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Abstract. It is shown that at equilibrium certain matrices associated to the one-
dimensional many-body problems with the pair potentials V1(x) = — log|sinx|
and V2(x)= I/sin2 x have a very simple structure. These matrices are those that
characterize the small oscillations of these systems around their equilibrium
configurations, and, for the second system, the Lax matrices that demonstrate its
integrability.

1. Results

Consider the two classical one-dimensional many-body systems characterized by
the hamiltonians

Ha = ±p2 + V8(x)9 5 = 1,2, (1.1)

with

TO=- Σ
j>k=l

V2(x) = Σ sin-2(x,.-xfc), (1.2b)
j > k = l

and by the corresponding equations of motion
n

x.= £' cotg(Xj-xk), 7 = 1, 2,.. . ,n, (1.3a)
k=l

k = l

Here, and always in the following, x resp. p indicate the rc-dimensional vector of
coordinates Xj resp. ppj = 1, 2, . . ., n, while a prime appended to a sum indicates that
the singular term must be omitted.

Let us, for definiteness, assume that the particles are labeled so that

(1.4)
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and assume moreover that there exist a constant x0 such that

(1.5)

Clearly these assumptions imply no loss of generality, in view of the singular and
periodic nature of the forces.

The system characterized by the hamiltonian Hί was discussed by Dyson [1],
who noted that its equilibrium configuration is given by the formula

j=l929...,n, (1.6)

with x0 an arbitrary constant. This corresponds to the formula

n

Σ' cotg(χ.-x,)-05 .7 = 1,2,. ..,n. (1.7)
k=l

It is not known whether this "Dyson system" is integrable. But we prove in the
next section that the circular frequencies of the normal modes of the small
oscillations of this system around its equilibrium configuration (1.6) are given by
the simple formula

ωs

2 = 2s(n-s), s = l,2,...,n. (1.8)

As implied by the standard theory of small oscillations [applied to the equilibrium
configuration (1.6) of the Dyson system with equations of motion (1.3a)], these
numbers coincide with the n eigenvalues of the hermitian matrix of rank n

Mjk = δjk Σ' sin-^.-xa-σ-^sin-2^.-^), (1.9)
J = l

where of course the 5c/s are given by (1.6).
The system characterized by the hamiltonian H2 was introduced by

Sutherland [2] in the quantal context. Its complete integrability in the classical
case was proved by Moser [3], who introduced the two Lax matrices.

L^δ^pj + iμ-δjjcot^xj-x,), (1.10)

n
Mjk = δjk Σ' sin~2(x ι /-x ί)-(l-δ</jk)sm-2(x j-x j k), (1.11)

1=1

and noted the equivalence of the Lax equation

L, = i[L,M] (1.12)

to the equations of motion (1.3b). There follows of course that the eigenvalues λs of
the matrix L are constants of the motion. Moser showed that these n quantities are
independent [3], and it was subsequently easily shown that they are in involution

[4].
We prove in the following Section that the equilibrium configuration for this

"Sutherland-Moser system" coincides with that, Equation (1.6), of the Dyson
system this of course implies that

n

Σ/cotg(3c j-3ck)sin~2(x j-3cfe)-0, j=l929...9n. (1.13)
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We prove moreover that at equilibrium, i.e. for p = Q and x = x [with the
components xj of 3c given by (1.6)], the Lax matrix L = L(p = 0,x = x) has the
eigenvalues1

λs = 2s-n, 5 = 1,2,. ..,n-l; ZB = 0. (1.14)

Note that also the eigenvalues of the second Lax matrix M of Equation (1.11)
are, at equilibrium, given by a very simple formula, namely

μs = 2s(n-s), s = l,2,...,n, (1.15)

as implied by the statement reported above after Equation (1.8), and by the
identity at equilibrium of M, Equation (1.11), with M, Equation (1.9). Note
moreover that the two matrices L and M commute [as implied by (1.12) of course
at equilibrium Lt = 0] and it is shown below that to the eigenvalues λs and μs there
corresponds the same eigenvector. Since it is apparent byjnspection [using (1.7)]
that the eigenvector corresponding to the eigenvalues λn = μn = Q is the vector
« = (!, 1,..., 1), a comparison of the spectra (1.14) and (1.15) implies that these two
matrices are related by the simple formula

