Communications in
Commun, math. Phys. 57, 67—81 (1977) Mathema_tlcal
Physics

© by Springer-Verlag 1977

Non-Equilibrium Dynamics
of Two-dimensional Infinite Particle Systems
with a Singular Interaction

J. Fritz
Mathematical Institute, Budapest, Hungary

R. L. Dobrushin

Institute for Problems of Information Transmission, Moscow, USSR

Abstract. The infinite system of Newton’s equations of motion is considered for
two-dimensional classical particles interacting by conservative two-body forces
of finite range. Existence and uniqueness of solutions is proved for initial
configurations with a logarithmic order of energy fluctuation at infinity. The
semigroup of motion is also constructed and its continuity properties are
discussed. The repulsive nature of interparticle forces is essentially exploited;
the main condition on the interaction potential is that it is either positive or hasa
singularity at zero interparticle distance, which is as strong as that of an
inverse fourth power.

1. Introduction

In this paper we extend some of our earlier results [3] on the existence of non-
equilibrium dynamics of one-dimensional infinite particle systems to infinite
systems of two-dimensional particles interacting by conservative repulsive forces of
finite range. For a detailed motivation of this problem see [1-3], where further
references are given on equilibrium dynamics as well.

Consider a finite or infinite system w of two-dimensional particles. We assume
that particles are numbered by a nonempty subset J of the set I of integers, the
position and the velocity of the i-th particle, ieJ, will be denoted by x; and v,,
respectively. Conservative two-body forces are given by the negative gradient
F= —grad U of a symmetric real function U= U(x) of two variables (x), x®)=x,
U is the interaction potential. For equal particles of unit mass indexed by JCI,
Newton’s equations of motion read formally as

dv; dax;

d—;:—jglgradU(xi—xj), d—t’=vi; ieJ (NJ)
with initial conditions specifying the position and the velocity of each particle at
time zero. The full system, when J =1, will be denoted as (NI),

J.={j;jed,j*£i} if ied.
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Such a set £2,, of configurations will be defined in an explicit way that for each
initial condition w,e€, the corresponding sequence of solutions to finite
subsystems (NJ) converges in the weak sense to a solution to the infinite system
(NI); ie. for wye 82, there exists a limiting solution with initial configuration .
The set £2,, is characterized by a logarithmic order of energy fluctuation at infinity, it
is of full measure with respect to a wide class of Gibbsian fields with superstable
interactions. Limiting solutions form a reversible semigroup of motion in €.
Uniqueness and continuous dependence of solutions on initial data also hold in a
restricted sense. For the proof of existence of limiting solutions the method of [3]
has been developed further.

Regularity conditions on the interaction potential U= U(x) are somewhat
stronger than in the one-dimensional case [3]. Hard-core interactions are not
allowed, and for not necessarily nonnegative potentials we need such an assumption
that the singularity of U at x=01is of type |x| " with b>4. It is not very difficult to
understand on a physical level that why are such conditions necessary to avoid a
breakdown of solutions with good initial conditions. If the interaction is very
singular (e.g. as in the presence of hard cores) then the velocity of the propagation of
shock waves along linear chains of particles can be arbitrarily large, so that large
energy can be transferred to the center in a short time along a radial system of
chains. On the other hand, if the repulsive nature of the interaction is not strong
enough, then too many particles can be accumulated in a small region, and one of
them may win almost the total energy of two or more others. These phenomena are
typical in two or more dimensions, and as shown by J. Ginibre in the case of hard
cores (unpublished result, personal communication by D. Ruelle) they can result in
a breakdown of solutions even if the initial velocities are uniformly bounded.

As indicated in Section 4 of [3], our methods do not work in the three-
dimensional case. Let us present a heuristic example suggesting that breakdown of
solutions may be typical in three dimensions even for potentials without a hard
core. At time zero, particles are sitting in the points of the integer lattice with
approximately equal magnitude of velocities, each second cubic cell of the lattice is
red. Imagine now that particles from the vertices of each red cube are directed
towards the center of the cube, and after the collision seven of them remains at rest
while the eighth one flies away in such a direction that the initial situation will be
repeated on the new lattice formed by the centers of red cubes, and so on. Let v,
denote the approximate magnitude of velocities of flying particles after the n-th
collision ; the conservation laws for energy and inpulse allow that v, ; =v,0 with
0> 2. Since the n+ 1-thlattice is only twice as large as the n-th one, infinite velocities
appear in a finite time. Unfortunatelly we are not able to carry out this construction
in a rigorous way.

