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Abstract. For automorphism groups of operator algebras we show how
properties of the difference |, —a;| are reflected in relations between the
generators 0,, 0,. Indeed for a von Neumann algebra .#, with separable
predual we show that if ||, —o <0.28 for small ¢, then §,=y<(5,+5)oy "
where y is an inner automorphism of .# and ¢ is a bounded derivation of ./Z. If
the difference |0, —o;|| = O(t) as t—0, then 5,=0,+J and if ||, —o;|| =0.28 for
all ¢ then §,=7y-5,°y~*. We prove analogous results for unitary groups on a
Hilbert space and C, C¥ groups on a Banach space.

§ 1. Introduction

Questions of perturbations of dynamics have received considerable attention from
various points of view. In this paper we will consider one parameter groups of
operators acting on dual Banach spaces and one parameter groups of
*-automorphism of operator algebras. Recent considerations have centered on
studying the behaviour of the difference of two dynamics as the parameter ¢ goes
to zero. Bucholz and Roberts [ 5] consider the situation where |jot, — ;|| =0 as t—0,
where a,, o; are *-automorphism groups of a simple C*-algebra or a von Neumann
algebra. Among other things they show that the generator of «, is related to that of o,
by twisting and then adding a bounded perturbation. In [14] Robinson considers
the question of the proximity of C, semi-groups of operators, U,, ¥, on a Banach
space and characterizes [|U, — VIl =0(t*), 0 <« < 1. One also sees in [14] that the
pointwise behaviour of U,—V,, i.e. the behaviour of (U, — ¥;)(x) for x belonging to
the domain of the generator of ¥, is worth studying. Other aspects of perturbation of
dynamics has been studied in [20]; and in [21] (concluding remarks).

For automorphism groups of von Neumann algebras our results fall into three
categories. We consider the cases where ||o, — o} | is, small for ¢ small, small for all ¢,
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or O(¢) as t—0. Results of Kadison and Ringrose suggest consideration of the first
case. We deal with the first two for von Neumann algebras with separable pre-dual
as we are in need of Borel cross-section theorems. The last two situations are in a
sense part of the first. More precisely ; if |Jo, —o;| is small for ¢ small then (Theorem
3.6) 5,=7°(5,+8)oy~ ! where J,, &, are the generators of a,, o, respectively, & is a
bounded derivation and y is an inner automorphism of the von Neumann algebra.
Note that this is the same form as the main result of [5], where it is assumed that
that the difference ||a, — ;| goes to zero or t—0. The difference in these two cases is
precisely the continuity of the orbit of the unitary giving y, under «,. The last two
cases represent “parts” of the one just described. If the automorphisms are close
(enough) for all t then 8, =y<4, 0y~ ; (Theorem 3.5) if the difference ||o, — || is O(t)
as t—0 then d,=0, +9J (Theorem 3.1). Here y is again an inner automorphism and
0 a bounded derivation. Theorem 3.5 generalizes a result of Reynolds [26].

For von Neumann algebras in standard form O(t) behaviour yields an explicit
relation for the generators of the canonical unitaries. Indeed this shows that
Araki’s [3] perturbation of the modular automorphism group is characterized by
O(?) behaviour of the difference. One might incline to the view that O(f) behaviour
for automorphism groups of simple C*-algebras would yield the same result as in
the von Neumann algebra case. This however fails totally, as examples show. In
some cases, e.g. quasi-free automorphisms of the Clifford algebra (Theorem 4.3)
the result is the same as for von Neumann algebras.

The general results for automorphism groups have analogs for unitary groups
in Hilbert space (indeed we need these for the former). These results are discussed
in Section 2.

Finally we deal with examples which show that the above situations arise. One
of the examples shows that it is possible to have ||o,— o;|| =a for all te R\{0} where
0<a=x2.

§2. Banach and Hilbert Space Theory

In this section we deal with unitary groups and C, or C¥ groups. The results we
obtain for unitary groups will be used in our treatment of automorphism groups of
von Neumann algebras in Section 3.

Recall [6] that a C,-semigroup, U,, of operators on a Banach space X is a
homomorphism from R into the bounded operators on X such that t—>U,x is
continuous and U, =1 (the identity operator). A C¥-group is a dual group of a
C,-group.

Theorem 2.1. Let U, V be two C, or C§ groups, operating on a Banach space X,
with generators S, T respectively and let I denote this identity operator.

The following conditions are equivalent :

1. There exists ¢;, 0<¢; <1 and 6, >0 such that

v, —Ii=l-¢

for 0=t=4,.
2. There exists ¢,, 0<e,<1, §,>0, a bounded operator P:2(T)—»X and a
bounded operator Q:X —X with bounded inverse, such that

S=Q(T+P)Q"!
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and
IUQ U_Q-I|<1—e,, 0=Zt£6,.

1%
Under these conditions Q may be defined by Q= 5 [ dsUV_,. One has
10

[I-Q|=1-¢,
UL 'U_Q-I1<|UV_,—I|+0(t), as t—0
UQV_,—Q|=0(t) as t—0.

Proof. 1.=2.

Define
1%
Q=_— [dsUV_,
51 0

It follows that ||I—Q| <1—¢, and so @ is a bounded operator with bounded
inverse. Introduce y, by

L=Q 1UQY,.
As in [14]
Xe+n—Xa 1 161+h 1 -1
=07 dsU, . V_,_ dsU, . V_._
h 5 h j +t t 51]’1 j + t:

This implies that y, is strongly differentiable in the C,-case and weak*-
differentiable in the C¥-case. The derivative is given by

d _
f —Q U(U, V., ~D)V_ /5, .
For xeX we have
(U,—DQx _ QV,—Ix N Qx,— DV, x
t t t

>

so that if xe 9(T) the right hand side converges, showing that Qxe 2(S) and
SQx=0QTx+ QPx .
Here

dy,
dt |,—o

Similarly if xe 2(S) then Q™ 'xe Z(T) and
Q 1Sx=TQ 'x+PQ 'x

We thus conclude that
2(8)=Q%(T) and S=QT+P)Q"!

P= =Q U, V_s,— D)o, .
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Finally one computes that
v 'u_Q-I1=UV_,-DHye 'U_Q-I)
1

t
+ 5—9*1 JdsU(I-Us V_s )V_ |VQ7'U_,Q
1 0

+UYV_,~T).

The existence of ¢,, 6, is now clear. If one notes that Q7'U,Q is the group of
operators with generator T+ P, perturbation theory immediately yields that

() |Ve™'U_Qe-1]=0@, -0
and thus

(%) [UQIU_Q—I|Z|UV_,~1|+0(),
yielding the final statements of the theorem.

2.=1.
Define Q= — QPQ ™. Thus T=Q~}(S+ Q). If U is the group generated by S+Q,

UV_,—1=UQ 'U_(U,0_,-DQ+UQ 'U_Q-I).
Perturbation theory gives || UIU_,—I | =0(t), as t—0 and therefore
|UV_,—I|S|UQU_Q—-I|+0(), -0,

completing the proof.
For unitary groups on a Hilbert space Theorem 2.1 can be improved.

