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Abstract. We investigate' Ising spin systems with general ferromagnetic,
translation invariant interactions, H=—^JBσB, Jβ^0. We show that the
critical temperature 7] for the order parameter pi defined as the temperature
below which pt>09 is independent of the way in which the symmetry breaking
interactions approach zero from above. Furthermore, all the "equivalent"
correlation functions have the same critical exponents as T^Tt from below,
e.g. for pair interactions all the odd correlations have the same critical index as
the spontaneous magnetization. The number of fluid and crystalline phases
(periodic equilibrium states) coexisting at a temperature Γ at which the energy
is continuous is shown to be related to the number of symmetries of the
interactions. This generalizes previous results for Ising spins with even (and
non-vanishing nearest-neighbour) ferromagnetic interactions. We discuss some
applications of these results to the triangular lattice with three body in-
teractions and to the Ashkin-Teller model. Our results give the answer to the
question raised by R. J. Baxter et al. concerning the equality of some critical
exponents.

1. Introduction

In two recent articles [1,2], one of us obtained new results on the "equivalence of
different order parameters" and "coexistence of phases" for Ising ferromagnets.
These results were derived for systems with even interactions which "generate" all
even subsets of the lattice, e.g. when the nearest neighbour interaction does not
vanish for a simple Bravais lattice.

The purpose of this note is to draw attention to the fact that these results can
be extended immediately to arbitrary interactions using the group structure
associated with lattice systems [3]. The main new features which appear in the
general case is the possibility of several critical temperatures Tt each of which is
associated with an order parameter pt. We shall show that the different order
parameters belonging to the same "equivalence class" as pt define the same critical
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temperature Tt and have the same critical exponent as pt furthermore, the critical
temperature Tt which is defined as the temperature below which pt does not vanish
is independent of the way the symmetry breaking interactions approaches zero
from above.

It is further shown that at all temperatures where the energy is continuous (as a
function of temperature), there exists a unique translation invariant equilibrium
state which has the same internal symmetry group as the hamiltonian and is called
the "Invariant Equilibrium State". From this last property follows that there
coexist exactly \£f/y+\ distinct periodic extremal equilibrium state, where ίf and
^+ are respectively the internal symmetry group of the hamiltonian and of the
state ω+ obtained by means of the ( + ) boundary conditions; \^/^+\ is the
number of elements in the quotient group. While ̂  depends on the hamiltonian
^+ will generally depend also on the temperature, e.g. for the Ising system on the
square lattice with nearest neighbor pair interactions in zero magnetic field, £f
consists of the identity and spin reversal, \&\ = 2, while 5^+=^ for T^TC the
critical temperature but is reduced to the identity for T< Tc and \£f/&*+\=2. (We
assume \ίf\ finite.) It should be noted however that these distinct states are not
necessarily distinct pure phase since some may not be invariant under the full
translation group.

The interest of our results will be illustrated with some examples which are not
covered by the conditions of [1,2]. An extension of the results of [1,2] to
continuous one component spin systems has been given in [4].

2. Definitions and Properties of Lattice Systems

We recall that a spin % lattice system { Jδf, K, @] is defined by a ''Lattice j£?"—
accountable set of points in ]RV — , a real function K defined on ^-(JS?) — the finite
subsets of Jδf — describing the "interactions", and & is the family of "bonds" defined
as those subsets B of <g such that K(JB)ΦO. The configuration space of the system
is taken to be the group £?(<£) of subsets of & with the product defined by the
symmetric difference: X - Y=XvY\XnY for X, Yc& i.e. X, Ύe0>(<£\ We as-
sociate with any J!f e^/Jί?) the function σx on ^(jg?) defined by σx(Y) = (- l) |Xny|,
with |Z| = cardinality of the set Z. In the spin terminology a configuration Y

specifies the set of sites yeJ^ at which σ y= — 1 and σx= Y\ σx.
xeX

For any finite subset A of Jδf, the Gibbs State ωΛ.γ of the finite system A with
boundary condition YeέP(J£) is defined by the probability measure on <?(A) given
by:

Σ K(B)σB(YcX)}
@Λ 1

i.e. Y° specifies the set of spins outside A which are pointing down and μ(Λ.Y)(X) is
the probability of a configuration in A such that the spins in X C A are pointing
down.

