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Abstract. In this work we study the v-dimensional Ising model at low
temperatures and establish the existence of an upper gap in the energy-
momentum spectrum of the two-point function for v ̂  3. For v = 2, it is known
that this gap is absent.

1. Introduction

The low energy structure of the energy-momentum spectrum of a Quantum Field
Theory is to a large extent determined by the asymptotic behavior of pair
correlation functions. It is also connected with the particle structure of the theory.
Results in this direction have been obtained for some nontrivial models in two and
three space-time dimensions [7, 15, 1]. While four dimensional models have not
yet been constructed, we can study other physical systems which are simple
enough to be realized in any dimension and yet have some resemblance to a field
theory. One example is the v-dimensional Ising model, to be compared with the
(v —1) (space)+ 1 (imaginary time) Euclidean field theory. In this work, we study
the particle structure of that model and obtain results that indicate the existence of
isolated one particle states when v > 2 for sufficiently low temperatures. Aside from
its connection with field theory, the problem is interesting in itself because of the
remarkable difference between the cases v = 2 and v>2. This is manifest in the
asymptotic behavior of the pair correlation function, which for v = 2 violates its
expected decay rate at infinity (Orstein-Zernike prediction). The Orstein-Zernike
prediction is a consequence of the particle structure we derive here together with
further properties of the dispersion relations for one particle states [11], which in
principle could be studied by the methods developed in this work. The failure of
the Orstein-Zernike behavior for v = 2 at low temperatures is due to a failure of the
required particle structure and is related to the existence of solitons for v = 2 only,
[14]. In Section III, we will give a simple geometric picture to explain the
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difference between the v = 2, v > 2 low temperature particle structure. We now
define the model and give a brief descriptions of the chapters.

The v-dimensional Ising model is a system of spins σt located at the points of
the lattice Zv and taking the values + 1 . The interaction energy is only between
nearest-neighbor spins, and has the form

U(σi9 σ•) = - Jσpj \i -j\ = 1, J > 0.

Thermal averages are calculated using the Gibbs canonical ensemble. Thus, if the

spins in the boundary of a finite set ΛcZv are fixed, the average value of
σA = Π σί(A C ̂ ) a t i n v e r s e temperature β is

ieA

^ Σ
\ί-j\=l

where £ represents a sum over all spin configurations in A and the summation in
σ

the exponent is restricted to nearest neighbor pairs {i,j} such that ί orj belongs to
A. bΛ specifies the boundary condition and ZΛ>bΛ>β (the partition function) is a
normalization factor, defined so that ( 1 ) ^ bΛ β = l.

The thermodynamic state of the system is characterized by the yl|oo limit of
the correlation functions 1.1. At low temperatures, this limit depends on the
boundary conditions bA, [12].

In Section II, we describe the physical Hubert space associated with the
hermodynamic state and introduce the energy-momentum operators. The lower
£ap in the two-point energy momentum spectrum is implied by the exponential
iecay of the truncated pair correlation function while the upper gap follows from a
stronger exponential decay of its convolution inverse.

In Section III, we establish estimates that prove the existence of the lower and
jpper gap in the (two-point) energy-momentum spectrum when v > 2 for suf-
ΐciently low temperatures.

Fisher and Camp in a series of papers [4, 3] considered this problem from the
3θint of view of perturbation theory. Their results are similar to ours.

[I. One-Particle States

i) The Transfer Matrix

WQ start by describing briefly the infinite volume transfer matrix for the Ising
nodel. The construction is analogous to one in Quantum Field Theory [10, 6] and
s based on the Osterwalder-Schrader positivity of Gibbs measure. A detailed
xeatment can be found in [14].

Consider the state of the v-dimensional Ising model whose correlation
unctions (σA},AcZv finite are obtained as limits of (σA}Λ> + [as defined in (1.1)
vith + boundary conditions] when Λ]ZV. This state can be described by a
probability measure μ on the space of configurations 9C = {— 1,1}"~v of the system,
ίuch that

(σAy = J σA(y)dμ(y) A C Z v , A finite.
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In this formula, σ^ = jQσ ί? and σ, :#"->{ —1,1} is the projection along the ith

ieA

component. Lattice translations and reflections are implemented on S£ by
σi(Tjy) = σi_j(y) (7} represents translation by jeZv) and σi(θy) = σΘ.(y), (θi is the
reflection of i across the iί=0 hyperplane) and μ is invariant under these
operations. In addition, μ has the Osterwalder-Schrader positivity:

<θfJ>=l(VJ)fdμ^O; feL2(%,Σ+,dμ).

where Σ+ is the σ-algebra generated by the family {σί:ίί ^0} and θ is the unitary
operator on L2(β£,Σ,dμ) (Σ^Borel σ-algebra) given by (θf)(y) = f(θ~1y).

