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Abstract. Wilson's lattice approximation allows us to apply classical statistical
mechanics ideas to the study of Scalar Quantum Electrodynamics. Our main
tools are Griffiths-Kelly-Sherman inequalities, the transfer matrix formalism
and exponential bounds. Our main result is the existence of the infinite volume
limit for every value of the coupling parameters.

1. Introduction and Outline

In 1974 Wilson [18] suggested the interesting possibility of performing the Yang-
Mills [19] step of promoting a global symmetry to a local one after introducing a
lattice ultraviolet cutoff on the globally invariant theory. This procedure not only
gave a very convenient gauge invariant prescription for the ultraviolet re-
gularization of gauge theories, but also, due to the use of a Euclidean space-time
lattice, as compared to the space lattice-continuous time of the alternative
Hamiltonian approach [10], opened the possibility of using classical statistical
mechanics methods for the study of quantum gauge fields in the spirit of the general
program of Quantum Field Theory as Classical Statistical Mechanics [5,9,13]. An
analysis of the structure of the statistical mechanical models thus introduced and a
preliminary exploration by mean field techniques of their properties was given in
[1]. An extensive rigorous discussion, in the strong coupling regime, of the
thermodynamic limit and of the existence of a mass gap was given in [14, 15].
Important upper bounds holding for any value of the coupling constant for the pure
L/(l) model were given in [6] a very promising step towards the full understanding
of the critical behavior of the same model is in the analysis of [7] based on a
mathematically rigorous examination of the role of Polyakov's instantons [16]:
this method suggests that there is no mass generation at sufficiently low coupling
for rf^4, as opposed to the d = 3 case.

This paper is devoted to the study of Wilson's version of Scalar Quantum
Electrodynamics on the lattice briefly described in Section 2. In Section 3 we discuss
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GKS inequalities for this model. The resulting statements of monotonicity in the
cutoff volume must be supplemented by suitable upper bounds in order to insure
the existence and non triviality of the thermodynamic limit; these bounds are
discussed in Section 5 in which use is made of the transfer matrix formalism
introduced in Section 4

2. The Model

We consider a two component Euclidean field φ(n) = (φ1(n),φ2(n))eJR2 self
interacting through a quartic interaction and coupled with a (7(1) gauge field on the
space-time lattice εZd, ε > 0.

It is convenient to introduce polar coordinates by

φί(n) = ρ(n) cos θ(n) , φ2(
n) = Q(n) sm θ(n) , ρ(n) ̂  0 , — π ̂  θ(n) ̂  π .

The Euclidean action in the cutoff volume A is then given by:

O) - βι Σ Q(n)ρ(n')cos (θ(n) - θ(ri) - A(n, n'))
n,n'eA

Here n,n' is a couple of nearest neighbor sites, A(n,n')= —A(ri,n) is an angle
variable associated to the ordered link n,nf n<ri, P(ρ) is an even fourth degree
polynomial bounded below and β{, βp are suitable non negative constants. The sum

Σ extends to all "plaquettes" (elementary squares on the lattice) in A and if n l 5 n2,

n3, ft 4 are the four consecutive vertices of the plaquette 3̂
+ A(n2, n3) + A(n3, n4) + A(n49 nj.

The averages <•> of functions of the fields are taken with respect to the
normalized measure :

dμΛ = Z- 1 exp { - UΛ}dωΛ(Q)dθΛdAΛ = Z~ 1 exp { - UΛ}dσΛ ,

where dθΛ, dAΛ are the normalized product measures for the variables 0, A, dωΛ(ρ)

= Y[ dω(ρ(n)) with

dω(ρ)= [J Qxp{-P(ρ)}ρdρ}-1 exp {-P(ρ)}ρdρ
LR+ J

and UΛ is defined as UΛ = SΛ~Σ P(Q(n))-
neΛ

This measure is invariant under local gauge transformations

θ(n)-+θ(n) + χ(n) , A(n, n')-+A(n, n'} - χ(ri) + χ(n) .

We will refer to the boundary conditions considered up to now as to "free"
boundary conditions. In the following we will consider also periodic (P) boundary
conditions corresponding to the choice of a parallelepiped as cutoff volume with the
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convention of considering as nearest neighbors corresponding points on opposite
faces. Corresponding to the links added in this way there will be new link variables
A and new link and plaquette terms in the action. As a final remark, we observe that,
as we do not commit ourselves to a particular choice of the sign of the quadratic
term in P(Q\ the considerations which follow apply to the lattice version of the
Higgs model as well as to Scalar Quantum Electrodynamics.