2. Notation

R? denotes the two-dimensional Euclidean space with the usual norm |x| and scalar
product (x, y). The set of locally finite labelled configurations is €2, a configuration
we R is a finite or countable sequence of pairs of positions x;e R? and velocities
v,€ R?; i.e. configurations are represented as w = {{x,, v;} ;ie J}, where the index set
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J =J(w)is a nonempty subset of the set of integers I, x; =+ x; if i # j, and the sequence
{x;}, ieJ has no limit points. The position and the velocity of the i-th particle in w
will be denoted as x; = x/{w), v; = v(w), respectively. Configurations differing only in
the way of enumeration of particles are usually identified, but the equations of
motion and the statements are formulated in terms of labelled configurations.
In the space of subsets of I we consider the discrete topology, ie. limJ,=J
means that for each finite V' CI there exists an n, such that n>n, implies that
VnJ,=VnJ. The configuration space Q is equipped with the weak topology, i.e.
limew, = in  means that J(w)= limJ(w;) and x,(w) = limx,(w,), v(cw) = limv,(c,)
for each ie J(w) without any uniformity condition in i. It is easy to check that this
convergence relation corresponds to a metrizable topology. Trajectories in £2 are
parametrized by the time ¢ >0, the set of weakly continuous trajectories w, = ¢(t),
w,€ 82 for t =0 will be denoted by 22[0, o). Observe that J(w,) does not depend on ¢
if w,eR[0, c0) and particles along a continuous trajectory preserve their initial
numbering. Convergence limoy =w, in [0, co) means that limo] =, for each

t =20 and this weak convergence is uniform in finite intervals of time. The underlying
topology of £2[0, c0) is metrizable, too.

A family w, = ¢(t, w), we ' is a reversible semigroup in ' C Q2 if w,e 2’ for t 20,
further ¢(0, w) =w, p(t+s, w)=(t, (s, w)) and o(t, [p(t,w)]")=w™ are identities;
in the last one w™ is defined by x,(w™)=x,(w), v(0™)=—v(w), icJ(w)=J(w™).

Consider now a translation invariant pair potential U of range R >0. To avoid
such situations when two or more particles can be found at the same point of R?, we
assume that U is singular and repulsive. Then U is given by a continuously
differentiable real function U = U(x), xe R?, x %0 such that U(x)= U(—x), U(x)=0
if |x|=zR and 3161“1)1(1) U(x)= + oo0. For convenience we assume that the interparticle

force F = — grad U(x) satisfies a local Lipschitz condition at each x 0, then the best
constant L= IL(u), u=0 such that

lgrad U(x) —grad U(y)| = L()|x — )| )

if U(x)<u, U(y)=<u, is finite for each u.

The number of particles and the total energy are set functions for each
configuration we Q. Let f(x,0)=1if |x] £ oand f, =0 otherwise, further J =J(w),
x; =x (), v;=v{w), then

N(CI), H, 6) = ‘ZJfO(Xi — MU, G) (2)
and
H(w, u,0)= ZJfO(x,. — o)L o2+ .ZJ,fO(xf — o) U(x;— x;) 3)

are the number and the total energy of particles of w in the o-neighborhood of
ueR?. _

A weakly continuous trajectory w,e £2[0, o) is called a (global) solution to the
equations of motion with initial condition we® if w,=w, the individual
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trajectories x, = x/{w,), v; =v,(w,) are differentiable and satisfy (NJ) with J = J(w,) for
t=0. If J is finite then the law of energy conservation and L(u)< oo imply the
existence of a unique solution to (NJ). Set

JNw)={j;Ixw) =n,jeJ(w)}

for each we 2, and let w,=¢,(t,w) denote the unique solution to (NJ*(w)) with
initial condition x,(w,) = x;(®), v {w,)=v,(w) for ie Jw). A solution w, is called a
limiting solution to the equations of motion if we can select a subsequence n, such
that o, = liIEnqonk(t,a)O) in the topology of [0, o).