Theorem 2.2. Let U,=expitH, V,=expitK be strongly continuous unitary groups
on a Hilbert space.
The following conditions are equivalent :

1. There exists ¢;, 0<¢; <]/2 and 6, >0 such that
IU~VI<)/2-e, 0=t<5,.

2. There exists e,, 0<e, < ]/Z 0, >0, a bounded self-adjoint operator P and a
unitary operator W such that

H=W(K + P)W*
IlUW*U_W—I|<)/2—¢,, 05t<6,.

If these conditions are satisfied, then W can be chosen as the unitary operator
occuring in the polar decomposition of the invertible operator

1%
Q=_— {atU,—-Vv_,.
51 0

Moreover |W—1|| = ]/5—81.

Proof. The proof that 1.=-2. relies on the following lemma.



Perturbations of Flows on Banach Spaces and Operator Algebras 171

Lemma 2.3 (U. Haggerup). Let % be a collection of unitaries on a Hilbert space H#

and assume there exists an ¢ >0 such that if Ue% then |U—1I| < ]/E—s. If Qisan
operator in the a-weakly closed convex hull of % then Q is invertible with bounded
inverse.

Proof. For any bounded operator 4 on 5, let W(A4)={(Ay,v); |w| =1} be its
numerical range. Then for any Ue%, W(U) is contained in the convex set

2
{zeC;lzl§l, Rezz= VES— %} .

Thus W(Q) is contained in this set. As Sp(Q)C W(Q), [32], it follows that Q is
invertible.

Now we return to the proof of the theorem. Consider the operator

1%
Q=— [dsUV_,.
510

It follows from the assumptions on ||U,V_,—I||, and the above lemma, that Q is
invertible. The calculations of Theorem 2.1 show that

TRV, —Q| =0()=V2*U_,—0*| .
Thus
IV,Q*QV_,— Q| = (VU _)(U,QV) - 2*Q|
SVQ*U_,—Q*||ULQV_
+|UQV_,—Q|| |2*|=0(t) as t—0.
This implies [12] that |Q|* lies in the domain of the derivation generating the

automorphism group of £(s#), implemented by V. From [21], we see that
|Q|~1=(|©2|*)~'/? lies in the domain of that derivation and hence

VIRV, —1I7 [ =0(@), as 0.
Taking W to be the unitary occuring in the polar decomposition of Q we have
IUWV_—Wi=|UQVv_Vlel~'V_ ol !|
slvev_ - el
HlQIvier V., —1QI™
=0(t).

Introducing IZ= WV, W* and noting that [[U,— f/,|| =0(t), we have that ([14,
Corollary 3]) the generators of U, and V, differ by a bounded self-adjoint operator.
This establishes the relation between H and K. Further we see that

|UW*U_,—W*|=||UWU_,—W|
and

IUWU_,=W| =II(UW_,—WVU_ | +IIWIU_. =D .
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So by the above calculation the first term is O(t) as t—0 and the second is smaller
than [/5—81 for ¢ small. Thus J,, and ¢,, exist.

2.=1. proceeds as in the proof of Theorem 2.1.

We may now obtain our estimate in |W—I|| by appealing to a result of
Woronowicz [33]. As noted Q has numerical range in

€
{ze(E, |Z/<1, Rez=|/2¢, — 31} .
However Woronowicz’s result shows that the unitary W has its spectrum there.

Hence |W~1|<]/2—¢,.

The next result shows that the perturbation P in condition 2 of Theorem 2.2
can be eliminated if U, and V, are sufficiently close for all t.

After this paper was completed we found the paper [34], where a slightly
weaker version of the following theorem is proved by the same method.

Theorem 2.4. Let U, V, be strongly continuous one-parameter unitary groups on a
Hilbert space. Assume that |U,—V,|| £k for all teR, where k< [/5 It follows that
there exists a unitary W in the von Neumann algebra generated by {U,V_,teR}
such that

U=WV,w*
for all teR. Moreover |W—1I| Zk.

Proof. Let .4 be the von Neumann algebra generated by U and V. Let m be an
invariant mean on R and define Q =m(UV_)). Since .4 =(4,)* it follows that Q is
well defined and Qe.Z. But since

(UsV-—s)I/t = Ut(Us—tV—(s—t))

it follows that QV,=U,Q. An application of Lemma 2.3 shows that Q is invertible
and one then easily sees that WV,=U,W, where W is the unitary occuring in the
polar decomposition of Q.

The estimate on ||W—1I|| is obtained as in Theorem 2.3.

In Section 4 we will examine various examples which satisfy the conditions of
Theorem 2.4.

We conclude this section by deriving a result on relatively bounded per-
turbations of C¥ semigroups.

We need to recall some of the general theory and terminology of adjoint
semigroups. We refer the reader to [6] for the details.

Let t— U, be a strongly continuous (C,) semigroup of operators on a Banach
space X. The adjoint semigroup is t— U} acting on the dual Banach space X *. In
general one no longer has strong continuity of the adjoint semigroup, but trivially
it is weak *-continuous i.e. t— U¥(f)(x) is continuous for fixed f in X* and x in X.
The general theory tells us that if S is the generator of U then S* is the weak
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*_generator of U*. It turns out that the set of elements, feX*, for which U} f is
strongly continuous, is a strongly closed, invariant weak*-dense, subspace X *(U)
of X*. Further 2(S*)CX*(U).

Let U§ , denote the restriction of U} to X*(U). We write S§ for its generator.

Theorem 2.5. Let U,V be strongly continuous semigroups on a Banach space X,
with infinitesimal generators S, T respectively.

The following six conditions are equivalent :

1. (and 1,)

I(UF=V)flI=0(), t—0

Jor all feD(T*) ( for all feD(TF)).

2. (and 2,).

One has D(S*)29(T*) (one has D(S*)2D(TF)) and there exist constants
a,b=0 such that

IS*=T*)fI|Sal fI+bIT*f|l
for all fe(T¥*) ( for all fe D(TF)).

3. The estimate

[(UF=V¥) (1 +eT*H ™ =0()

is valid for all ¢ in an interval 0<e<o.
4. The estimate

(1 +eT)~ (U, ~ )l =0(t)
is valid for all ¢ in an interval 0 <g <.

Proof. The proofis based on an extension of methods used in [14] and ultimately
relies on de Leeuw’s characterization [12] of generators of adjoint semi-groups;
Viz

fe2(S*) ifand only if |[(U¥—1)f|=0(t) as t—0.
We show first that
1.=2.
If fe2(T*) then one has

IA=UHA 1A=V +1(F=UHf1=00) .

Therefore fe2(S*), by our preliminary remarks, and so 2(S*)2 2(T*).

We now make use of Hormander’s comparison theorem (Theorem I1.6.2 of
[18]) to obtain the estimate in 2.