Let b be the sesquilinear form on L2(&,Σ + ,dμ) given by b(f,g) = (θf,g}, and
let

b lifts to a positive definite scalar product [denoted ( , •)] on the quotient
L2(ΘC, Σ+,dμ)/Jf. We define Jf (the physical Hubert space) to be the completion of
this quotient with respect to ( , •) and denote by π the natural injection of

+ ,dμ) onto L2{^,Σ+dμ)/jV. Thus, for any f1J2eL2{^,Σ + ,dμ\

Next, we consider the problem of representing lattice translations in Jf\ In
L2(β£,Σ,dμ) the operator Tx (representing translation by (1,0, ...,0)) is defined by
{fj)(y) = f(T_eίy), where T_ei is translation by (-1,0, ...,0) in X. fx is unitary
and maps L2(βC, Σ+,dμ) into itself. One can also verify that fγ leaves Jί invariant
and therefore can be lifted to the quotient L2(&,Σ+,dμ)/J^ by setting

Notice that

(T iπ/, πg) = <ΘTJ, g} = <θ/, f.g) = (π/, T±ng),

where we have used the fact θfi = f^1θ. It is also possible to show that
Il^π/H ^ | |π/| | , so that T± extends to Jf as a bounded self adjoint operator with
|| T\\ = 1 (Tjπl =πl). The operator Tx is called the infinite volume transfer matrix
associated with the state described by μ. Tx has the additional property of being a
positive operator.

We may apply similar considerations to the other translation operators
fa(2^aSv). The major difference is that θfa = tβ. This implies that the cor-
responding Tα's extend to unitary operators in J^7.

Finally, we define the "time zero field". Consider σt with ί1 =0 as a multipli-
cation operator in L2(^,Σ+,dμ). It is easy to show that σf leaves Jί invariant so
we define σi on L2{^,Σ+,dμ)/Jr by,

σiπf=πσif VfeL2(^Σ+,dμ)

and extend to Jf as a self adjoint operator with σf — 1. The Gellman Low formula

Π
α=2
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follows immediately from the definitions. 7^(2^α^v) can be written as Ta = eiP*
with spec Pα C [ — π, π), and since the 7 '̂s are commuting,

v

Π jijcc - fe«) _ JU -k) P

α = 2

and p is identified with the momentum operator.
The energy operator H would be defined by - log T± after one proves that the

null space of Tλ is trivial. As far as the author knows, this is still an open question,
and therefore we shall place emphasis on Tl9 instead of H.

b) Spectral Properties of the Two-Point Function

In this section, we establish the existence of one-particle states in the spectrum of
the two-point function. The basic issue considered here is the analytic structure of
the function

G ( 2 ) ( p ) = _ L _ £ G{2\x)e-(^ (2.1)

where Gi2)(x) = (σ0σxy — < σ 0 X σ χ ) is the truncated two-point function, peΈv

(v-dimensional torus) and px=pίxί+ ... +pvxv. We will show that G(2)(pvp)
[p = (pί9p) with px e [ — π, π) and pe Tv~x] is meromorphic in a strip in the pt plane
for each peTv~x

9 having a pole at a purely imaginary number pί=iw(p). By
general principles, this implies the existence of one-particle states, and in fact w(p)
can be interpreted as the energy of a particle with momentum p. The meromorphic
character of G(2)(pί9p) follows from an exponential decay of G{2\x) and a stronger
exponential decay of its convolution inverse.

We start by defining the two-point function measure. From the Gellman-Low
formula, we know that

V

Π T**σ0Ω0
α = 2

where we write xeZv as x = (xί9x) with x1eΈ and x e Z * " 1 . Let {Eλ} and {i7iα)}«=

be the spectral families of projection operators defined by

1

Tι=\λdEλ and Tα= j eiλdF^(2

Since Tί,{Ta}l=2 are commuting operators, dEλι Y[ dF^ is a projection valued
α=2

measure on (0, l ) x Γ v ~ 1 , where T v ~ 1 is the (v — 1) dimensional torus. Notice that

<<VW)>=ί ί λ[^ea-~*d(σ0Ω0,Eλi Π
OP"1 \ α = 2

Two-point function measure is defined to be

F?σ0Ω0) .
α = 2



Ising Models at Low Temperatures 217
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Our goal is to show that when v ̂  3 and the inverse temperature β is large, the
support of dμ is contained in the set (see Fig. 1).

for suitable β-dependent constants m, in and function w(X). The structure of the
support of dμ in a neighborhood of λ = 1 is obtained from the following result

Theorem 2.1. For large β, 0^G ( 2 ) (x 1 ? 3c = 0)^conste~ c | x i 1 .