3. Main Result

The allowed set of initial configurations and the boundary condition needed for
uniqueness of solutions are defined in terms of the order of energy fluctuation at
infinity that is given by an SI-function g.

Definition 1. An increasing concave function g = g(u), u=0is called an SI-function if

g0)=1, gw)=1+2 1/&, g (0+0)=1 and f [ug(w)] ‘du= oo ; g’(u+0) denotes the
1

right derivative of g at u. We say that energy fluctuation of we Qis only of order gif

H(w)=sup sup o~ 2H(w, u,0) 4
o o2g(u
is finite, the set of such configurations will be denoted by £2,.

The particular case g,(u) =1+1log(1 +u) is of special interest, the corresponding
set of configurations will be denoted by €2, ; logu denotes logarithm to base e, and
Q=uﬂg, where the union is over all SI-functions. Limiting solutions will be
constructed for initial configurations belonging to £2, but even £2, carries a wide
class of probability measures.

Let V=V(x;,X,,...,X,), X,eR?* n=23,... denote a translation invariant
multibody interaction (see Section 1 in [4]). A probability measure P on the Borel
subsets of €2 is called a Gibbsian field (of activity z and inverse temperature ) with
interaction V if the conditional distribution of the positions of particles in each
bounded domain is given by the corresponding conditional grand canonic Gibbs
distribution, further the velocity co-ordinates are independent Gaussian variables
of mean 0 and variance 1.

Proposition 1. Suppose that P is a Gibbsian field with interaction V =V, +V,, where
V, corresponds to a superstable and lower regular pair potential U, = U ,(x), xe R?, V,
is a stable and lower regular multibody interaction (see Section 1 in [4]). If
U(x)<a, +b,U,(x) with some constants a, and b,, then P(2,)=1.

The proof of this statement is essentially the same as that of Proposition 1
in [3]. Using Ruelle’s superstability estimate [4], a direct calculation results in

j exp (AH (CO, U, o')) P(dw) < oKa?

with some A>0 and K < + oo, whence P(£2,)=1 follows by the Markov inequality
and the Borel-Cantelli lemma.
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To prove existence of limiting solutions we need the following regularity
conditions on the interaction potential U : There exist such positive constants a,b,c,
and ¢ that’

|x|lgrad U(x)| £ a+bU(x) , (E)
further U(x)>0 if |x] <48, and either

lgradU(x)|*<cU(x) if |x|=6, P)
or

UMz~ if |x[=d (R)

holds. Let us remark that (E) means that the singularity of U at 0is not stronger than
that of |x|™?, and U(x)= -—% also follows from (E). If U is twice continuously

differentiable for x+0 and U =0, then (P) always holds. Further, any of (P) and (R)
implies that U is a superstable potential. The validity of (E) and one of (P) and (R)
will be assumed throughout this paper. Our main result is

Theorem 1. For each we 9 there exists a limiting solution w, with initial condition
Wy =a.

The study of not necessarily limiting solutions is based on the following
regularity property.

Definition 2. We say that a solution w, is tempered if it is g-tempered with some SI-
function g; g-temperedness of o, means that H (w,) is bounded in finite intervals
of time.

Theorem 2. Any limiting solution o, is tempered if w,e€ 2, and a tempered solution &,
is g-tempered with an SI-function g if and only if @, 2, for at least one value of t20.

Uniqueness of tempered solutions can be proved under the following quasi-
Lipschitz condition.

Definition 3. We say that U satisfies a g-Lipschitz condition with an SI-function g if
lim Vﬁ[g" Yo 1/1;)] “2L(u)=0 for each v>0, L)
where L is defined in (1), g~ denotes the inverse function of g.