Specifically we let

Xo=X,=X,=X*
The operators T* and S* are weak* closed, thus strongly closed, and so we may
apply the quoted theorem to obtain constants ', b’ =0 such that

IS*fl=a | f1+b1T*f]
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for all feP(T*) or

2 (T*=S*fl Zallfl+b|T*f]
with a=d',b=1+0b".

Note that we have used a version of Hormander’s theorem where it is not
assumed that T; and T, are densely defined. The proof of this version is the same
as the original one.

2.=3.
If fe2(T*) then V*fe 2(T*)C D(S*) and

t
(UF—V¥)f = [dsUXT*—-S*)V* .
0
Therefore,

UF =V Sl = (5) ds| US| INT* = S*VE Sl

= ds| U@l VES N +bIT*VES]

= ds| U V- i@l 1 +b1T*11) -

Oy ™ Oty

We know there exist constants M, w such that
(Ul < Me®; ||V,]| = Me™'

and so we conclude that
I(UF =V SeM?e (al| f|| +bIT*S]) -

Now if 1>we=0 then

It+eT) = SM(1—we)™!

—é&t

[dte™V
0

and |[T(A+eT) Y| Se {1+ M1—we)™Y).
If geX*, we thus have the estimate,

[(UF—V*)(1+eT*)™ Yg|
StM?e® {aM(1—we)™ ' +be™ (1 +M(1—we)” "} gl -

Taking the supremum over g of norm 1 we obtain 3.

3.<>4. Clear.

3.=1. This follows immediately from the fact that
DT*)=R(1+eT*)~1).

1y.=2,<3.
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If we begin with 1,,. and repeat the reasoning of 1.= 2. we obtain 1,.=2,. To apply
Hoérmander’s theorem one need only verify that T is a closed operator. This is
true since Ty is the generator of V¢,

A slight variation of the argument of 2.=3. (we take the Laplace transform
directly on the adjoint semi-group) yields

[(UF =V} (L +eT5) ™ =00) .
Now let feX*(V) and AeX. Then
LV A)=05.14).

Taking Laplace transforms, one finds that

(oL +eT) " A) = [die (£, V,4)
0

t
= [dte”"(V§ £, A)
0

=((L+eT3H) £ 4).
Now X*(V)= 2(T*), [6], and so X*(V) contains all elements of the form

[ diE@ VS,

2
where E(t,s)=(2 ]/%)‘%:xp(—;—S). Since we know ||V;*| =Me®, we can re-

normalize the E(t, s), to conclude that the unit ball of X*(V) is weak* dense in the
unit ball of X*, we can then conclude from the above equality that

1A +eD) ™ =t +eTg) |l -
Essentially the same argument yields
(1 +eT)™H(U,~ V)| =I(UF = V*) (L +eT5H) ||
=0(t)

and then 1,=4. However 4.<3,, then establishing 1.= 3.
Clearly 3.=1.=1, and so the proof of the theorem is complete.

The reader is referred to [14] for an estimate on the relative bound of $* — T*,

§ 3. Von Neumann Algebra Theory

In this section we obtain the principal results cited in the introduction.

We first digress to define a constant C(x, f)e[0, 0], for any two o-weakly
continuous, one-parameter *-automorphism groups, a,f, of a von Neumann
algebra

Clo =T i 1Pl
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We note that

1 1
m”as_ﬂs”':—s an%—ﬁn'%
n
1 - n—k k—1
TR O L
n_‘i k=1 n n n n
n
=—‘O€s—ﬁs .
n o on
n

Thus |la,— | =0(¢) if and only if C(a, f) < oo and in that case
llotg — Byl = Clo, B)le]

where C(o, ff) is the best possible constant.

Theorem 3.1. Let ./ be a von Neumann algebra; a,, p,o-weakly continuous one
parameter *-automorphism groups of M with generators 4, &, respectively.

The following conditions are equivalent :

L loe,— B, =O(0).
2. 9(5,)=2(5;) and there exists a bounded derivation 6, of M, such that

0,(X)=04(x)=0(x) for all xeD(0,)=2D(5;) .

In this case |6 =C(e, ).

If the above conditions are satisfied and o, is implemented by a strongly
continuous group of unitaries, U,, there exists a strongly continuous unitary group V,,
implementing f, such that

1U,~ VI =3Ce Pl -
Proof. 1.=2.

Theorem 2 of [14] establishes that 2(d,) = 2(d,) and that 6,,=3,— 6, is a bounded
operator from 9(d,) into .# with bound C(a, ). However the norm closure of
2(,), say U, is a C*-algebra which is g-weakly dense in .#. By the norm continuity
of 6,5 it extends to a bounded derivation of this C*-algebra into ./. It is then a
result of Kadison, Lemma 3 of ([22] also see [11]), that ,, has a unique ultra-
weakly continuous extension, J, to .#. By the Kaplansky density theorem, the
norm of this extension is also C(«, f). Note that although Kadison’s lemma is
stated for a derivation of a C*-algebra into itself, the proof of the lemma does not
rely in this fact.

2.=1.
For xe 2(6,)= 2(6,) we have

(=B (x)= (f) ds (9, — 6)B; - (x)
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and so

e, =B =l 011 ] -

One then has |lo,— B,|| =O0(t) by applying the Kaplansky density theorem.
To complete the proof of the theorem we note that by the derivation theorem,
[15], there exists an h=h*e.# with ||| <%|6||=21C(e, B) and such that

o(x)=[ih,x], xe .
If U,=e""= then, [4],
0,x)=[H,x], x€2(,.
Thus
op(x)=[iH,—ih,x], xeD(65)=2(S,) -

Defining V,=¢"®="", it follows by the Trotter product formula [18], that
V.MV* =M. Thus, on defining B/(x)=V,xV;* it is clear that 6, =4, so that f'=p.
Finally

1U,— VI <ltl |ik] =1t|3C(x, B) .

We take a closer look at the situation of Theorem 3.1, when ./ is in standard form,
[8,1,7,6].

For a given faithful, normal, semifinite, weight on .Z, let #' be the natural
cone, associated with .# and J the corresponding modular conjugation. Every
vector ne# can be written uniquely as n=n, —n,+i(;—n,) where n,6 #* and
nyLn,, n3Lln, Moreover there exists a bijection { from the normal positive
functionals ¢ on .# to vectors in 2 such that

o(x)=wy,(x) for xe .
We have the inequality
[L(ey)—L(@II* = llos — e, £ 11Lley)— L)l 1L(ey) +Lle )l -

For any o-weakly continuous representation of a topological group G, as
*-automorphisms of .Z, there exists a strongly continuous representation g— U, of
G, uniquely determined by the requirements:

a,(x)=UxUF xed, geG
U7 =7, geG .

This “canonical” representation is defined by
U lle)={(xf-10) -

Given two representations o, 8 of G, if U, V are the canonical unitaries described
above, one easily sees that

U= Vo2 S lictg-1 = By-ill S21 U=Vl -

In particular if ¢ is a faithful normal state on ./, then 4}, is the canonical unitary
group associated to the modular automorphism group of ¢.
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When G=R the next theorem states that the estimate ;||U,—V,|?
<llotg-1—B,- 1|l can be improved.