The first inequality is one of Griffiths.
The proof of the second inequality will be given in the next chapter. A simple

consequence of this theorem is the

Corollary 2.1. The support of dμ is contained in

and

(see Fig. 2).

Proof. Write

ί λ[xM\Eλισ0Ω0\\
[0,1)

Letting \xλ\^€θ and using Theorem 2.1 we conslude that E{ί)σ0Ω0 = (σo}Ωo. From
this it follows that μ{(l,0)} = <σo> 2 and that μ has no mass on {(λl9X):λ1



218 R. S. Schor

= l,XφO}. The exponential decay given by Theorem 2.1 also implies that
E(e-cί)σoΩo = 0 and the proof is complete.

The constant m in Figure 1 (which is interpreted as the rest mass of the
"particle" described by the theory) is now defined to be

m = - lim J

We will show in the next chapter that rn& 4(v — l)βJ for large β. Of course, c can be
replaced by m in corollary.

We now study the support of dμ in the region 0 5 ^ ^e~™. The general
strategy will b e j he following. First, it will be shown that dμ{λvλ) is absolutely
continuous in λ (w.r.t. Lebesgue measure) when λίe[0,e~m~}, and thenjve will
obtain detailed information about the Radon-Nikodym derivative dμ(λvλ)/dλ for
λ1 in a neighborhood of e~m. Combining these results, we will be able to justify the
picture drawn in Figure 1.

We start with the following theorem.

Theorem 2.2. For each pe T v~ *, there exists a positive measure dρ(λ1 p) supported
in /^[O,*?"™] such that

uP)= ί i 2λcol +λ2
[0,e"m] L—ίAi COSp1 -\-λί

Moreover, dρ(- p) is weakly continuous in p and for any continuous f(p) and giλj,

p) = (2π)&"1) f J f(l)g(X^(Xi9X). (2.3)

In (2.2) above, G ( 2 )(p l 5p) is given by (2.1). This theorem can be heuristically
derived as follows. Starting from the representation

Ĝ  ί (x 1 ,x)= J J λγίleλ xdμ(λvλ)
[Ofe-«]Γv-i

we obtain, taking Fourier transforms

G ( 2 )(p l 9 Jp)= f J z— X T2(2πp~1h{λ-p)dμ(λί,λ). (2.4)
[0 e~rn] Tv ~ i A — ̂ •^ i COS p i T" A -j

Letting

Γ v - 1

we obtain Equation (2.2).
To prove the theorem, note that (2.4) is true after smearing with a smooth

function of p. For each n> 1, let
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and let

dQm(λ1;q) = (2πβ~ί) J hm(λ;q)dμ(λ1,λ).
Tv-l

Thus, dρm(λ1 q) is a positive measure in λ1 (for each fixed qeTv~x) supported on
(0,e~m) and clearly

Notice that \\dQm{-\q)\\ ^ max |G ( 2 )(0,p)|<oo [from Theorem 2.1 and the sym-
peTv~l

metry of G(2)(x), it follows that G{2)(pvp) is real analytic in p and analytic in px on
l l m p i ^ m ] . By compactness, dρn.(- ;q)-+dρ(- q) for some subsequence {rij}, and
this implies

Taking Fourier transform in the p1 variable,

= (2π)1 / 2 j λ^1^dρ(λ1;q) (2.5)
o

e-m

showing that j P(λ1)dρ(λί q) is continuous in q for any polynomial Pβ^). Since
o

e-m

\\dρ( q)\\ is bounded uniformly in q, we see that j g(λί)dρ(λί q) is continuous in
o

q for any continuous function g(λx). From the distribution form of (2.4), and the
considerations above, we have

j dqf(q) j P(λί)dρ(λ1 ;q) = (2πp2 I j j P ί λ ^ / ^ d μ ί λ ^ λ )
j v -1 o 0 Tv~ί

for any polynomial P(/lx) and continuous /, and the proof of the theorem is
complete.

An immediate consequence of Equation (2.3) and the dominated convergence
theorem is the

Corollary 2.2. For any intervals A x C [0, e~m~] and AcTv~x (A is just a product of
intervals)

μ(A ±xΔ)= ^ - - ί ρ(A x p)dp (2.6)

where ρ(A 1 ; p ) = J t
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Our next task is to study properties of the measure dρ(λί p). We will show that
for large β, this measure has the form

dρiλ, ;p) = Z(p)δ(λi -e'y^)dλ1 + dQ'(λ± p) (2.7)

where dρ'(λ1 p) has support in λxe[0, e~m~\ with m>m, Z(p) is positive and w{p) is
smooth. Combining now Corollary 2.1 and Equations (2.6) and (2.7) gives us the
picture and Figure 1.