Notice that the inverse temperature β=ττ^ has been introduced in the
/C J.

function K, i.e. K = βJ, where J is the effective interaction.
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The Gibbs State ω^.0 of the finite system A with open (zero) boundary
condition is defined by the probability measure on g?(Λ) given by :

μ(Λ.,0)(X) = Z(Λ;QΓ1^P\ Σ
Be^S

I B C Λ

Limits A-^5£ determine Gibbs (equilibrium) states ω on P(J^). In the following the
states are defined by the correlation functions ω[σΛΓ],Xe^/(J^f); furthermore the
group &(<£) acts as a group of transformations on the states in the following
manner :

[σj =σx(Z) ω[σj .

The internal symmetry group £f is the subgroup of &(£? ) defined by

(1)

and has the following property [3] :
"For any [extremal] equilibrium state ω of {j£?, K, J*}? and any S in <? the state

τ'sω is also an [extremal] equilibrium state of {j£?,J£, J*}."
The state is said to be "symmetric" if it is invariant under the internal symmetry

group, i.e. τ'sω = ω for all S in ̂ . In fact, ω is symmetric if and only if ω[σx] = 0 for
all Xφ tit where ̂  is the subgroup of ̂ -(Ĵ ) generated by (finite products of bonds
B in) ̂ . It thus follows that if ω is not symmetric then there exists at least two
distinct equilibrium states of the system namely ω and τ'sω for some S in ̂

In the following we shall consider only ferromagnetic systems with Zv-
invariant, finite range interactions, i.e.

x + αeJ^f for all xe& and

K(B) = Q if Diameter B>R (R<oo)

and for such systems we have the following result ([3, p. 65], [8]).
"With ω+ the extremal, 2£v-in variant equilibrium states obtained by means of

the ( + ) boundary conditions (Y =φ) and <$f+ the internal symmetry group of the
state ω+ defined by:

y+={SE^;τf

sω+=ω+} (2)

then there exist at least \£f/^+\ distinct extremal equilibrium states given by τ'sω+

with Se<9?/<9*+. Moreover if there exists a unique translation invariant, symmetric
equilibrium state, then there exists exactly \^/^+\ distinct extremal equilibrium
states which are invariant under some subgroup F of the translation group TLV

with Zv/«^ finite furthermore

ωoHW+Γ1 Σ τ>+ " (3)
Se2>/y+

We recall that the uniqueness of the invariant equilibrium states has been proved
under very general conditions at high and low temperatures; it has also been
shown [3] that \&*+ \ = \£f\ and \£f+ \ = 1 respectively at high and low temperatures 1.

1 |̂ +| = 1 at low temperature for v^2 and requires in general \y\ finite
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The results which we shall obtain extend the results concerning the uniqueness of
the invariant equilibrium state to all temperatures T where the energy is a
continuous function of Γ.

To conclude this summary, we remark that the group $ generalises to
arbitrary interactions the even sets of [ 1 , 2] the group of transformations τ'S9 S e £f>
generalise the spin reversal transformations; the family {τf

sti>+}S€y/y+ of equilib-
rium states generalises {ω+,ω_ =τ'7LVω+] and Equation (3) generalises the equa-
tion ω0 = ̂ (ω+ +ω_).

3. On the Equivalence of Order Parameters
for Ising Ferromagnets

Let {&,K = βJ,&} be a Zv-in variant ferromagnetic lattice system as defined in
Section 2 and let us introduce the decomposition of the group &f($£) induced by
the subgroup $, i.e.

Xι=φ, Xiφ@ i>l (4)

(which generalises the decomposition of &f(&) into even and odd subsets
introduced in [1]).

The purpose of this section is to obtain informations about the critical
exponents of <σx.β>, z>l, BeOί. To do so, we shall follow exactly [1] indicating
the modifications necessary to extend those results to the general case.