M = Kn2/-(Z')2L (1.16)

where / is the unit matrix of rank n and L' is related to L by the formula

L' = L + J, (1.17)

J being the idempotent matrix having all elements equal to unity,

Jjk = l, J2 = nJ. (1.18)

Indeed it is well known that the matrix J has the eigenvalue 0 with multiplicity
n—1, and the (nondegenerate) eigenvalue n corresponding to the eigenvector u.
Note that the matrix L' could be used in place of L in the Lax formula (1.12), since
addition of the constant matrix J to L changes neither the l.h.s. nor the r.h.s. of
(1.12), since clearly (1.11) and (1.18) imply

MJ = JM = 0. (1.19)

Of course the matrix Z? appearing in the r.h.s. of (1.16) is the matrix L' of (1.17)
evaluated at equilibrium, i.e. for p = 0 and x — x, with the components of x given by
(1.6); and its eigenvalues are given by the simple formula λ's = 2s — n, s = l,2,... Jn
[5].

Squaring explicitly the matrix L and using the trigonometric identity

cotgαcotgβ= -l-[cotgα-cotg/Γjcotg(α-/J) (1.20)

together with (1.7) one easily shows that

Γ n

ΠΓ' sin-2(5c.-5ck)
U=ι

(1.21)

1 Note that the eigenvalue 0 is always present, and it has multiplicity 2 for even n
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and a Comparison of this formula with (1.16) implies [using (1.18) and the formula
JL = ZJ = 0 that follows from (1.7)] the formula

Σ'sίn-2(xJ-3ck) = i(π2-l), ./=l,2,...,n. (1.22)
k=l

Note that this formula implies that all the diagonal elements of M are equal and
that

trM = £φ2-l), (1.23)

a formula that is easily seen to be compatible with (1.15). Indeed (1.22) could also
have been obtained noting by inspection [using (1.6)] that all the diagonal
elements of M are equal, and then evaluating the trace of M from (1.15).

Analysis of the small oscillations of the Sutherland-Moser system around its
equilibrium configuration implies in addition that the matrix

Σ' Cf - sin2(x,. - 5c,)] sin
1=1

(1.24)

[with Xj given by (1.6)], whose eigenvalues provide the squares of the circular
frequencies of the normal modes, satisfies the matrix equality

ΛΓ = M2, (1.25)

with M given by (1.9). This result, proved in the following section, implies that also
the eigenvectors of M and N coincide, and that the eigenvalues vs of N are given by
the simple formula

vs = 4s2(n-s)2, 5-1,2,. ..,n. (1.26)

The fact that the square roots of all these numbers are integers imply the complete
periodicity of the small oscillations of the Sutherland-Moser system around its
equilibrium configuration hardly a surprising result, since the full motion of the
Sutherland-Moser system is completely periodic [6].

From (1.26) there easily follows that

trtf = £φ4-l). (1.27)

Noting that the diagonal elements of N are all equal, one easily obtains from this
formula [also using (1.22)] the sum rule

Σ'sin-4(5c j-xk) = ά(n2-l)(n2 + ll). (1.28)
fc=l

Let us emphasize that the results reported above, and proved below, not only
display some remarkably simple properties of the Dyson and Sutherland-Moser
systems, but also imply a number of nontrivial relations for trigonometric
functions of rational angles, including some remarkable diophantine equations. In
view of the possible interest of these formulae, they will be also reported elsewhere.
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Let us finally mention that analogous results can be obtained starting from
other "solvable" many-body models [7]. Some of the results for the zeros of
classical polynomials and other special functions that can be obtained in this
manner go beyond those recently discovered [8] they also will be published
elsewhere.

2. Proofs

Let us begin by proving the coincidence of the equilibrium configurations for the
Dyson and the Sutherland-Moser systems, and also the validity of Equation
(1.25). These results are immediate consequences of the following elementary
theorem: [9].