Theorem 3.2*. Let {#,?"} be a von Neumann algebra in standard form and J the
modular conjugation associated to this pair. If o, P, are o-weakly continuous
one-parameter *-automorphism groups of, let U,=e"™« V,=e"M? be the canonical
unitaries, described above, which implement o,, B, respectively. The following are
equivalent :

L o= B=00) .

2. | U~V =00).

3. There exists an element h=h*e /4 such that

H,=H;+h—JhJ .
Furthermore || U,—V,|| < C(a, B)|t|.
Proof. 3.=2.=1. are evident from Theorem 4 and its proof.

To show that 1.=3. we observe that Theorem 4 and the derivation theorem
allow us to find h=h*e.# with ||h| =L1C(e, ) and

0,(x)=6,(x)="[ih,x], xeZ(d,)=2(J) .
Define a self-adjoint operator H on %(H) by
H=H;+h—JhJ .
As JhJe ', the reasoning of Theorem 4 gives
a(x)=eHxe ™M xe, teR
and
le™ — e el <|e| | h—ThJ | S[1C(es B) -
It remains to show that ¢ is the canonical unitary group for o, (i.e. H,= H). For

this we need to show that e*#2* C#". However we know that yJyJ#*' C#* for all
ye M. Thus, by the Trotter product formula, if £ 2", we have
t t n
itth—JhJ) 2 __ 13 —ih _ —ih
e {=lim [e" Je J] ke .
Writing
; N 2 P L
et HpTh=Ih) — gtrong limit |e” "e "

n—oo
we see that e P =",

Remark. In particular we see from Theorem 5, that the Araki’s perturbation [3] of
the modular automorphism group [1] is characterized by O(t) behaviour of the
related modular automorphism groups.

! This result has been improved by U. Haagerup who has shown that the spectrum of any
automorphism is identical to the spectrum of the canonical implementing unitary U(x). Hence

1U)—U(B)] =lla— Bl if |t~ Bl <2 and | U(@) = UB)| = /3 if Joe— | =2



Perturbations of Flows on Banach Spaces and Operator Algebras 179

The rest of this section is devoted to the examination of groups of automor-
phisms which are close, but not necessarily of order ¢. First we need two results on
cross-sections and cocycles.

Proposition 3.3. Let o, B, be weakly continuous automorphism groups of a
von Neumann algebra with separable pre-dual. Suppose that |a,—p,|<e<2 for
|t| <8, 6 >0. There then exists a Borel mapping t— U, from R into the unitary group,
U(M), of M such that B(x)=U,a(x)UF for all teR and

2

IU~1| <S¢ for |4<6, where (£)>=2 (1— 1;8 ) :

Proof. An application of a result of Kadison and Ringrose [11] shows that

y,=a,°f_, is inner for || <6 and hence, by the cocycle identity for y,, for all teR.

Furthermore Lemma 5 of [11] shows that for each ¢, || <6 we can choose the
7=l

unitary so that || U,—I||2§2<1— 1— —T) =(&')?, and this is the minimal

possible norm of U,— 1.

We must now examine the Borel structure in the inner automorphism group,
Inn (). Indeed what we need is a variation on the proof of Theorem 4.13 of [29].
Recall that a topological space is called Polish if it is homeomorphic to a complete
separable metric space. A subset of a Polish space (see [27]) is analytic if it is a
continuous image of a Polish space and if X and Y are analytic Borel spaces and f
is a 1—1 Borel map of X onto Y, then f is a Borel isomorphism [27,p. 72].
Consider %(4), with the strong *-topology and (%), the closed subgroup of
U(AM), consisting of the unitaries in the center Z =.# N.4'. Let B(.4,) denote the
bounded operators on .#, with the topology of pointwise norm convergence.
Since .4, is separable, %(./#) and %(.,) are Polish. Moreover, the subset
Inn(#)CB(M,) is analytic, since the canonical map%(.#)—Inn(#) is con-
tinuous. The space Inn(.#) will be the space Y in the result quoted above. The
space %(M)/U(%) is to be X and f is the 1 —1 continuous map of an element in
U(M)|U(Z) to the automorphism it induces. We conclude that the Borel structure
of Inn(.#) is the same as that of %(A4)/U(Z).

Since the quotient map #:U(M)—->U(M)/U(Z) is continuous and open, it
follows that the canonical map fen:%(.#)—Inn(.#) is continuous and maps open
sets into Borel sets. As %(.#) is a Polish space it follows from Theorem 3.4.1 of
[27] that fon admits a Borel cross section, ie. there exists a Borel map
U :Inn(AH)—>%U(M) such that

a(x)=U(a)xU(a)*
for all aeInn(#), xe /. The existence of t—U, for [f|>J follows immediately.
For |t| <6 we proceed by defining
U (M)y={UecU(M);|U~1II <&}
Inn,(A)={aeInn(#); la—il <e} .

The image of % (.#) in Inn(.#) is just Inn,(.#) by the Kadison-Ringrose theorem.
U, (M) is closed in (M), hence Polish, and furthermore %,.(.#) is a G, set in



180 O. Bratteli et al.

U(M), thus the image of %, (M) in U(M)|U(Z) is Borel. As the open sets in
U, (M) are intersections of open sets in ¥(.#) with %,.(.#), it follows that fon,
restricted to %, (.#), maps open sets in %, (.#) into Borel sets in Inn(.#). Another
application of Theorem 3.4.1 of [27] on fen:%,(#)—Inn,(#) implies the
existence of a Borel cross section for |t| <.

We next prove an implementabiliary theorem for inner cocycles on
von Neumann algebras. Related results abound in the literature. Suppose .# is a
von Neumann algebra with separable pre-dual .#, and t—o,=p,-a_, is a
g-weakly continuous pointwise inner cocycle in the automorphism group of .. It
was shown in [24, Theorem 1.2.8] that o, is unitarily implementable if .#Z is a
factor, and in [28, Theorem 5.3] this result is extended to arbitrary ./ if « is centre-
fixing, If 31_{1(} |6, —1|| =0, then in [5, Proposition 4.1] it is shown that there exists a

norm continuous unitary cocycle implementing ¢. This last result holds without
the separability of .#,. Some features of these results are evident in what follows.

Theorem 3.4. Let ./ be a von Neumann algebra with separable predual and let o, 8
be two a-weakly continuous oneparameter groups of automorphisms of M. Assume

there exists 0,¢>0 such that ¢< l/% ~0.47 and

lo,— B, <e when [tf|<6.