The basic inequality which is the starting point of [1] and which follows from
the Griffiths, Kelley, Sherman GKS-inequality [5] becomes in our case :

ks<σxy^σxsy^ki\σxy (5)

n

where k§ can be taken independant of T for all T^ T0. In fact, with B= Y\ Bt we
i = l

can take

For ferromagnetic systems the infinite volume limit of Gibbs states with open
or positive boundary conditions exists and are Zζv-invariant [6] we denote these
states by ω(/ϊ J;α), α=0, +. Letting /' = {•/!},•= ι,2f...|^| where J\=J and J\ ϊ'φl is a
function on X.& [Eq. (4)], we have for all S in Zf\

where

(τsJ\=J (

α = 0 if α =

δ = S if α=
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and ω(β τsJ<.δ) is the Gibbs state with interactions τsJ' and boundary conditions S
or(0). '

We now consider the behaviour of the correlation functions <%)tΓ;α)[σXfg] in
the limit where the JJ's tend to zero for i> 1 while J\ = J remains fixed. To answer
this question, we recall the following lemmas given in [1] :

Lemma 1. Let J'^0 then

(i) limω(/ϊf/,;0)[σj=ω(/ϊi/;0)[σj .
j'-^j

(ii) lim ω(/u,. +) [σ J = ω(β>J; +) [σ J .
j'^j

Lemma 2. Let J' = (J'X,J) where J'x = J'(X + a)>Q, J^O, then

r -i rWωα ? f / X ί j ; 0 )[σJ= lim

Jx^Jx OJχ

= lim coViJitJ.0{ffx] far all
Jχ»Jχ

where ψ = β~1 lim — — — , the free energy per site, is independant of boundary
Λ-+ Sf |ylj

condition.

Remark. We should stress that in Lemma 1 the limit /'-» J can be taken along any
"path"; on the other hand in Lemma 2, to study ω[σx] we must take J^>0 and
consider the limit J'X-+JX. In particular this implies that if J' = (J,J'X) i>l then

i™ ω(M,;+)[σx.]= lim ω(jϊ ^ 0)[σA ]=ω(^ J;+)[σx]jx. ̂  o Jx. ^ o

however we can not conclude for any B that the following order parameters are
equal,

ωj, j. + ) [°XiB\ = lim ω(W, . + } [σί<5] = ω(β>J. + } [σ ]̂
Jχ.^0

ω(lj;o) [σX|fi] = lim ω(M,;0) [σXf5] . (7)

Let us now first consider the case where J' = (J, J ) with J| = J'(X"f + a); we can
define for given fixed J the "order parameter pt(βΓ as

?,(/?)= lim φ f = Hmω(/ϊ>J>Jιί;α)[σXι.] =ω(M;+)[σXί]
Jί^O C' /x J^O

and introduce a "critical temperature β^ ί for the order parameter p" by

° β<βi
Q β>βί
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together with a "critical temperature β" defined by

The following lemma follows at once from the basic inequality Equation (5).

Lemma 3. Let J' = (J,J'j) be the ΊLV -invariant ferromagnetic interaction introduced
above and define

then for all Be $

In particular :

ωS i J ϊα)[σχ<Λ]=0 iff

and the behaviour

pm-W-βtf* for β*βt

implies

e&^Kd-tf-A)*1 for

Lemma 4. For β<βt all equilibrium states have vanishing correlation functions on

Indeed, for any boundary condition Y, we have the inequality

ω(β,J,J'ti Y) Ox.β] ̂  ω(β,J,\J't\; + ) Ox,*]

then

^0 i f S < V Y .
j^o ""•"•"-'-

Using then the symmetry relation Equation (6) implies that for some Set?

03/o j j ; γ\ \_@χ Bjί ~~ ^(β J — J 'SΎ) L^ΛΓ jB J

and thus

j,;-*o

for any boundary condition Y
Finally let us also introduce the "zero- Jt susceptibility"

,«) (β> Aϊ = lim ̂ Γ' (<0tf,j,jto [σj ~ ω* >J;α) [σ
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it then follows from the above lemmas and discussion that if

*(lie)C«~(/i(-/r'' β£βι
then

where y f is independent of α = 0, -f and independant of Be&.
The choice of J| = J'(Xi) as the sole symmetry breaking interaction is of course

arbitrary it follows however from the above lemmas and the remark following
Lemma 3 that the critical temperature βt is unique independant of the way the
symmetry breaking interaction defined on X^ tends to zero.