3. Griffiths-Kelly-Sherman Inequalities

Our starting point is the following result of Ginibre's analysis of GKS inequalities
[4]:

Lemma 3.1. Let K be the direct product of a finite number of copies of the circle group
T, let dσ be the normalized Haar measure on K. Then for every n and for every choice
/1?/2, ...,/„ of functions in the multiplicative convex cone generated by the set S of the
real parts of the characters of K> the following inequalities hold :

$dσ(x)dσ(x') Π (fi(x)±fί(x'))^0
i = l

from which GKS inequalities follow.

It was observed in [2] that, at least in the case when the scalar field variables are
restricted to range on the unit circle, our model falls under the hypotheses of Lemma
3.1 and it was therefore possible to prove the existence of the thermodynamic limit.

Now we wish to extend the GKS inequalities apparatus to the full model of
Section 2.

For any subset M in εZd call L(M) the set of links in M and set KΛ = \ X T;
neΛ leL(Λ)

call SΛ the set of the real parts of the characters of KΛ, RA the set of monomials

Π MY(n}

neΛ

with p(n)e{0, 1}, QΛ the set of polynomials of elements of SΛ and RΛ with non
negative coefficients and HΛ the collection of functions of the form

c(n)ρ(n)
n,n'eΛ tycΛ neΛ

with non negative coefficients a, b, c, where the sum extends to sites, links and
plaquettes in A then :

Theorem 3.2. For h e HΛ, Zh = J dσΛ exp {h}, </>Λ = Z ~ 1 J dσΛfexp {h} the following
inequalities hold :

^ <f\<,9\ for any f, geQΛ.
iv) Zhι+h^ZhίxZh2.
v) </exp/ι1>Λ2^</>Λ2<exp/Il>, l2 for Λ,, h2eHΛ and any feQA.
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Proof. Use the elementary inequality

f dω(ρ)dω(ρ') f [ (ρr'±ρ
R+ x 1

Lemma 3.1 and classical arguments of Ginibre [4].

Corollary 3.3. I f h l 9 h2eHA, then </>h l + h 2^</>h l/or any feQA.

From Theorem 3.2 and its Corollary we derive, in particular, the inequalities
ZΛ^ί, </>^^0, </0>^</Xι<0Xι for any/ geQA, and the conclusion that, for
free boundary conditions, (f)A is monotonically increasing with A for any feQA.

We also remark that <(/>yl^<(/)^f)V/eβyl, where <( >^f) refers to the expec-
tation with periodic boundary conditions.

Our first result concerning the thermodynamic limit refers to the existence of the
pressure:

Theorem 3.4. Set UA(r)=UΛ-r £ ρ(n) with r^O, ZΛ(r) = jdσ^exp {- UΛ(r)} and
nεΛ

aA(ή = \A\~1logZΛ(ή. The limit α00(r) = limαΛ(r) exists finite.

Proof. By Theorem 3.2, Proposition iv), aΛ(r) is monotone increasing with A and we
need only an upper bound. Now

exp {- UA(ή} £ expk,n,(Λ) + r Σ β(n) + β, Σ β(Όe(»')
[ neΛ n,n'eΛ

*LQ(n) + dβι Σ^W h
neΛ. nεΛ

where ^(yl)^O(|yl|) is the number of plaquettes in A.
Then:

r) ̂ const. x/?p + log J

4. The Transfer Matrix

We choose some direction, say direction 1, in &7Ld to be called the direction of
transfer t. For the sake of definiteness we take the cutoff region A to be of the form :

Call q = {φ(n\ A(n, ήf)}n^eχ= [ρ(n)9 θ(n), A(n, n'}}n^λ a generic configuration of
the system at "time" 0, with the convention of identifying A with the intersection of
A with the xί=0 plane, and call Q the space of such configurations.

The partition function Z(

A

} in a periodic box can be written, within an inessential
constant normalization coefficient, as :

f fί n
i = - L ι
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where

7^ FT Λ2 / x ΓT dA(n> 71/)dQ=Y[d2φ(n) ΓL— άl—
πe/T n,n'eΛ Δ11

n<n'

and

with

y £ _ρ(n)ρ(n')cos(0(n)-θ(n')-Λ(H,n'))
n,n'eΛ

f Σ

and

-i£.P(e(Ό)

11]) — A'(n, n + m) +cos

(here m ranges in the set of primitive translations of Λd ί).
We are interested in the integral operators Tand / with kernels T( , ) and /( , )

on the Hubert space ̂  = L2(Q, dQ). Twill be called the transfer matrix of the model.