Then there exists a o-weakly continuous cocycle t—T, in U(M) such that
I,,,=To(l,) for tseR
Bx)=To(x)[* for teR, Ae.l

2
IF,—I| <10 2(1—]/1—%—)=58+0(£2) for |z[<§.

Proof. The proof goes by standard cohomological considerations as in [5]. First
note by Proposition 3.3 that there exists a Borel map te R—U,e#(.#) such that

B(x)=Ua(x)U}, Aed, teR
and

U, ~I|=¢

2
for |t| <6, where 5’2=2(1 — l/ 1— %) Now, define

Z(S, t) = Usas( Ut) Us_+lt ‘

Then z:R*— % (M ") is a centre-valued two-cocycle, i.e. z(s,0)=z(0, t) = I for all
s and t and

2(s, t)z(s +t, u) = o (z(t, u)z(s, t + u)
for all s,t,u. From the definition of z we immediately get the estimate

lz(s,t)—I| <3¢ for |s|+]t|<d .
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Define te R— A, e ¥(M n.A) inductively by A,=1 and

0 0
l%(t+n)—/1%" Z(E n, 3 t)
for 05t<1, neZ.

Next, define z/(s, t) = A0, (4,)z(s, t) A for s,teR. By [5], Lemma 3.3, Z'(s,¢) is a
2-cocycle satisfying

Z(p,t)=1 for O§t§g, pegl

and

N

I1Z(s,t)—I|| <6 for 0=Zs,t<

By [5], Lemma 3.2a, s—a_(2'(s,?)) is periodic with period g, and hence the

estimate on z'(s, t)—1I just derived extends to all s. Now, let log denote the
principal value of the logarithm on the complex plane with a cut along the

. . . l /71 .
negative real axis. Now, since ¢ < —1—% it follows that 6¢’ <2, and hence by the

estimate on z, we can consistently define y(s, t)=1log(z'(s, ?)) for 0=t < bR and the
cocycle property of z'(s,t) gives
¥(s,0)=y(0,t)=0
s, )+ (s + £, u)=a ()L, u) + y(s, t +u)
o . . .
forO0Zt,u,t+u= 5 Also s,t— (s, t) is a Borel map. Proceeding as in [5], proof of

Proposition 3.5, we define a Borel map c:te

0,—5—} —c,eMNM" by

2
5
2 2
¢ == Jdsa_ys 1)
0
! 5 ! !
and A':te 0,5 —heU(MnM") by
A=exp(c,)

and compute that
2(s,0)=Aep (A DA

o ) . o
for 0<s,t, s+t 5 Using the spectral radius formula for unitaries and self-

adjoints and the definition of A, from z'(s,t) by means of y(s,t) and ¢, we
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immediately derive the estimates

2
|Iy(s,t)lléarccos(1—(6;))' Oétég

thus

>

(6¢') o
|]ct|]§arccos(1— 3 ; 0§t§§;

and finally
[[4;— Il = 6¢’
for0t< é We now extend the map te [0, g} - MeU(MnAM') to a Borel map of

all of R and define
2"(s, )= A5 12 (s, )Mo () .

Then z” is a 2-cocycle, and

Z"(s,t)=1
0
for 0=s,t< -
or0ss,t= 7
. (S 5 . " " ’ 1
Now, replacing 3 by 1 and ¢’ by 0, we define z” from z” as z’ was defined from z.

First define

Ag=1
)
" _aqr (29 . <
2 t+n) 'l%nz (4”’4t>’ 0=t=1, neZ
and then

n=1

2"(s, )= Ao (A2 (s, DAL T .

By [5], Lemma 3.3, z” is a 2-cocycle such that

Z"(p,t)=1 for 0§t§§, pegz

and

z"(s,t)=1 for Ogs,tgz.
= A4 A, we

§°78°TS

Hence [5], Lemma 3.2b implies that z”(s, t)=1 for all s, t. Defining A7

thus have
205, 0)= 2 2", 02 o (A7)

_qm m—1 m—1
- )'s + t)'s Ocs(j't ) .
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Define
r=A'U,.

Then by the definition of z from U, T} is a two-cocycle:
L, =To(l,)

and
Bx)=To ()"} .

t— 1T, is Borel, hence strongly continuous by [24], proof of Lemma 1.2.5. [We note
the following brief proof. If ./ is in standard form, let { be the canonical map of
M, ,—P" [10]. As M, , contains a norm-dense subsequence it follows from the
estimate ||{(w,)—{(®,)|* = ||w, — o, ]| that 2" contains a norm dense subsequence.
Then # =P —P"+i(P —P") is separable. If s—>V, is the canonical unitary
implementation of « on # put U,=TIV,, and note that s— U, is a Borel map and a
unitary representation of R (implementing f). As # is separable it follows that
s— U, is strongly continuous so then s—I;=UV__ is strongly continuous.] We

have the estimates

[U~Is¢ for [f=6

12, —1] <3¢ for 0§t§g
[4—1I]|<6¢ for Ogtgg
4/ =1|=0  for 0§t§§

and hence

I, —1|| S¢'+ 3¢ +6¢' = 10¢’

for |s|=

Bl O

Now we apply these result to the analysis of automorphisms which are close
for all ¢ thus generalizing a result of Reynolds [26] and Theorem 2.4.

Theorem 3.5. Let ./ be a von Neumann algebra with separable predual, and let ., 3
be g-weakly continuous one parameter groups of *-automorphisms of M. Assume

l /1
there exists a 0<e< —5969 ~0.28 such that

lloe,— B, <&

for all t.
There exists an inner automorphism y of M such that

1

a,=7pefop”
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We can choose a unitary We M, giving v, so that

||W—I||§10|/2(1—- 1—§;).

Thus lly—1ll £10e +0(e2).

Proof. By Theorem 3.4 there exists a strongly continuous unitary cocycle t—1I; in
U(M) such that

Ft+s = Ftﬁt(rs)

OC,(X) = Ftﬁt(x)r t*
for all xe.#, t,seR, and such that
IL—I<e=10 /21— [/1—¢?/4)<]/2 forall t.
We may assume that .# is in a standard representation, hence there exists a
strongly continuous unitary group t—V, such that

B(x)=VxV*
for xe.#, teR [10]. Define U,=I,V, Then UU,=IVI,V,=T B )V,,,
=I,.Vo,,=Ug,, so t—U, is a strongly continuous unitary group, and

o (x)=UxU}

for xe ./, teR. Since U,V_,=T,e M, it follows from Theorem 2.4 that there exists a
unitary We.# such that U,= WV,W*. Defining y(x)=WxW?* we thus have

o, =y oﬁt oy !
for all teR.
The estimate on ||WW—1I| is essentially that at the end of Theorem 2.2

Theorem 3.6. Let ./ be a von Neumann algebra with separable predual and let o, B
be two og-weakly continuous one-parameter groups of *-automorphism of M with
generators §,, and &, respectively.

The following conditions are equivalent :

1. There exists e;, 0=¢, < ]/199/500.28 and 6, >0 such that

”(xt_ﬁt” égl
Jor 0=t=6,.
2. There exists ¢,, 0<¢, < ]/199/50 and 6, >0, an inner automorphism y of M,

and a bounded derivation § of M such that
5a='}’°(5p+5)°7’_1

and
logoy™toa_ oy — 1] Se,

for 0=t=<9,.
If these conditions are satisfied then

”at_ﬂt” = ““toy_lo‘x—toy_ U +0() .
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Moreover, a We M can be chosen, giving y, such that

2
IW—1I]<10 2(1-'/1—%‘).

Thus |y —1] £10g, +0(e3).