Theorem 5. Let {<£,K = βJ,&} be a TLV-invariant, ferromagnetic system and

0>f(£>) = \JXi^^Xl=φ,Xiφ^ for i> 1, be the decomposition of &f(&) induced by

$ the subgroup of &f(f£} generated by finite products of bounds B in έ%. Then,
a) There exist βt, l = 2,...[Sf\, not necessarily distinct, and positive constants

C ί f l, Cit2 such that for all BE $

0

and

where

b) Let J'i^Qbe ^invariant interactions defined onX^, i> 1, then for J' = {J^
^J fixed and BE $

i φ l

j£> dJf(XtB)
ί φ l

where the last equality holds when J'(XiB)>0.
c) For β<βι all infinite volume equilibrium states of{£?, K, &} have correlations

functions which vanish on X^.
For β<βc = min{βi} all infinite volume equilibrium state of {^,K,^} are

symmetric.
d) // j;. = J/(X'ίJB)>0, iφl Be J then for any AeXβ

χx.x(β,A\ +) = lim sup Jf

ί~
ίω(β /'.+)[σA]

j'^j

satisfies the inequalities

:<;+)
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where however the values of χx.s may depends on the path J'-^J.

Corollary 6. Let {&,C,K,&} be a Zv-invariant ferromagnetic system with con-
straints satisfying the subgroup property, then for all Be &

i.e. the symmetric correlation functions associated with open boundary condition
are the limit of the correlations for a system without constraints with some
interaction becoming infinite.

Indeed for systems such that the family of admissible configurations is a
subgroup of &(<£) the constraints are of the form [3]

i.e.

CBJX)= lim
ίBαf +

By duality argument [3] the state ω(β tK;0} is related to the state ω^tKtl.+) of a dual
model without constraints; furthermore by Lemma 2 ω(^x*.+)= lim cofyK,*.+)

which concludes the proof since ωfβ κ,#. +) is related to ω(β κ,.0) and K'/ ^ 0 implies

Example

In the following examples, we shall use the above results to discuss the number of
phase transitions associated with breakdown of symmetry we could obtain the
same informations using the symmetry properties of the systems [3].

1) Consider the triangular lattice with 3-body forces between nearest-
neighbours

38 is the subgroup of &ff(S?) generated by finite products of the elementary
"triangles".

It follows from Theorem 4 above that there exists βt, i = l,2,3 such that:

0 β<βt

0 β>β,

and
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However, since ω+ is TL2-mvariant it follows that β± =β2=β3 and therefore there
exists a unique temperature βc where the symmetry is completely broken, and only one
order parameter associated with the correlation function: i.e. all equilibrium states
are symmetric for β<βc and <^+={φ} for β>βc.

It thus follows that the critical indices of the different order parameters
ω+ [σx.β] are the same in particular ω+ [σxι] and ω+ [σXlJC2] have the same critical
indices, i.e. the spontaneous magnetization and the spontaneous polarization
(nearest neighbour pair correlation function) have the same critical index (b = 1/12

[7]).
2) Let us now consider the Ashkin-Teller model defined by means of two

square Ising models J5f l9 j£?2 coupled by 4-body forces

\
X3

= 2-body forces

J T I =4-body forces

where

|XΌJS?2|=even}

It then follows from Theorem 4 that there exist, βί9 β2, β12 such that

0

>0 β>β2

0 β<β2

>0 β>β2

0 β<β12

>0 ^>^β
ω+Cσ^g =•

Let us assume that β1=mm{β1,β2,β12}=βc then it follows from
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Therefore, there can be at most ίwo critical temperatures "where the symmetry can
be broken (in fact renormalization group arguments [9] indicate that for certain
values of the parameters β1Φβ2\ and at most three distinct critical indices
associated with correlation functions which are given by

In particular ω+[σx^ oj+^σXίX2X3'] and o) + [_σX2X3X4'] have the same critical indices.
To conclude the discussion of these examples, we remark that the reduction in

the number of critical temperatures do not have the same origin in both examples
in the first example it follows from the fact that there exists Xi and X. such that
Xj =Xt + α, in the second example from the fact that there exists Xi9 XJ9 Xk which
are related by Xk =

4. Coexistence of Phases in Ising Ferromagnet

Let {£?,K = βJ,&} be a Z7-invariant ferromagnetic system with finite range
interactions as defined in Section 2. The purpose of this section is to show that
there exists a unique 2£v-invariant, symmetric, equilibrium state whenever the
energy per site is a continuous function of the temperature. The proof of this
results follows exactly the proof given in [2] and we shall only indicate the
necessary modifications.