(U) means that the singularity of U is not very weak. Indeed, if U satisfies (R)

with an exponent J <0 instead of —4, further U is rotation invariant and |grad U(x)|
is a convex function of r=|x| in a neighborhood of 0, then (U) holds with any SI-
function g.
Theorem 3. Suppose that U satisfies a g-Lipschitz condition with an Sl-function g.
Then for each we, there exists the limit Uw=lime,(t,w) of approximate
solutions. U, is a reversible semigroup of g-tempered solutions, and w,=U,w, is the
only tempered solution with initial configuration o, € £2,. Moreover, the restriction of
U,:2,~2[0, 0) 10 Q! ={w;we R, H,(w) <h} is a continuous function of we 2, for
each h< 0.
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The theorems will be proven in Sections 4—6; now we outline the main steps of
the proofs. The basic result is the following compactness property of g-tempered
solutions. For each SI-function g and positive number h<oo there exists a
continuous function q(t)=q(t,h), t=0 such that H (w,)<q(t h) for each t=0
whenever o, is a g-tempered solution with w,e Q5. Thls a priori bound implies that
g-tempered solutions w,, w,e QZ form a compact subset of [0, o) including
solutions to the finite systems (NJ). The a priori bound H 4(@,) h(t) can be actually

proved for such a nonnegative and smooth version W=W(w,u,o) of H that
H(w, u, 0) = W(w, u, o) and
W(co)—sup sup o~ *W(w, u,0) %)
azg(lu))

is bounded by a linear function of A ,(®). This W will be introduced in the next
section where we show also that W satisfies the partial differential inequality

g; W(w,, 1, 0) < KW(w,, 4, 0)

+Kg(lul+0) |/ W(w) - Wie, 1, 0) (6)

along any solution w,€ €2, ; K is a constant depending only on U, g is an SI-function.
For a heuristic motivation of the role played by W see Section 4 in [3]. In a similar
way as in [3], (6) reduces to the differential inequality

2(t) < Kexp (3K Wj{wo) [1+29(2)] Q]

for z(t)= [ (W,(w,))!/*ds; K is a new constant depending only on K. Since g is an SI-

0
function, (7) has a continuous maximal solution defined for ¢t >0, therefore Wg(wt) is
bounded by the very same continuous function o(t) =g(¢, w) for each g-tempered
solution w, satisfying W,(w,) < w. Hence existence of limiting solutions follows by
the standard compactness argument. Uniqueness of tempered solutions is implied
by a contraction property of the right hand side of (NJ) due to (U).

4. Proof of (6)

Let f'= f(u) denote such a continuously differentiable nondecreasing function that

@) fw=0if us—3R, fu)=1 ifu§0,f(~§R>=%,f(—§—)=§.

o o R . 5 . L .
(i) f is convex for u< — 5 and it is concave for u= — ER’ ie. f is linear if

5 R

P << —
2 R = u = 2 .

(iii) There exists a constant d>0 such that |f'(u)]?> < df(u).

Then the derivative f* of f is nonnegative and (ii) implies that
) fW=f')+ ') if vSusz<v+2R
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If weR, ueR? o21 and x,=x,w), v;=vw), J =J(w), then W is defined as

W(CU, K, O') = ij(a - Ixi - ,ul) VV;(CD) 5 (8)
where
Ww)=1+1v)* + Z [AfBR=3Ix;—x;)) + U(x; — x,)] )

and 1= g if (R)holds, A =0 otherwise. Let us remark that U(x)> — —g in view of (E),

thus W(w)=1 and W is a nondecreasing function of ¢. Consider now the quantity
W (w) defined in (5) by (8) and (9), g is an SI-function. It is plain that

lod S Agllul + ) [Wy(@)]V? if |x;—pl<o+5R (10)

and A=1+5R, further U,(x)=Af(3R—3|x])+ U(x)=0 is a superstable pair
potential, thus the constant 4 can be choosen to be so large that even

N; S Ag(ul+ o)W1 if |x;—u/<o+3R, (1n

where N,=N(w,x;,2R)—1; (11) is a direct consequence of the definition of
superstability (see [4], [5] or [7]) and of Wjw)=1.