Proof. 1=2. Proceeding as in the proof of the preceding theorem, we may assume
that ./ is in a standard representation, and find strongly continuous unitary
groups U, V such that

o (x)=UxU¥, B'(x)=V,xV;*
UV_,ed for teR
IU—Vise<)/2 for |4=5/4.

4% . .
In this case Q= 5 | dtU,V_,e#. Hence by Theorem 2.2 there exists a unitary
0

We M such that
IU,—WVW*|=0() .
Defining y(x)=WxW* and f;=yB,oy~ ! we then have
o= Bl S21U,~ WV, =0(1) .
Hence by Theorem 3.1 there exists a bounded derivation ¢’ of .# such that
0, =05+ =yodyoy™ 1+’
=Y°(5ﬁ+5)°7_1
where §=7"1c§"0y.
It follows immediately that
o0y~ toot, 0y =exp(td,) — exp(tdy)
+exp(td,) —exp(t(6,+9))
and hence
”atoy_ ! U _yoY— l” = ||OCt—y_ 10‘:)’” = “at—ﬂt” +0(t) .

Hence the estimate in 2 follows from the estimate in 1, and conversely the estimate
in 1 follows from 2.
The estimate of | W —1I|| is by now clear.

§4. Special Cases and Examples

In Theorem 3.1 we saw an example where the twist occurring in Theorems 2.1, 2.2,
3.6 was not necessary. Other such cases are given in Propositions 4.1 and 4.3.

Proposition 4.1. Let U,, V, be C, or C§ groups of isometries on a Banach space X,
with generators S, T respectively. Assume that U,V,=V,U,, s,teR and that there
exists >0 such that |U,— V|| <2 for |t| Se. Then |U,— V,| =0(t) and D(S)=2(T).
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Moreover T — S is bounded in norm and extends to a bounded operator on X which is
o(X,X ) closed in the C§-case.

Proof. Define W,=U,V_,. Since U and V commute, t—W, is a one parameter
group of isometries of X. We claim ¢— W,x is continuous in the appropriate
topology. The C, case is trivial. For the C} case we observe that U, is the dual of
U acting in the predual of X, X . The same being true for ¥, one sees that W, is the
dual group of the strongly continuous group V* U%* and so is weak* continuous.

Thus W, is a continuous group of isometries such that |W,—I|| <2, for |t|Ze.
Let Sp(W) denote the spectrum of W as defined in [23]. If pe Sp(W) it follows [24,
Lemma 2.36], that there exists a sequence {x,} £X such that ||x,|| =1, for all n and

lim | W,x, —e~#x, [ =0,

uniformly for ¢ in a compact set. We have that |Wx,—x,[|=le” #'x,—x,||
— || Wx,—e #'x,||. Then |W,—1| Z|e~ """ —1| for pe Sp(W). However if |f|<e and
peSp(W) we then have |e” 7' —1|<2. Thus |p|<n/e, ie. the spectrum of W is
bounded. Now by [25, Proposition 2.2], t— W, is norm continuous and so has a
bounded generator, continuous in the appropriate topology. As U, = W,V,, the rest
of the proposition follow easily.

Note that if ¢= o0 in Proposition 4.1, the proof shows that Sp(W)={0}. But
then W, =1 for all ¢ [23] and so we get the following strengthening of Theorems 2.4
and 3.5 in this special case.

Corollary 4.2. With the same notation and assumptions as in Proposition 11, if
|U,—V,| <2 for all teR, then U,=V,.

Another example where the twist of Theorem 3.6 is not necessary is for quasi-
free automorphism groups of the CAR algebra [13].

Given a separable complex Hilbert space J#, the CAR-algebra, A(#), over H#
is the C*-algebra generated by the identity and elements a(f), where f—a(f) is a
linear map of # satisfying the anti-commutation relations.

a(f)*alg)+alg)a(f)* =(9, N
a(f)a(g)+ a(g)a(f) =0.

This C*-algebra is a UHF C*-algebra (more recent terminology is “uniformly
matricial C*-algebra) and is a fortiori simple.

The automorphism groups we study are quasi-free automorphism groups.
Such a group arises as follows : Let t— U, be a one parameter group of unitaries of
the underlying Hilbert space.

Define

afa(f)=a(U.f) .

One readily sees that o, extends to an automorphism group of U(H#).

This algebra has been studied in great detail. We shall make use of the fact [13]
that there exists a representation (the Fock representation) of 2(s#) where every
quasi-free automorphism group is unitarily implemented.
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The Fock state of the CAR-algebra is the unique state w, with the property
that w(a(f)*a(g))=0. This is a pure state. As this defining relation is invariant
under quasi-free automorphisms, so is the state and then applying the GNS
procedure for the state w, we find a representation of , 7, , a Hilbert space #
and unitaries U%(t) on J#; such that

T (0(X)) = U(O)7r,, () U*(— 1) .

Araki’s characterization, [2], of bounded derivations of () will play in a key
role in the following theorem.

Theorem 4.3. Let A =A(#) be the CAR algebra and suppose a,, B, are two quasi-
free automorphism groups of W corresponding to unitary groups U,, V, respectively.
Let H, K be the self-adjoint generators of U,, V, respectively and write o, =exp(tdy),
B, =exp(tdy) for the appropriate closed derivations of U.

The following conditions are equivalent :

1. 2H)=2(K) and |H—K ||y, < (|| |, denotes the trace class norm.
2. U, = Vllz,=0(0), 1-0.

3. D(0g)=2D(0g) and |6z — bl < co.

4. flo,— B, =0(1), 10,

Proof. 1.=2. We have the integral relation

. .t
(U‘t v _ %jdsUs(H—-K)V,_s .
0

Therefore,
(U, = V)t S (H~ K|, -
2.=1.

First we note that ||(U,— V,)|| = O(t) where || - || denotes the usual operator norm on
. Applying Corollary 3 of [14], we conclude that 2(H)=2(K), and H—K has a
bounded extension to all of s# We write this extension as H—K. Let
D,=(U,—V,)/t and suppose we P(H)=2(K). Then

U1 V,—1
(D,—i(H—K)yp= ( tt —iH) Y+ ( tt —iK)tp
and so D, converges strongly to i(H— K) as t—0. Since D}=D_, converges to
—i(H —K) one has (the D, are uniformly bounded) that
|D,|>=D}D,—|H — K|* strongly .

Since the |D,|* are uniformly bounded, we may apply the functional calculus to
conclude that

|D,|—=|H —K]| strongly .
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Finally one has for some M and any orthonormal basis {y;}

Mz Fm (U~ V)i,

=lim ¥ (IDww,)

iz1

N
z ), lim(Dlyiy)
i=1

(IH K|w;lp,) for any integer N .

It
”MZ

Then ||[H—K| 1, < c0.
3.=4.