The function w(p) is defined by

- lim —log&2\xl9p) = w(p).-
l*i|too \Xί\

The limit exists because of the representation (2.5) and clearly w(p)^m. Also, a
simple computation shows that w(0) = m. Additional properties of w(p) are
summarized in the

Theorem 2.3. w(p) is real analytic in p and lim = 1 uniformly in p.
βϊoo M

The analyticity will be verified in the proof of Theorem 2.5. The other assertion
will be proved in Appendix I of the next chapter.

The only undefined quantity in Figure 1 now is the constant m. This constant is
characterized in Theorem 2.4 below. Let

Theorem 2.4. For large β and v ^ 3 , there exists m>m such that Γ ( 2 )(p1 ?p) is real
analytic in p and analytic in p 1 on | Imp 1 | <m. Moreover, (m/m) can be taken close to
(4v - 3)/(4v - 4) by letting β\ oo.

This theorem is the main result of this work. The interesting feature is that it is
dimension dependent. In fact, the result is known to be false when v = 2. The proof
of an equivalent version will be given in an appendix to the next section.

We are now ready to prove (2.7). We assume β so large that

Theorem 2.5. dρ(λ1;p) = Z(p)δ(λί-e-w(P))dλί+dρ'(λί;p) where dρ' has support in
λ1e[0,e~m~] and Z(p) is a positive smooth function.

Proof. From Theorem 2.2

f 1 /~A?

Making the successive change of variables λγ = e~σ and then a= — 1 +coshσ
we obtain

- 1 + coshm
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with a certain positive measure dv(a;p). Hence, G ( 2 )(p l 5p) is an Herglotz function
of (cosp1 — 1) (see [5] for properties of Herglotz functions which will be used
below) and therefore so is f(2)(pvp). As such, it has the following general
representation

- ί) + β(p)+ J ί
-l+coshmL 1

where α(p)^0, β(p) is real and (1 + α 2 ) " 1 ^ is a finite, positive measure. The
support of dη is [ — 1+cosra, oo) because G ( 2 )(p1 ?p) does not vanish when
(cospί — 1) runs through (— oo, — 1+coshm). The analyticity of fi2)(pvp) in the
region l l m p j < m implies that dη is in fact supported in [— 1 +coshm, oo), so that
G (2)(p1?p) is meromorphic in the region — 1 + c o s h m ^ — ί+cospx < — 1 -hcoshm.
Now, notice that

J ';yL2>0 (2.8)

in that region, and therefore Γ ( 2 )(p l 5p) can have at most one simple zero in the
region. It is easy to see that in fact,

) = 0 (2.9)

and if we let

then, G ( 2 )(p i 9p) — - ^ is an Herglotz function in (cosj^ — 1) which is
coshw(p)-cosp1

analytic on c o s ^ — 1 <coshm— 1. By the uniqueness theorem on representations
of such functions [5], it follows that dv(a;p) is of the form

dv(a p) = Z^δia + 1 - cosh w(p))da + dv'(a p)

where suppdv^α /^cE— 1+coshm, oo). Going back from dv to dρ, we conclude
that

where Z ^ ^ Z ^ p V s i n h w © and suppdρ'C[0,e~m]. This proves (2.7). The posi-
tivity and smoothness of Z(p) follows from Equations (2.8) and (2.10). The real
analyticity of w(p) in p is a consequence of Equations (2.8) and (2.9) and the implicit
function theorem.

III. Exponential Decay of Γ®(x)

In this chapter, Theorems 2.3 and 2.4 will be proven. We will work in position
instead of momentum space. Thus, Theorem 2.4 will follow from a strong [as
compared to G(2)(x)] exponential decay of Γi2\x) as \x\ foo. To prove these results,
we use a generalized Gibbs measure, depending on several complex variables and
study detailed properties of the corresponding finite volume two-point function
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and its matrix inverse. The estimates we obtain are independent of the volume, and
therefore can be carried to the infinite volume limit. Similar methods have been
used in Field Theory [13].

We now introduce the generalized Gibbs measure. Let Ac Zv be a hypercube
(sides with length In) containing the origin. If Ac A, define

^ Π Π <"•"> Π J1-"*
\\ \\

Λ A, {w,z} σ p=-n\ί-j\ = ί
ίl=jl Ϊl+Jl

where Z Λ> {wz) is a normalization factor (such that <1> Λ> {w>z

} = 1) and σi4 = f | σ i .
iei

The summation £ is over all configurations of spins in A and we adopt the
σ

convention that σt= + 1 if iφA. Note that if we set wp = e~fiJ

9 we recover the
original Gibbs measure in A with + boundary conditions.

Let Gi22(iJ; {w,z}) = <σίσj> Λ { W f Z )-<σ f > Λ> {w,z)<<Γ/> Λ, {>V,Z} be the correspond-
ing truncated two-point function (iJeA). The basic result about this function is

Theorem 3.1. There are positive constants r, C (independent of A, i,j) such that
( 2;{w,z}) is analytic on |wp|, |z|<r, and |G ( ^ |^C there.