Let the two hamiltonians

tf<*>(x,p)=4p2 + F<s>(x), 5 = 1,2, (2.1)

be related by the formula

V(2\x) = a £ [δF(1)(x)/3xJ2 + const (2.2)
1=1

then they have the same equilibrium configuration, and the matrices M(s) that
characterize their behavior in the neighborhood of an equilibrium configuration
are related by the formula

M(2) = 2α[M(1)]2; (2.3)

so that their normal modes coincide and the circular frequencies of their small
oscillations around the equilibrium configuration are related by the formula

[ω ]̂2 = 2α[ω^]4, s = l,2,...,n. (2.4)

For indeed this theorem is applicable in our case, since it is easy to prove (see
Appendix) that

V2(x) = \ Σ C^M/fcc,]2 +1 φ2 -1), (2.5)
1=1

with V±(x) and V2(x) defined by Equations (1.2).
Let us proceed now to prove (1.8) [or equivalently (1.15)] and (1.14). To this

end we introduce the one-dimensional many-body system characterized by the
equations of motion

n

Xj = - axj + £' [1 - b(xj + xk) + 2xjx J cotg(x. - xk), j = 1,2,..., n. (2.6)
k = l

Clearly the equilibrium configuration of this system coincides with that of the
Dyson system (and therefore also of the Sutherland-Moser system), since the r.h.s.
of (1.3a) and (2.6) coincide at equilibrium. Note incidentally that for a = b = 0 the
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behavior of the system (2.6) in the neighborhood of its equilibrium configuration
coincides, in the linear approximation, with that of the Dyson model of Equation
(1.3a).

The equations of motion (2.6) are exactly solvable [7]. Let us restrict attention
to motions with fixed center-of-mass, a condition clearly consistent with (2.6).
Then the exact solution [7]2 of (2.6) is a nonlinear combination of the functions

Γ)ί), m = 0, +1, ±2,..., ±n, (2.7)

where the quantities c(*} are arbitrary constants (to be fixed by the initial
conditions) and the quantities αjn

±) are the two roots of the second degree
equation3

(n2-m2} = 0. (2.8)

Note that, for m = n, only the single solution cn(t) = const must be considered,
corresponding to the single root α = 0 of (2.8) for m = n (indeed this contribution is
associated to the center-of-mass degree of freedom4) moreover the quantities cm(t)
enter in the solutions of (2.6) only for those values of m whose parity coincides with
the parity of n [there are thus exactly n different cm(ί)'s that contribute]5.

Consider now the behavior of (2.6) in the neighborhood of its equilibrium
configuration (1.6). Then setting x = x 4- ε in (2.6) and keeping only terms linear in ε
one obtains [using (1.7)] the equation

ε + (a-ibL)έ + Mε = Q. (2.9)

Here we are using a vector notation : ε is the n- vector of components εj9 while L
and M are the matrices defined in the previous Section. But this formula must
yield the same (not necessarily real) circular frequencies that appear in the exact
solution of (2.6). A comparison of (2.8) and (2.9)_(note the arbitrariness of a and b)
implies that this is possible only if the matrices L and M commute6, have common
eigenvectors and have eigenvalues — m and ^(n2 — m2\ with the additional
specification on the permitted values of m reported above after (2.8). This
immediately implies (setting m = n — 2s) the results (1.8) [or equivalently (1.15)] and
(1.14)7.)

Appendix

From (1.2a) there follows that

k=l

2 Set C = l, E = a, B = 0, JB = 1, A = %, D = b in Equation (3.6.9) of C
3 See Equation (3.6.19) of C
4 See Equation (3.6.23) of C
5 See the statement after Equation (3.6.22) of C
6 A fact already implied by the results proved above, as noted in the previous section
7 The eigenvalue IB, that is not determined by this argument, is given by the condition trZ
implied by the very definition of L
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so that

Σ IdV^/dx^^A + B (A.2)
z = ι

with

A=Σ Σ'cotg2^-^) (A.3)
ί= 1 k= 1

= 272(x)-n(n-l), (A.4)

n

B= £" cotgtxj-xJcotgCxj-X;) (A.5)

= - Σ" {[cotg(xz-xfc)-cotg(xz-χ.)]cotg(χ.-xfc) + l} (A.6)
U,fc=ι

= -2B-φ-l)(w-2). (A.7)

The double apex on the sum in (A.5) and (A.6) indicates that in the sum all terms in
which two indices coincide must be omitted. The step from (A.5) to (A.6) uses the
trigonometric identity (1.20). The step from (A.6) to (A.7) takes advantage of the
fact that the 3 indices /, j, k are dummy. Clearly ( A.7) implies

2), (A.8)

and this, together with (A.2) and (A.4), yields (2.5), q.e.d.
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