Now we are in a position to prove (6). Let w, denote any solution to the
equations of motion such that w,e€2, for each t=0, then W(w, p,0) is a dif-
ferentiable function of t. For notational convenience the following abbreviations
will be used: ¢; and ¢;; are the unit vector directed as u—x; and x;—x,, while f, f/,
fij» fi; denote the value of f and of f’ at 6 —|x;— u| and 3R —3|x; — x|, respectively.
Differentiating ~ W(w, pt,6) with  respect to t and  exploiting
grad U(x; —x;) + grad U(x; — x;) = 0 and the equations of motion, an easy calculation
yields

S W 0)=0,+0, 405 (12
where
0.= . files )W) (13)
0,=1Y, ¥ (- 1) erad U, —x)0,+0) | (14)
0,= ij :gi%fi}(eij,ui ). (15)

These sums are estimated as follows. Since

2 W@ mo)= 3 o). (16)
g il
0
0, éAV% W(w,, 1, 0) , (17)
where
V=V,(w, 1, o)=g(ul+ o) [W(w)]"? (18)

denotes the nonconstant factor in (10).



74 J. Fritz and R. L. Dobrushin

Applying the Lagrange theorem and (iv) for f;—f,, it follows from (E) and (P)
that ‘

0,3 Y (ff +£)Ix,— x| lgrad Ux, — x,)| [v; + v

iel jeJ;

=2 f Z [fi+ DU —x,)] (v + o)), (19)

ieJ  jeJ;
where f;;=af;;if (P) does not hold, i.e. A= gin (9); otherwise f;;is defined as f;, =aif

Ix;—x;| <6, fi;=R[cU(x;—x,)]"? if |x,—x;|>0. In the first case we have

Q,S24V 3 f ). [afi;+bU(x;—x))]

ieJ jed;
§2bAV% W(w,, 11, 0) . (20)

On the other hand, if (P) holds then there exist such constants K, and K, depending
only on U that f;<K, and f,<K,[U(x;—x,)]"/?, thus in this case we obtain

l_)—

Q2§2bAV% W(w, p,0)+K,S, +K,S, , (21)
where
, 0
S1= Y fiIodN, S AV 5~ W(o, ,0) (22

ieJ
in view of (11) and of |v,| <1+ |v;|?, further

S,=) 1 ZIUIIU(X —xp)['?. (23)

ieJ JjeJi

Set J;={j;|x;—x;|<2R, jeJ;}, then

[ > IUjIZ]l/ZéAV (24)

JjeJi

holds with the same constant 4 as (10) does, therefore applying the Cauchy
inequality to the second sum in (23) we obtain that

$.2 T FAV[Y Ul

ieJ jeJ’
0
SAVY fi {14 Y Ulx—x) |S AV — W(w, 1, 0) - (25)
iel e 0o
Observe now that f;=0 if |x;—x;/=2R, thus Q, can be splitted into the
following three terms:

Q3 = 6AQ31 + 6}“Q32 + 3)«Q33 > (26)



Two-dimensional Non-Equilibrium Dynamics 75

where
lEZJf jeZ fifiesv) 27)
Qs,= ij .Z,,(l ~f) files ) (28)
and o

- L5 X filepvity)

ieJ jeli

=3 2 (fi=h) fifeyv+v)

ieJ jeJi

<2RY f qulv +v,| 29)
ieJ
by the Lagrange Theorem and (iv). Let

Sy=21 ) filvl s (30)

ieJ jeJi
Sa=) filol 3. f;; (1)

ieJ Jjeldi

since f;>% and f};%0 imply that f;> 3, we have

=N fysC+20 f i f>3 (32)

as f;=1+din view of (ii) and (iii). On the other hand, the Lagrange theorem and (i)
and (iv) imply that

fi=fi—f(=3R)S3Rf; il f=%, (33)
consequently

05, S3RA+d)S,+(2+24)S, . (34)
Consider now the sums Q; and Q;;. Since f;<1+d, we have

0, S(1+d)S, , (35)
further

033=(2+2d)RS, +2RS; ; (36)
but

S, =(1+ d)AV—a% W(w,, u, 0) (37)

follows in the same way from (iii) and (24) as (25) has been derived.
L . oW, . ..
To this point we have shown that e bounded by a linear combination of S,
S,, S5, and of S,. In view of (22), (25), and of (37), the last step is to bound S, by a
constant multiple of W(w,, p, ). For this the following elementary inequality is
needed.
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Lemma. Let Vy(y) denote the square of center ye R? and diameter 5 >0. The sides of
Vi(y) are parallel to the co-ordinate axes, J(y)={i;x,eV;(»)}, J;(y)=JNJ;; then
whenever J(y) has at least two elements, we have

Y firéff 6T xex)mt, (38)

,: ieJ(y) ieJ(y) JjeJiy)

where the constant ¢ is independent of the underlying configuration w=w,.