The proof of this theorem is lengthy but standard, and is based on a low
temperature contour expansion of the Minlos-Sinai type [9]. We will not present it
here. For a complete discussion see [14] or [2] for related results. Before proceeding
with the specific theorems, let us make a general outline of our approach.

Let Γ(];\iJ {w, z}) be (minus) the matrix inverse of Gψ. As will turn out, Γ^} is
singular at w = z = 0. We isolate the singular part by writing

Γ^(i,j {w, z}) = MΛ(iJ {w, z})SJj9j {w, z})

where MΛ is analytic on \wp\9 \z\ < r' (rf independent of A) and uniformly bounded SΛ

is analytic on 0 < \wp\, \z\ < r' having poles in z and wr By controlling the behavior of
MΛ and SΛ near the origin we will be able to obtain bounds on Γ^ } which can be
carried to the infinite volume limit. Next, we obtain lower bounds for G%\iJ) and
the final result follows by comparing these two bounds.

We consider now the more specific results, starting with the structure of G{2}.

Theorem 3.2. G{2

Λ\Uj {w, z}) = z 4 f[ w 4 ( v " 1 } F Λ(iJ {w, z}) where F Λ is analytic on

\z\,\wp\<r.

Proof. We express G(2j in terms of duplicate variables

_ i 1

A, {w,z} σ,σ

ΓT Γί W^2~σkσ ι~σ'kσ'ι) Γ~f z(2-σkσ i-σuσ'i)
P

&i=l'ι=P
p=-n)k-ι\ = i l k r i l = 1 C31)
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Suppose σ = σ'= + 1 on the hyperplane kγ =p (iί ^ p ^ / J . (We then say that the
configurations are trivial on that hyperplane.) Consider the configuration (?,?)
obtained by interchanging σ, σ' only to the right of fe1=p. It is clear that the
contributions of (σ, σ') and (s, ?) cancel each other. Thus, we have only to consider
configurations which are not both trivial on fe1 = p. Each such configuration has
w^(v"1) as a factor. This can be seen as follows. Assume σ is not trivial on kγ = p.
Consider the Peierls contours on fcx =p corresponding to σ. These are the contours
separating the plus from the minus spins. They are constructed by drawing an
elementary hypersquare bisecting the bond {ίj} for all nearest neighbor pairs such
that (T^J= — 1. These contours are closed because of the boundary condition. The
exponent of wp is 2 (total hyperarea (surface area) of the contours associated with
σ) + 2 (total hyperarea associated with σ'\ Since σ is not trivial and the smallest
hyperarea is 2(v— 1) (corresponding to an elementary hypercube), we obtain the
factor w^" 1*. Although the picture above was made for v^3, the result is still
valid when v = 2. Since any non-trivial Peierls contours in A must be closed, it is
also clear that each non-vanishing term in Equation (3.1) has z4 as a factor. The
theorem follows from these observations and Theorem 3.1.

From Theorems 3.1 and 3.2 and the maximum modulus theorem

(^) (3.2)

and this result leads directly to the exponential decay of the (infinite volume)
G(2), Theorem 2.1. We consider now the question of invertibility of the matrix G^}

when |z|, \wp\ are small. The problem is somewhat delicate because G ^ = 0
when wp = z = 0, but, as we shall see, G^} is invertible if wp9 z=#0. The idea is
to separate explicitly the diagonal part of G{

A

2):Gi

Λ

2) = P{

Λ

2)jtR(

Λ

2) where

Then, one shows that P^2) is invertible if wp9 z + 0 so that G^2) = PΛ(l + P~A

 1K^1) and
finally that P~A

LRA has a small norm when |wp|, \z\ are small. The result then
follows.

Theorem 3.3. There exist 0 < r ' ^ r (independent of A) such that

IG^fti ίw^^^lz lVίJ 4 ^-^ whenever |z|, |wp |<r\ (3.3)

Proof. Consider the function FΛ{iJ;{w,z}) = GΛ

2)(iJ;{w,z})/z4wtί

iv-1). By
Theorems 3.1 and 3.2 FΛ is analytic and uniformly bounded (by C/r4v) on |wp|,
|z |<r, and it is not difficult to see that FΛ(iJ; {w = 0,z = 0}) = 4. Therefore, from
Schwarz's lemma (see, e.g., [8] we have

\FΛ(i9 i {w, z}) - FA{U i {w = 0, z = 0})| < 3

if \wpl \z\ <r' for a certain r'^r independent of A and the theorem follows easily
from this inequality.

