ y ^ 2 ; General solution for
y = 2(Λ = 0); Vacuum.
Bianchi VIΠ(/c = - 1), IX(/c = + 1): Vacuum.

Detailed references may be found in [4].
In addition, we have obtained the (apparently new) general solution for the

case ck ψ 0, γ = 2 (Bianchi types VIII and IX) and a general reduction to one
second order o.d.e. and two quadratures for the case c φ 0, k = 0 (Bianchi II)
(in both cases with A = 0). These are as follows.
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Case (i): ck ψ 0, y = 2. {Bianchi types VIII and IX)
(3.1a) and (3.1c) decompose to

[Y(XY)Ύ= -kX. (3.2)

If we define a new time parameter τ by

τ{t) = \X{t)dt (3.3)

(3.2) may be integrated twice to give

(XY)2= -fcτ2 + ατ + fo. (3.4)

Substituting for μ = d2X~2γ-4(deR) from (3.1d) and for Y from (3.4) into
(3.1c), yields an equation for X:

[(X~2yf = [(a2 + Abk - d2)X~2 - 4c2]( - kτ2 + aτ + b)'2 (3.5)

where ' = —-.
dτ

Since (3.5) is separable it integrates immediately to give X = X(τ\ and then
Y = Y(τ) is found from (3.4).

Thus the full solution is obtained in parametric form, where the proper time
t is related to the parameter τ by (3.3).

Note that the vacuum solution (μ = 0) is given by setting d = 0 in (3.5).

Case (ίi): c ψ 0,k = 0. (Bianchi II)
Using (3.1a) and (3.1c) as before, we find after substituting for μ from (3. Id) and
decomposing

[γ(χγyγ = (2 - y)d2{χγ2)1-\ (3.6)

If y = 2, we proceed as in (i) and obtain (3.5) with k = 0.
If 1 ̂  y < 2, we define a new time parameter η by

η = [(2 - ^2 ( 3- r t]1 / 2ί[*Wr2(ί);r'Λ. (3.7)

Then (3.6) may be integrated to give

f + γ = μ(2-y)lγ(η-n0) (3-8)

where ' = — and ηneR.
dη

X' Y'
Now (3.8) and (3.Id) allow us to express — and — purely in terms of μ. Substi-

X. Y
tuting this into the linear combination (3.1) [(b)-3(c)], we obtain a second order
equation for μ in terms of η:

μμ" - (4/y)μ'2 - 8(1/ - %)μ2"μ' - 6y(̂  - ηofμ^ + [y - y(y + 2)/2(2 - y)

( λ (39)

After solving (3.9) to obtain μ = μ(̂ /), the solution is completed by the quad-
ratures
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X = aμ^ e x p [ 2 j μ < 2 - ^ - ηo)dη]

Y = 6 μ - ^

where a,beR.

Example 2: Tilted, Locally Rotatίonally Symmetric,
Spatially Homogeneous Models [2]

For these models, (invariant under a group of Bianchi type V), there exist coordi-
nates (ί, x, y, z) such that

ds2 = -dt2 + X\t)dx2 + Y2(ή exp( - 2A0x)(dy2 + dz2)

where ^40eR, Λo φ 0, and the fluid 4-velocity is

u = (cosh ψ) — + (X ~ι sinh ψ) —,
at ox

where ψ is the hyperbolic tilt angle.
The field equations are (with A = 0)

x Ϋy A2

j + 2^-2^f = i(2-y)μ + yμsinh2^ (3.10a)

γ γ2

2/4 /X Ϋ\

? ~ Ύ ) = Ύμ sinh ψ cosh φ

~2 + 2 | φ - 3 γ2 = μ cosh2 «A + (y - l)μ sinh2^ (3.10d)

while the conservation equations can be written as

[log (μ»X Y2 cosh ψ) ] ' = ̂  tanh ψ (3. lOe)

sinh ψ)']' = 0. (3.10f)

We shall solve these equations for the case y = 2. This appears to be the first
exact solution for this class of model with non-vanishing pressure.