Lemma 4.1. T is a bounded, self adjoint, positivity improving operator on Jtf*.
In particular all the consequences of the Simon- Perron- Frobenius theorem [17] hold
for T.

Proof. T( , ) is symmetric [just change x(n) into —x(ri) and use the parity of the
cosine function] moreover it is a Hubert-Schmidt kernel, so that Tis bounded and
compact on :ff. The positivity improving character of T follows from the
observation that T(q,q')>Q.

Notice that the same conclusions hold for the operator /.
In the following Section we will be interested, more generally, in perturbed

forms of the transfer matrix, namely in operators T(F15F2) with kernel
Fi(q)I(q,q'}F2(q/), where F^ and F2 are continuous functions in 3? . We also define
T(F) = T(F,F) and call TF( , ) the kernel of such an operator.

Lemma 4.2. For any continuous
mitian kernel (8) with

, TF( , ) is a continuous non negative Her-
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Proof. Let b = supl(q,q)9 then $TF(q,q)qQ^b\\F\\l< + ao. Continuity and
qeQ

Hermiticity are evident; we need only check that for any continuous / with
compact support

Now, by expanding

Σ Q(n)ρ'(n)cos(θ(n)-θ'(n)-x(n))

in_ a power series and by performing the ρ integrations first, the integral
) can be cast into the form

where α and α' are the angular parts of q and qf and hκ, by GKS inequalities, is a
function of positive type. By a limiting argument it then follows that <φ, T(F)φ> ̂ 0
for every ipe^f.

By standard arguments [8] one can conclude that T(F) is trace class for every
continuous F and that

The previous results are collected in the following theorem :

Theorem 4.3. For every continuous FeJήf, T(F) is a self-adjoint non negative trace
class operator. In particular the transfer matrix T is selfadjoint, trace class, non
negative and such that Z^} = Tr(T2Ll + 1).

T is a positivity improving operator having \\T\\ as its highest eigenvalue; this
eigenvalue is simple and the corresponding eigenvector can be taken to be positive.

A brief comment is in order here about the relation between the transfer matrix
Tand the transfer matrix T0 in the ",40 = 0" gauge [11, 14, 15], with kernel

where

x e x p f t
neΛ

+ βp Σ cos (A(n> n + m)- A'(n, n + m))
neΛ

neΛ

Due to the fact that periodic boundary conditions are best suited to the
developments of next Section, we prefer to use Tinstead of T0 [it is in terms of T, not
ΌfT0, that Z^f} can be expressed as Tr(T2Ll + 1)] in spite of the fact that T0, being
strictly positive (as can be seen from a slight improvement of Lemma 4.2 and of
results of [1 1]), can lead to a well defined Hamiltonian formalism for the underlying
quantum field theory.
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The connection between the two definitions is explicitly given by

where P is the projector on the gauge invariant subspace ^inv of ffl , namely the
subspace of vectors invariant under the (unitary) transformations

with

χθ(n) =

χA(n, n') = A(n, ri] + χ(n) - χ(ri) .

As a concluding remark of this section, we wish to observe that the ground state
of the Hamiltonian H% constructed from T0 through the definition T0 = exp ( — εH^)
coincides with the eigenvector of T belonging to the eigenvalue | |T| |.

Call Ω and Ω0, respectively, these vectors; by the Simon-Perron-Frobenius
theorem both Ω and Ω0 can be taken to be strictly positive, and therefore are not
orthogonal. Due to the uniqueness statement of the same theorem and to the fact
that Tand T0 commute with time independent gauge transformations both vectors
must transform according to characters of the gauge group, but, as T vanishes on
J^θ J^inv , Ω must be in Jf inv and therefore Ω0, in order not to be orthogonal to Ω,
must itself transform according to the trivial character, namely it must belong to
jTinv, so that ||Γ0|| = |m|.

The equality of Ω and ΩQ follows then from the uniqueness part of the Simon-
Perron-Frobenius theorem.

For a discussion of the gauge invariance of the ground state in the Hamiltonian
framework we refer to [12].

5. Existence of the Thermodynamic Limit

In this section we study the existence of the thermodynamic limit for the generating
functional

where

A(m) = Σ m(n > n'}A(n, rΐ
n < ri

and some of its properties.
Call

then the main estimate is:

Lemma 5.1.