An immediate consequence of this theorem is that P^1 exists if z, wpή=0. Let
QΛ be the matrix P^RΛ. Combining Equations (3.2) and (3.3) we see that
QΛ(iJ;{w9z}) is analytic on |wp|, \z\<rf and

C j ι ί\w IX4^"1)
\QΛ{i,i {w,z})\ύ-^ Π M (1-^y). (3-4)
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From this, it follows that the matrix norm \\QΛ\\<l/2 when |z|, \wp\<r"<.rr

(independent of A) so that (1 + QΛ)~1 exists. In conclusion, Gψ~1 = (1 + QΛ)~ ιP^1

exists when 0< |z | , \wp\ <r" . We set Γ™ = -Gf1 and MΛ = (1 + Q J " 1 . Note that
MΛ is analytic on |z|, |w p |<r" and \\MΛ\\ ^ 2 . Also, from Equation (3.4) we have

dwm

pp

= 0 if 0 ^ m ^ ( 4 v -

and
(3.5)

Writing l2(Λ) = l2(Λ'p) + l2{Λ'$ where ^^{ feey l . / c ^ p } and ^ ^
and looking at QΛ as an operator on 12(Λ), the above relations say that

δm-
^m^4v-5) reduce the subspace \\Λ'\ Thus, the same is true

for Mil({w,z})|Wp = 0 and since by Leibnitz formula (m^

Λ

Λ { ]

it follows that

= 0 if 0<m<(4v-ij—MΛ(iJ;{w,z})

(3.7)
and i1<p^jί.

The next theorem extends the above equation to one more derivative and is the
main result of this work.

Theorem 3.4. //v^3 and |wp|,|z|<r", then

gm

dw™MΛ(iJ;{w,z}) = 0 if 0gm^(4v-

and

Notice that the statement above is dimension dependent. The proof (which is given
in Appendix II) depends in a crucial way on the characterization of configurations
in (v — 1) dimensional hyperplanes whose associated Peierls contours have minimal
(non-trivial) hyperarea. When v > 2, these are precisely those having exactly one
spin - 1 and all the others equal to +1, Figure 3. When v = 2, a hyperplane is just
a one-dimensional line and we can have many more possibilities. For example, all
configurations in Figure 4 on following page have minimal "hyperarea".

\w l\ ( 4 v ~ 3 >

Corollary 3.1. J/v^3, |wp|,|z|<r" and ^ + 2 ^ , then

r

Proof. Follows from Theorem 3.4 the maximum modulus theorem and the bound

We now let all the variables {w,z} be equal to z>0. Combining Theorem 3.3
with Corollary 3.1, we get
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Corollary 3.2. //v^3, 0<z<r" and ii+2SJl9 then

\Γ{2)(ί 7 * z)\ < -
|i A W»Z^I= ^(4v-3)[|ii-ji|-i]

i - j i | - ( 8 v - 3)

This is the required upper bound for Γ^2). It is not difficult to prove that

lim Γ{]\ίJ;z) exists and are the matrix elements of the operator inverse of — G ( 2 )

Ml too

in /2(ZV). Since the bound above is independent of A, it carries to the infinite
volume limit. Using the notation of Section II namely a point in Z v is written as
{xl9x), then from Corollary 3.2 given ε>0,

\f(2)ίχ ^|<z[(4v-3)-s]|xi| βg\

for sufficiently large \x±\ and small z (depending on ε). We next obtain a lower
bound for G{2\xvx = 0).

Lemma 3.1. For any integer JVΞ>1, there exists r(N)<r" (independent of A) such
that

whenever 0<z<r(N) and \i± —jί\=N.

Proof. Similar to Theorem 3.3. Consider

FA(iJ;{w,z}) = G%\iJ;{w,z})/z* f\ w^"*>
P = ii

which is analytic and bounded by c / r 4 ( v " 1 ) i V + ( 8 v - 4 ) on |wp | , |z |<r. Since
FΛ(iJ; {w = 0,z = 0}) = 4, the result follows from Schwarz's lemma, as before.



226 R. S. Schor

Theorem 3.5. For any integer JV^l,

whenever 0<z<r(N) and IxJj^iV.
e - m

Proof. Let p = |x1|/JV. From Section II, we have G(2)(N, x = 0) = j Fdσ(/l) for a
o

certain positive measure dσ with total mass < 1 . Thus,

o

or

G ( 2 ) ( iV,x-0)^ f 2'X l 'dσ =
V o /

Since the estimate in Theorem 3.5 is also true in the infinite volume limit, we have
for0<z<r(Λ0

[ 4 ( v _ 1 ) + ( ^ _ f ) ] | j c i l

Corollary 3.3. Assume v ̂  3 and let ε >0 and N>0be given. There exists ro(ε, N) and
oc(ε,N) such that if0<z<ro(ε,N) and IxJ^αfeiV), then

(4v-3)-e

Proo/ Follows from Corollary 3.2 and Theorem 3.5. Theorem 2.4 is a simple
consequence of this corollary.