We again have the integral relation
o, — 1¢
R = fasoio, -5,

and so

W <1ou-sa1.
4.=3.

Applying the remarks preceding this theorem we may lift the automorphism
groups a,, 8, to automorphism groups of the von Neumann algebra ./ associated
with the Fock space representation [in this case .4 = #(#5)]. We write &, ,Bt for
the extensions. These are adjoint semi-groups and the operator norm of (&, ﬁt)/t
in ./ is by Kaplansky’s density theorem, [15], equal to that of (x,—f,)/t on .

Let 5H and 5 be the generators of the extended automorphism groups. Then
Theorem 2 of [14] shows that @(5,,) @(5 ) and |(5H—5K|[ <00 on this common
domain. We claim that the proof will be finished once we show that 2(65)ND(Jx)
is a joint core of 8, and J. Indeed we know that &, — &, is a bounded derivation,
say d, on the joint strong continuity subspace of & and B. Then HD(6)ND(6y)) U
and so by closure 6()C A ; that is J extends to a bounded derivation of . Since
O =0+ on D(65)ND(dy), it then follows by taking the closure on both sides
that D(6,)=2(0) and [|65— || < .

We now complete the argument by showing that 2(6 ;)N 2(dy) is indeed a joint
core of d, and d.

By restricting «,f, to any a(f) one has, using |a(f)|=]f], that
I(U,— V)/t| =M. Here the norm is the usual operator norm on 5 One then has,
using [14, Corollary 3], that 2(H) = 2(K). Taking f’s from the latter subspace and
generating the corresponding monomials in the a(f)s gives a subspace of
D(65)ND(55) which is dense in . Since e"HP(H)=P(H), "M P(K)=D(K), the
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subspace is furthermore invariant under the action of «, and f,. Hence it is a core
for both §, and 6, by [21], Theorem 3.

1.<3.

This equivalence is essentially a restatenent of Araki’s result [2] since the
derivation induced by H — K coincides with §,—dy.

We now give an abstract version of part of the previous theorem. It is necessary
to impose an additional restriction as we show in Examples 2.5 and 4.6. The Fock
space argument of the previous theorem can be replaced by a more general
argument.

Theorem 4.4. Let A be a simple C*-algebra with identity and strongly continuous
one-parameter *-automorphism groups o, B, Write oa,=exp(td,); B,=exp(td,) for
derivations 6,,6, of W If |lo,—pB,||=0(t) then there exists a (faithful) repre-
sentation ©t of U such that o, B, extend to o-weakly continuous *-automorphism
groups &, f, of m(A)". If 6;,0; denote the corresponding generators of &, p, then
D(0g)=D(6;) and | 6;— ]| < 00. If D(6,)ND(d,) is in addition a joint core of J, and
04 then [lo,— B, =0(1) is equivalent with 9(5,)=2(5,) and |6, — 64|l < oo.

Proof. Consider the orbit of any state under the action of t—o, By applying an
invariant mean we obtain a state w which is invariant for the automorphism group
o, ie. w((x))=cw(x) for all teR.

Via the GNS procedure, one has a Hilbert space 5, a representation «,, of U ;
and a unitary representation of R, t—V,e (), such that

7, (0(X)) = Vr (X)V_, =81 (x)) .

The representation is faithful since 2 is simple. Next note that for ¢ sufficiently
small

“o‘t'ﬂ—t—l”<2 .

Here 1 is the identity automorphism. Results of Kadison and Ringrose [11], then
give a unitary U,e # ==, (N)" such that

(B (X)) =Vim,,(B_ (XNWV_, = Un (U .
Unwinding one has that
n,(B_ () =V_Um, (x)U}V,, forsmall ¢.
Thus B, extends to an automorphism f, of .# for all sufficiently small ¢, and by

iteration, for all t. The extension is moreover o-weakly continuous in ¢, for given
xe M and ¢pe M, one has

[9(B,(x) — x)| =[(0(x) = X) | + [lors(o) = BX)I -
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But by Kaplansky’s density theorem [15],

t(x) ﬁt( )H t(x)_ﬁt(x)
llx| Xl

xeM

éMltl

for t small. Thus continuity follows by the group property.

We now have dual semi-groups and so may conclude the first part of the
theorem by applying [14, Theorem 2].

If in addition one has that 2(,)N%(d;) is a joint core of J, and 6, we reach our
conclusion by arguing as in 4)=-3) of the previous theorem.

Conversely suppose that 2(5,)=2(J,) and [|6,— 4|l < co. Then choosing x in
the common domain one has the integral relation.

2,)— B ()= j st (8, — ,)B,(x) .

The O(t) behaviour is then clear since such x are dense. The general setting for the
first two examples will be a C*-algebra, with unit acting on a Hilbert space 5# and
two strongly continuous one parameter automorphism groups o,, f, of 2 which
extend to weakly continuous automorphism groups of A”. Let J,,d, be the
generators of o, f, respectively as automorphism groups of 2, and O 5,, the
corresponding generators as groups of automorphisms of A”. It is clear that
5 Céa,ét,géﬁ Moreover 2(5,)=(1+45,)~ (), 2(5 p)= (1+/15 )~ 1() for any real

In the following two examples J, is obtained from J, in the following manner :
We choose a unitary ve M such that ve @(5 ), v¢2(5,) and set

85(x)=v*6,(vxv*)v=0""(0,(0(x))) ,

where o(x)=vxv* is an inner automorphism. This relation persists for the
extensions 0, 0, so that one has

a) D(05)=v*D(6,)v;
b) 9(55) 26.); )
c) (5,,(x) =v*§ X)X0*V +v*00,(x)p*v
+v*0x0,(v*)w
=0,(x)+[v*9,(v), x] .
The last two conditions show that ||a, — 3, = O(t), t—0, as may be seen by applying

Theorem 2 of [15] or computing directly. We shall show that v may be chosen so
as to make

D) 2(6,)=v* D6 v D(S,)
a non-dense subspace of 2.

Example 4.5. In this example A is the common strong continuity subspace of o
and B but 2(5,)n2(J,) in not even o-weakly dense in U.

Let M, be the complex 2x2 matrices and C(T) the (complex valued)
continuous functions on the circle group T with the usual supremum norm. For 2
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we take M, ® C( T) and consider U represented on =¢ 2@ L*( T)=L*( T)@ L*( T),
using Haar measure on T.

Then A" =M, ® L*( T),ie. the von Neumann algebra of all 2 x 2 matrices with
entries in L*( 7).

Define o, =1®1,, where 1 is the identity automorphism and (z,f)(x)= f(x—t) in
the group defined by rotation of the circle (translations mod2zn). Then o, is
o-weakly continuous on A" and 2 is just the strong continuity subspace of «,.