We know that for the systems we are considering the infinite volume Gibbs
states ω(βj.+} is well defined, Zv-invariant. Furthermore using the fundamental
inequality of [2], it is sufficient to show that

for all Zv-invariant equilibrium states to conclude at the unicity of the Zv-
in variant, symmetric, equilibrium state [2].

Theorem 1. Let {=έ?,K = j5J,^} be a TD '-invariant, ferromagnetic system with finite

range interactions. If — — ̂  — exists, i.e. the energy per site is continuous, then there
dβ

exists a unique Zv-invariant symmetric equilibrium state.

Proof. With J>0 a fundamental set of bonds #3{0}, i.e. V£e J , 3aeZv and £0e^0

such that B = B0 + a, then by the general arguments of [2] — — ̂  — continuous

implies that for any Zv-invariant equilibrium state ώ

-fin= Σ J(B)U(β,J)[σB]= Σ
GP Be@0 Be@

But

implies

. (8)
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Since ω ( / J J.+ ) is Zv-in variant and since J*0 is generating for J* it follows that
Equation (8) holds for all B in J* which concludes the proof because of the above
remark.

Using the results mentioned in Section 2, we have immediately the following
property :

Corollary 8. Let the conditions of Theorem 7 hold. If -— exists, then there exists

exactly \^/^+\ extremal equilibrium states which are invariant under some trans-
lation subgroup ?Γ with \Zv/^~\ < oo where ^ and ^+ are respectively defined by
Equations (1) and (2).

Remark. Using the convexity property of ψ(β) it follows that for all but a
countable values of temperatures there exists a unique equilibrium state with the
same symmetry group as the hamiltonian.

Example: Fluid-Crystal Transition

Let us consider the ferromagnetic system of Example 1, Section 3 together with an
external field (1-body interaction) /z^O. It has been shown in [3, p.92] that there
coexists at /z = 0, and low temperatures, at least two phases ω+,ωs which
decompose into 1 + 3 extremal equilibrium states, namely ω+ which is translation
invariant and three other states which are not translation invariant. They
correspond to a "fluid" phase and a "solid" phase. We also know [3] that for
0 > h > — J there exists a phase ωs which decomposes into 3 extremal states and is
thus interpreted as the "solid" phase, while for /z>0 we know that there exists the
state ω+ which is translation invariant and thus corresponds to the "fluid" phase.

α)

c)

: 1 pure phase which is an extremal equilibrium state thus
corresponds to the "fluid phase".

:1 pure phase which decomposes into 3 extremal equilibrium
states which are not translationally invariant and thus
correspond to "solid phase".

: coexistence between solid phase and fluid phase, there exists
two pure phases which decompose into 4 extremal equilib-
rium state, 1 invariant under translation and 3 which are not.
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To conclude at the existence of a phase transition of the type "fluid-solid" we
would like to know that there exists for all (h, T) a unique Z2-invariant, symmetric,
equilibrium state indeed from such a result would follow that

the "fluid" phase is the only phase at h > 0

the "solid" phase is the only phase at h < 0

there coexists exactly two phases namely the "fluid" and the "solid" at /z = 0.

Using the above Theorem 7, we can conclude that if the energy per site is
continuous in T for any h around h = 0 then the phase transition which occurs
around h = 0 is of the "fluid-solid" type, and the phase diagram is as expected [3] :

Acknowledgements. We thank J. Slawny for many useful comments and for calling to our attention that
the equivalent of Theorem 7 and Corollary 8 were noted independently by J. Bricmont in his thesis
(Louvain, 1977).
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