[Z</>] -1 f dσA exp { - UP} exp I £ r(n)ρ(n)\ ^ exp I £ [αf (r(n)) - α<f >(0)]
I / J E Λ } I nεΛ

moreover the limit oί(^\r) = lim α(J\r) exists finite.
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Proof. We follow the methods of [3] to which we refer for more details. We must
only prove that for F19 F2 continuous and square integrable T(F19 F2) is trace class
with

and that

Tr
J=-L

^ Π (Tr[Γ(FJ)
2L+1])21

J=-L

for Fj continuous, square integrable and always different from zero. We know that
T(Fj) is a trace class non negative selfadjoint operator with

and the first result is a consequence of the elementary inequality

|<V>, Ί\F19 F2)φy\ rg <

because the operator / is a non negative bounded selfadjoint operator and for ψ and
φ of compact support (ψ,T(F1,F2)φy = (F1ιp,IF2φy so we can use Schwarz
inequality and, by a limiting argument, prove the previous inequality for any
vectors ψ and φ.

From Holder's inequality for traces we get

Tr Π Ί\Fj,FJ+1)
J=-L

1

g Π [Γr(|7XfJ,FJ+ι)Γ+1)]2L+1

J= -L

Now, call

A = I T(FJ9 FJ+ ,)|, T(FJ9 FJ+i)=WA, B= W*T(Fj)W, C = T(FJ+l)

then, again by using Holder's inequality, we get

As FJ+ ί is continuous and nowhere vanishing, exists continuous and if/ is a
FJ+1

sequence of square integrable functions of compact support which is convergent to
we have

(T(Fj)fM=l>
FJ+ί

This means that Ran T(Fj)Q Ran T(FJ?FJ+1) from which it follows that
WW*T(Fj) = T(Fj) because WW* is the projection on RanΓ(Fj,FJ+1).
Now Ίτ(W*T(Fj)WW* ... WW*T(Fj)W) = Tr(WW*T(Fj)2L+1)^Ti(T(Fj)2L+1)
so we get the required inequality.

The first part of Lemma 5.1 follows from the inequalities just established by the
same methods as in [3] moreover o^\r) is decreasing in A and non negative by
GKS inequalities, so the thermodynamic limit α(^}(r) exists finite.
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Now we focus our attention on some correlation functions. First of all we have

Lemma 5.2. For free boundary conditions the limit

lim <exp {iA(m)} exp [iθ(p)}ρ(nί) . . . Q(nκ}\
Λ*TLA

exists finite and is reached by monotone increase.

Proof. First of all

<exp (iA(m)} exp {iθlpfiρfaj . . . ρ(nκ)yΛ = <cos (A(m) + θ(P))ρ(nl) . . .

and monotone increase follows from GKS inequalities. From GKS inequalities it
follows also that

<exp {L4(m)} exp {ι

\

for a suitable field r of compact support and non negative. Lemma 5.1 provides then
the upper bound which completes the proof.

As the correlation functions <exp {ίA(ni9 rij] . . . exp {iA(nh, n
f

h)}φil(nh + ί )

ipe{l92}9 ni9...9nh+K9 n'l9...9riheA

are linear combinations of expectations of the type

<exp {L4(m)}exp {iθ(p)}ρ(nh + ί ) . . . ρ(nh+κ)yΛ ,

there exists the thermodynamic limit

lim <exp {iA(m)}φh(nh + 1) ... φ. κ(nh+κ)}Λ

Now define the generating functional in the finite volume A by

WΛ(m, J) = <exp {i[Λ

with m and / lattice fields with bounded support M contained in A. Of course, for
fixed m, WA(m,J) is an entire function of JeC2|M|. Our main result concerning the
generating functional is :

Theorem 5.3. W^(m, J) = lim WA(m9 J) exists and is an entire analytic function of the
Λs7Ld

complex variables J = {Ji(n)}ί = l f2eC2 |Aί |.
neM5

Proof. By Vitali's theorem [17] we must only prove that

sup sup I WΛ(m, J)| < + oo
Λ JeK
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for each compact set Kc<C2 |M|. But

/ f Ί\ / ί 1\(P)

\WA(m,J)\^Uxp\ Σ \\J(n)\\Q(n)\) ^ (exp Σ r(n)β(n)[)
\ [neM J/Λ \ UeM )/ Λ

with r(n) = sup ||J(n)|| which is uniformly bounded in A by Lemma 5.1.
JeK

Obviously W^m, J) for JeIR2|M| is a positive definite function on the dual group
of TL(M) x IR2IMI so, by Bochner's theorem there exists a probability measure μM on
TL(M)χIR2|M| such that