Appendix I. Proof of Theorem 2.3

In this appendix, we shall give a proof of the following result:

lim —— = 1 (uniformly in p).
zio m

We start with a strengthening of Theorem 3.2 using the same notation

Theorem Al.l.

ftft vCy~
p = ίi

where HΛ is analytic on {wp}, \z\<r and

| | i - 7 l | = max {|i.-jβ |}.
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Proof. The argument goes as in Theorem 3.2 but now we consider also hyperplanes
perpendicular to the direction given by \ia—ja\ = \\i—j\\, which gives the contri-
bution z4["iι'-;ιι + 1].

We let from now on wp = z. By using Vitali's theorem (and Theorem 3.1) we can
take the A]co to obtain

with analytic G(2) and H. As was pointed out in Lemma 3.1 H(xl9x = 6;z = 0) = 4.
Let

It is easy to see that this definition agrees with the one given in Section II when
z>0. Note that Gi2)(xvp;z) is analytic for small \z\ and \pt\. Writing

it is clear that G(2)(x1?p;z)/z4(v-1)^1" + 4 v is analytic for small \z\ (say \z\<η). Since
also |G ( 2 )(x1 ?p;z)|^ϊ) in that region (for some D>0), we have by the maximum
modulus theorem

I |4(v-l)|xi|+4v

and therefore, IG^x^p z ^ l z l ^ " 1 ^ ^ 1 1 for small \z\ and large |xj (depending
on ε).

We now obtain a lower bound for G(2)(xl5jp;z). Since

there exists ξ(x1) (independent of p) such that

\G<2Xxl9p;z)\^\z\^-»M + * if \z\<ξ(Xl).

Now, when z>0, it was shown in Section II that G(2) has the integral
representation

where dρ{λ;p) is a positive measure in λ for each fixed p e Γ " 1 , with a bounded
(independent of p) total mass. Using an argument similar to the one in Theorem
3.5, we conclude that given JV^l

when z is small and |xj is large (depending on N).
Therefore,
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and

1 ,wp - m = - hm — - l

On the other hand, since

R. S. Schor

4v
logz.

we see that

m ^ — [4(v —1') —ε]logz

and the conclusion is

/4v

m ~~4(v— 1) — ε

which completes the proof of the theorem. Notice that from the bounds above, it
also follows that

m
lim- 4

-4(v-l)logz

Appendix II. Proof of Theorem 3.4

In this appendix, we prove Theorem 3.4 for the case m = (4v —4); the other cases
are covered by Equation (3.7). The proof will follow from the

Lemma. Assume |z|, |wp |<r", z + 0 and v ^ 3 . Then (a) // ϊ ' 1 < p < j 1 ,

= (4v-4)!^(z2-z"2)2

where the summation is over all leΛ such that l^=p and / — β 1 = ( / 1 — 1 , / 2 , . . . ,/v),
e1=(lί + l9l2,...,lv).
(b) Ifix<p=jl9

= _(4v-4)!(z 2-z~ 2) 2

a 4(V-1)

\ Z /Λ,{w,z)

Assuming the lemma, let us prove Theorem 3.4. Thus, suppose ίί + 1 <p^jv

^ 3 and for the moment, that z=t=O. From Equations (3.5)—(3.7),

54(v-l)

= - Σ

Wn=O

(A.1)
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From now on, we simplify the notation by writing MΛ(ίJ) instead of MΛ(ίJ; {w, z})
and MΛ(ίJ;wp = 0) instead of MA(i,j;{w,z})\wp = 0. Let VΛ be the matrix
VA = I + QA. Thus, MA = V-' and since G™ = PΛVΛ,
From Equation (3.5) and Leibnitz formula,

if k1 <pSh Applying the lemma, we have
(a) If/c1<p</1:

a4(v-l)

0)

Now, assume for the meoment that w f c i+0. Then, by Theorem 3.3
G(]\k,k;xvp = O) + O and we can divide both members of the above expression by
this term:

g4(v-l) -i

^M,w p=0) = (4v-4)!-(z2-z-2)2

^Πj VA(k, I, wp = 0) = (4v - 4)! j (z2 - z~ 2f
"p

• X VΛ(Km-eί;wp = 0)Gi2\m + evl;wp = 0). (A.2)
mι=p

Since both members are analytic in |wkl| <r'\ this formula holds even when wkl =0.
In a similar way, we have

(b) Iffc 1<p = /1

Λ o . (A.3)

Noting that in Equation (A.I) the derivative of QA(k91) is the same as the derivative
of VΛ(k,ΐ) we have using Equations (A.2) and (A.3)

h>P

• MJί, k;wp = 0)VΛ(K m-ei;wp = 0)G^(m + έl9l;wp = 0)