Next let 6: T—R be a uniformly Holder continuous function i.e. |6(t,)—6(t,)]
<Mit,—t,| for some constant M, but 0 is non-differentiable on a dense set of
points of. One such function 6 is

0

1
0= Y —ls—n,

n—1

where r, is an enumeration of the rationals in T. Let 6, and §, be the generators of
1, viewed as an automorphism group of C( T), L®( T) respectively. Then 0 2(3.) (it
is absolutely continuous) and 8¢ 2(6,). Further ||51(9)|| <M. We verify directly that
" is also Holder continuous and hence in Q(St). Clearly €“¢2(5)).

Next define the unitary operator v by

1 0
Tss— (O e“"”)'

Then ve 2(5,), v¢2(d,) and v is a unitary in 2.

Given
fii Sz A
(fu fn)e ’
we have
«[f11 Ji2 _ fi1 eiofn
’ (f21 fzz)v (e_iofn fzz).

Now 2(5,) consists of just the matrices (f;) where each f;; is continuously
differentiable: Since these functions are continuous f and €“f can both be
continuously differentiable only when f=0. This shows that

e

so that 2(3,)n2(d,) is not dense in A

D)D)= {(

ﬁ,-e@(a,)}

Example 4.6. This example is a variation of the first and provides us with a simple
C*-algebra with unit where 2(5,)n2(d,) is not dense in A and |o,— B, =0(?).

We refer to 2, «, and v of the previous example as W°,a° v°. Let ¢, be an
irrational rotation of the circle and define

—n0
T=0 .
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Then 1 is an automorphism of ° which acts freely and ergodically on its
spectrum. It follows from [9, 16] that the C*-crossed product A=C*(A° 1)
=M, ®C*(C(T),7) is simple. Since this crossed product is discrete we have a
canonical imbedding of A° into A and since « commutes with 7,o) extends
canonically to a strongly continuous group «, of automorphisms of 2. Using
Zeller-Meier’s approach [19] we define the von Neumann crossed product of
A =M, ®L*( T) by T as VN(U°", 7). The simplicity of A allows us to represent A
faithfully in VN(2®”, ). Keeping the same letter we see that A" =VN(UA”, 1) and «,
extends to a o-weakly continuous group of automorphisms of VN(°”, 7). Now
v=0"eA°C A and so ve D(5,), v¢ 2(8,). One can then show, as in Example 1, that

D(,)NnD(6,) S CHA,7),

viewed as a subalgebra of VN(%, 1), where A°° = {(f“ 0 )

0 fi ﬁjeg(ét)}'

The techniques used in the first two examples can be used to show that the
saturation property of de Leeuw [13] does not serve to characterize the domain of
the generator of a one parameter automorphism group of a simple C*-algebra
with unit. This property says that given a one parameter group of automorphism
7, the domain of its generator is identical with those x such that [7,(x)— x| =O0(¢).

Example 4.7. There exists a simple C*-algebra 2 with unit, a one parameter
group. 7,, of automorphisms of U with generator § and an element xe A such that
7 (x)—x|| =0(¢), t—0, but x¢2(5). The simple C*-algebra A is the C*-crossed
product of A, =C( T) by an irrational rotation. The group of automorphisms 7, is
that gotten by lifting to the crossed product the automorphism of C( T) given by
rotation through an angle ¢. Call this automorphism 0. Since 2, is embedded in
A we have 5,56 and D(5,)=2(5)n A, where 5,6 are the generators of
0.1, respectively. If we take for xe W, a Holder continuous function £, which is non-
differentiable, one has that x¢2(d,) and by the above remark x¢2(d).

We show in the next example that commutativity is required for Proposition
4.1. The following two examples delineate the distinction between our results and
those obtained in [5].

Example 4.8. For any 0=<e=<2 there exists two strongly continuous one-
parameter unitary groups U, V, on a separable Hilbert space 5# such that

IU—Vi=e teR\{0}.

Proof. Let # =I?*(R) and define U, by
(U.N)E)=f(s—1).

For ¢ given, choose § =arcsin(e/2) and define a function 0 by
0(s)=J sin(s?) .

Next define a unitary operator W on by

(Wf)(s)=e"f(s)
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and define
V,=WUW*.
Then

IV.=Ul=IwUWw*U_,—1] .
By an easy calculation:

(WU, W*U _, f)(s) =€ O f(s)
)

[V;= U]l = suplet®9= =0 —1].
s

It is then clear that
U~V Sl —1]=¢
for all t. Next fix t+0 and ¢ >0. We will exhibit an s such that
0(s)=0
O(s—t)+d| <€
ie.
|0(s)— O(s — t) — 20| <&’ .

This will end the proof. It amounts to showing that there exists integers n, m such
that simultaneously:

s2—(s—t)*=n+2nn

, T
$°=—+42mn .
2+mn

Since 52 —(s—t)*> =2st —t2, this amounts to finding n, m such that

2’/g+2mt—t2;n+2nn .

But since the derivative of the function x— 1/; tends to 0 as x— + oo, while the
function itself tends to oo, this is clearly possible for any &'. This shows that
|U,— V|| 2¢ for t+0 ie.

|U~Vil=¢ 0.
One easily refines the technique of the proof given here to show that
Sp(WU,W*U _,)=¢'l=2%2 This implies the following:

Example 4.9. If M = P (H), # a separable Hilbert space, then for any é such that
0=<6=2 there exists two o-weakly continuous one-parameter groups «,, f, of
*-automorphisms of #(#) such that

le,—Bl=6  teR\{O0}.
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Proof. Use U,V, from Example 4.8 with e= |/2(1—]/1—¢*/4) and set

o,=U,-Uk¥, B,=V,oV* Then
”ﬂt—at” = ”ﬁt‘x~t—i“
=[lad(WUW*U_)—ad(1)] =6 .

Next we give a physically more interesting example of unitary groups such that
|U,—V,| <& for all t.

Example 4.10 (Smooth Interactions). Let U, V, be two unitary groups on the
Hilbert space # with generators H, and H=H,+V where V is a self-adjoint
operator such that

HVIVAH—2) " V12 =N <1

for all z with Imz=0. It follows by a perturbation calculation that
IVIY2H =27 V"2 <NA—=N)"!,  Imz#0.

Moreover if || A|| is defined by
| Agll*= sup of dt]| Ae™ |2/ ||w|?

then one may deduce [30] that
VY25, <2N,  [IVIY3IE<2N(A—-N)"t.

But one then has

t
|(¢> (Uz - I/t)w), = jds((P, UsVI/t—SIP)
0
ol 1wl Vg I VI g

Therefore

|U~ V| S2N(1-N)2
[In particular ifN<(]ﬁ— 1)/2 then |U,— V| <2 for all te R.] It is also possible to
show that

I(Ho—2)"2(U, = V)(H —2)"?| S2[t|N(1 - N)*1* .

A specific situation in which this example applies is given by =IL2(R3),
H,=—V? and V a multiplication operator (Vi)(x)= V(x)p(x) such that V(x) is
real and

(1/Am) L[ dxdylV )l V) [(x—y)* T2 < 1.

This example occurs in scattering theory and one can show that

W =stronglimitU,V_,

t—>

exists, is unitary, and U, W =WV, (see for example, [31]).
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