By(3.10e),

μ = A2

0(asmhιl/X)-2 (3.11)

where αeR.
Substituting (3.11) into (3.10a) and (3.10b), we find

x Ϋ Ϋ2 icΫ

α 2 _ _ ( α 2 + ! ) - - ( « * + l ) — + ( α 2 - l ) — = 0. (3.12)
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By rescaling the x-coordinate, we may set α2 = 1, in which case (3.12) satisfies
the conditions of Theorem 2.1, and decomposes to

[ A ^ J S r ^ Π ' ^ O . (3.13)

Furthermore, (3.10b) decomposes to

[X(72) ] = 2 ^ 7 2 X - 1 (3.14)

which, after the introduction of a new time parameter ξ, defined by

ξ{t) = \χ-\t)dt (3.15)

becomes

where ' = —.
dξ

Hence

Y2 = a sinh(2^oί) + b cosh(2,40£)

a,beR,andby(3.13)

where c9deΈL.
The hyperbolic tilt angle ψ can be found from (3.10c), (3.14) and (3.16) to be

and now μ is determined by (3.11).
As in Example 1, the full solution is thereby obtained in parametric form.
The Farnsworth dust solution (y = 1) [5] can be regained by our method

after changing to comoving coordinates (τ, χ9 y, z) in which

ds2 = -dτ2 + 2F(τ)dτdx + \_W\τ) - F2{τ)~\dx2 + Y2(τ) exp( - 2Aox)[dy2 + dz2]

and u = —.
dτ

Example 3: Tilted, Non-Locally Rotatίonally Symmetric,
Spatially Homogeneous Models [2]

The method we have developed can be extended easily to the case where the
generic Equation (1.2) contains more than 2 dependent variables. Even without
this extension, however, it is sometimes possible to obtain the necessary decom-
position by defining new variables in such a way that the problem involves essen-
tially only 2 dependent variables.

For example, a certain class (the case Bianchi II, Σ23 = 0, in the notation of
[2]) of tilted, spatially homogeneous models may be given by

ds2 =-dt2 + X2(t) [dx -/(ί, z)dyf + Y\t)dy2 + Z\i)dz2
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where

α, b > 0, and the fluid 4-velocity is

u = cosh φ~ + Z'1 sinh φ~.

ot oz

The field equations are (with A = 0)

xz (x V bγ z i ^ 4 ^ 2 2V- ι>r> (3.16a)

Ϋ ΫZ XΫ

z xz yz ί x \2

-Z + XZ+ΫZ -a\jz) - " ( 2 " ^ + w s i n h 2 * ( 3 1 6 c )

(yμX y z 2 sinh φ cosh ^) * = 0 (3.16d)

XΫ ΫZ XZ χ / * V ! & 2 2

and the conservation equations both integrate to give

μ y χ y z cosh φ = d (3.16f)

d,eeR.

We obtain a reduction of these equations for the case γ = 2. By (3.16a) and
(3.16b),

[Z(Xy) ] ' = 0 (3.17)

which suggests introducing a new time parameter ξ

ξ{t) = \Z~\t)dt (3.18)

so that (3.17) may be integrated twice to give

XY = g(ξ-ξ0) (3.19)

Using (3.16a), (3.16b) and (3.19), we can now derive an equation for X, which
may be written as

WW" - W'2 + {ξ-ξo)~1 WW + g(ξ -ξj-1 W(aW3 - b) = 0 (3.20)

where ' = — and W = X\g{ξ - £0)] " x .

Equation (3.20) is a special case of the defining equation
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SS" - S'2 - ξ-χSS' - ξ-^aβ3 + a2S) + a3S* + α4 = 0

of the 3rd Painleve transcendent [6].
Having solved (3.20), we obtain Y from (3.19), and φ from (3.16f) and (3.16g)

Now (3.16e) constitutes a linear, first order equation for Z 2 , which may readily
be solved to complete the solution.

4. Extensions

The method developed in this paper has enabled us not only to obtain in a unified
manner the known perfect fluid, Locally Rotationally Symmetric exact solutions,
but also to obtain some new solutions. In addition it should be possible to regain
the known exact solutions for those L.R.S. spatially homogeneous spacetimes
which admit a non-vanishing magnetic field by use of this method (see [4] for
references to these solutions).

A natural extension of the results of this paper would be to obtain the de-
composability conditions for the case where there are n dependent variables.
For n = 3, this could be applied to the non-L.R.S. spatially homogeneous space-
times containing a perfect fluid or magnetic field. In this way, it should be possible
to regain the known solutions [4], and perhaps to obtain new solutions (one
new solution for n = 3 was given in §3, where a new choice of dependent variable
reduced the problem to n = 2).

It may be that the differential Equation (1.2) occurs in contexts other than
the cosmological. In general, the concept of decomposability (corresponding
to a restriction on the functional dependence of the integrating factor) could be
applied to other types of differential equation (corresponding to operators other
than La), to obtain useful integrability conditions.
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