-z~2)2 Σ MA(i9k;wp = 0)
ki<p
h=P

p = 0 ) < z 2 " + 'Xi;w p = o- (A.4)
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Now, in the first sum,

Σ MJi,k;wp = 0)VΛ(k,m-ei;wp = 0)
ki<p

p p

keΛ

because iί <mί — 1 ( = p — 1). The first equality above follows from Equation (3.7).
Thus, the first sum in (A.4) is zero. The second sum is also zero because if l^ = p,

and we conclude that 4 ( v _ 1 ) MΛ(ίJ wp = 0) = 0. Since MΛ is analytic at z = 0, the

above result (which was derived assuming z #= 0) is also valid for z = 0. The proof of
Theorem 3.4 is complete.

We turn to the

Proof of the Lemma. As in Theorem 3.2, we express G^ in terms of duplicate
variables:

J Z(°i-<W°j-rf Π Π
,z} σ,σ g = - n | k - ϊ | = l

fcσί-σkσί) ΓT ^(2 -σuσι-σ'hσ'ι) (A 5)

\k-l\ = l

and look at this as a function of wp,i1 < p ^ j 1 ? all the other variables being held
fixed. Thus, Gψ{i,j) is a ratio of two polynomials in wp9 and from Theorem 3.2, it
has the form

Γ ( 2 ) f . 1 ^wy v~ 1 } +(higher powers of

2 B + (higher powers of wp)

and therefore,

(4v-4)! w4(v-

B is easily calculated: B = Z ^ 0 . To calculate A, we have to isolate all terms in
the numerator of (A.5) having Wp(v~1) as a factor. If v ^ 3 , this is easily done.
Indeed, in this case, one of the configurations (say σ') must be trivial on the
hyperplane k1 =p and the other configuration must have exactly one spin in kί =p
pointing down, all other spins in k1 =p pointing up. For then the exponent of wp—
which is 2-(total hyperarea of the contours in kλ =p associated with σ)+ 2-(total
hyperarea in kγ = p of σ')—is equal to 2 2(v - 1 ) 4- 2 0 = 4(v -1) . And it is clear that
any (σ, σA) contributing 4(v— 1) to the exponent of wp must be of the above form.
Note that this last remark is false when v = 2. In this case, again one of the
configurations must be trivial on kγ—p but the character of the other con-
figuration on k1=p need not be restricted as before. In fact, when v = 2, the
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hyperplane kί=p is one dimensional and each of the configurations below
contributes the same amount to the exponent of wp.

— — — — ... etc.

From now on, we assume v ̂  3. Let

n
FiP\σ,σf)= Π Π w(2-σ kσ ί-σί cσί) ΓT z<2 - σkσι - σ^σΊ) ^

q=-n\k-l\ = l \k-l\ = l
q*p kι=h=q fciΦ/i

Let Φ(p) be the set of all configurations σ in A which are trivial on the hyperplane
kx =p. With this notation

σ,σ'eΦ(p)

Let Θt(p) be the set of configurations σ in A such that σk= + 1 VfcφZ with /q =p,
and σι = — 1 (the point / is assumed to be in the same hyperplane: /1 =p). From the
observations above,

P PeΦ{p)

The factor of 2 comes from the interchange (σ, σ')<- (̂σ', σ). The sets 6>;(p) and Φ(p)
are in one-to-one correspondence: to each σeΦ(p) we associate ^eΘ^p) obtained
by flipping the spin σv If ix <p<jv then we can write Equation (A.7) as

A = 2 Σ Σ {σi-σ'^σj-σ'J)F^{s\σf). (A.8)
/ i = p σ,σ/eΦ(p)

But clearly,

F ( ^ , σ θ = F ( p ) ( σ , 5 f ) z 2 ^ + ^ + σ ι ~ ^ {σι= + 1)

and therefore we see that

ir,,?,^'"*"0^"^'"'"1^"''111 (A 9)

The effect of setting wp = 0 is to decouple the region to the left of k1 =p from the
region to the right of that hyperplane. Thus,
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Now, clearly

Z * = (

so that

(

We have used the facts €(σt-σ'J>Λ,wp=o = <σϊ>Λ,wp=o-<σϊ>Λ,wp=o and
« ^ 1 - ί 1 » Λ w p = o = < σ ί>Λw P =o<σ ί - έ ι \w p =o Similarly

Taking these results into Equation (A.9), we therefore conclude that when

h<P<Jι>

h=P

which proves Part (a) of the lemma. To prove Part (b), assume it <p=jv Then
from Equation (A.7)

σeΘJp)
σ'eΦ(p)

or

Thus,

2 5

and the proof is complete.
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