We can go even further and prove that for every continuous bounded function /of
the local configurations in M there exists the thermodynamic limit lim {/)yl — {/}

Λ^Zd

and that </> = J dμMf, so the collection of measures {μM}Mc7Ld will define a state on

the C*-algebra j/ = (J J/M where J/M is the C*-algebra of continuous bounded
M

functions of the local configurations {φ,A} in M; this state is obviously
translationally and gauge invariant. First of all we give the following useful bound :

Lemma 5.4. Define the probability measures μ^ by μ^(/) = </>yl/lDM for any
/GJ3/M; then the measures μ^ are bounded, uniformly in A, by a fixed measure VM of
finite total mass.

Proof. For /^O

M f dσAWexp { - UΛW} exp {βpndM}

(by GKS inequalities), where nδM is the number of plaquettes around the boundary

of M and in the sum £ ρ(n)ρ(n') πeδM and n'eΛ\M with |n-n'| = l. Now

Σ £(ft)£(X)f=exPJ Σ r(ri)Q(ri}\ f°r a suitable lattice field r(X)g:0 and by
n,n' J [n'eΛ\M )

GKS inequalities and the estimate of Lemma 5.1

r(n)ρ(n)i^expJ
eyl\M

where 5(M) is the set of points oϊΛ\M which are nearest neighbors of points in dM.
Using the elementary estimate o^A\r)^A + Kr4/3 with suitable positive constants A
and K, we see that the function

-exp {βpndM}ZA*M SdσAWe\p {- t/^M}expk Σ β(Φ«
I ^, w'

is bounded, uniformly in A, by a function φ({ρ(ft)}neM) summable with respect to the
measure Z^1 exp { — UM}dσM.
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In the following we will use the symbols P and Q in order to denote
trigonometrical polynomials P(φ) = £ c^exp {iφ(Jκ)}, Q = Σ cκexP (^(mχ)) °f

variables {φ(n)}neM

We know from Theorem 5.3 that there exists the thermodynamic limit
lim (PQyΛ = $dμMPQ. Now, for /e^(lR2|M!) there exists a family {P.} of

ΛsZd

trigonometrical polynomials with the following properties :
i) There exists α>0 such that H P - H ^ ^ ί z V i .

ii) For every compact set K C IR2'M' and for every ε > 0 there exists Pt such that

so

for every Pi and every compact K. Now by Lemma 5.4 we choose K such that

IIQIL<χ c κ>Λ + l lβl lJ/- P ίIUMCK)<!

for every A and Pf, after which we can choose P such that

uniformly in A and by choosing A large enough, in order that

\(PίQyΛ-$dμMPiQ\<~, we have \<fQyΛ-$dμMfQ\<ε. Now every #eC°(TL(M))

can, by the Stone-Weierstrass theorem, be uniformly approximated by tri-
gonometrical polynomials Q and, by the inequality

A- $dμMfg\^2\\f\\Jg-Q\ x

we see that lim (fg^Λ = j dμMfg .

But every continuous function φ of compact support in IR2IM| can be uniformly
approximated by functions/in 5^(IR2|M|), so the same argument proves that, for any

such φ, lim (φgyA= \dμMφg.
A^TLd

Now we want to remove the restriction to observables which factorize in the link
and site variables. Let K be a compact interval in 1R21M', χκ its characteristic
function, we want to prove that lim (PQχκyΛ = § dμMPQχκ. Let K be an open

interval containing X; now, by Urysohn's lemma, we can find a continuous
function ψ of compact support contained in Ksuch that 0 g ψ ̂  1 and ψ(x) — 1 Vxe K.
Then

Given ε>0, by a suitable choice of V and by Lemma 5.4 we can have
g

^Vyl ; moreover for yl large enough KPβt/;)^
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g
-$dμMPQιp\ < -, so \(PQχκyΛ- $dμMPQχκ\ <ε. Having shown that the thermo-

dynamic limit exists for any Zχκ with Z = Σ P,Qj, we can complete the argument in
/

this way: let /be any continuous bounded function on IR2IMI xTL(M), then for K
large enough

Now, on K x TL(M\ f can be uniformly approximated by polynomials Z so that :

<.\f-Z\χκyΛ+$dμM\f-Z\χκ<
ε-

and

We summarize this discussion in the following theorem :

Theorem 5.5. The measures μ^ weakly converge, for Λ/Zd to the measure μM, which
is absolutely continuous with respect to dσM.
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