Proof. Let J, denote the set of such ieJ(y) that |x;—x;|<e holds at least for one
jeJ (), and set

I= Y fio Z=X

ieJ(y) ieJg
We assume that 0 <e <, then the %-neighborhoods of such points x, that k¢J, are

disjoint and each of them is contained in the same square of side 25 and center Y,
thus

2622 —X,)<46*. (39)
On the other hand,
e 4Y <P, (40)

where P denotes the sum on the right of (38), i.e. cP dominates the left hand side of
(38). -

First we assume that £>9, then ¢=362/?<§ and (39) results in X <3X,
whence by (40) we obtain

$3<3564P . (41)
In the second case we may assume that 3°6*P <35, ie. P<35~ % Therefore the
trivial bound J *YX<P implies X3<95 2°P, thus (38) holds with
¢=max {354,956 2°}.

Now we can estimate S,, too. Observe first that

ST A+ Al 55 )

iel ieJ |jel:

and the first sum on the right is not larger than the actual value of W(w,, u, o). On the
other hand, (R), (38) and the relation W{(w,)=1 imply that

RIS 1+ & @) @)

holds even if the cardinality of J(y) is less than two. Let Z2 denote the points of the
integer lattice in R?, Z2={y; |/26 " 'yeZ?}, A,={x;xe Z2,|x— y|<2R +J} and k
is the cardinality of 4,. Then for ye Z; we have

Sazopsz 2]
<k?y [ 3 Jz}s, (44)

zedy | ieJ(z)
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. c\.
thus summing over ye Z? in (44), we obtain that the constant K , =4k? (1 + E) is so

large that
> fi [ ) f] Wi(w,, i, 0), (45)
ieJ jeJ;

whence
S, K W, u, o) (46)

follows by (42) with K, =1+K;.
Since each of 04, Q,,05,,Q5,, Q55 is bounded by a linear combination of S, S,
S;, S,, our inequalities (22), (25), (37), (46) result in (6) with a universal constant K.

5. A priori Bounds

First we show that any g-tempered solution w, satisfies (7), g is an SI-function. Let
T>0 and consider the unique solution r(¢), 0=t <T of the integral equation

T
r(t)=a+K| gllul +1(s)) [W,(w)]"?ds , (47
t
then r is differentiable with a bounded derivative #, so that (6) implies

78 W, ()= —Ke X Wiw, g, (1))

e Wi, ) 470 o Wioo ()| < (48)

for each fixed p and ¢ if 0Lt < T, so that
W(G)Ta /"'9 O-) é W(w()s ,Ll,, r(O))eKT (49)
as r(T)=¢. Suppose now that g = g(|u|), then (47) implies 7(0) = g(|u|), thus (49) turns

into
0 2
sup sup (1(—))

n o ozg(u)

W(CUT) W, (wo)eKT ) (50)

where r(0) and ¢ are related by (47).
t
Let z(t) = | [W,(w,)]"/ds, since r(0) 2 r(s) 2 0 2 g(|ul) = L and g(u+v) <g(u) + g(v)
0

if u, v are positive, we obtain from (47) that

1H0)<o+ K(c+g(r(0)))z(T) . (51)
However, g(u)<1+2 W, thus

r0)<o+2K(o + |/r(0)«(T) , (52)
whence

1/70) < /o (1 +4K2(T)) (53)
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follows directly. Substituting (53) into (51), by the subadditive property of g it
follows that

r0)< o+ K(o+9g(c[1+4Kz(T)]*)=(T)
So+K(o+(1+0)g([1+4Kz(T)]*)=(T)

SoK(1+2Dg(zX(T)) (54)
where K> K is a new constant; (50) and (54) yield (7), i.e.
7L Y wKeS(1+29(z%), 120, (55)

provided that V_Vg(wo)éw. It will be important later that K does not depend on g.
Introduce now the function G=G(z), z=0 by

G(z)= .zf(l +ug(u?) " *du . (56)
0

G is a differentiable and strictly increasing function of z=0 and, by substituting
u*=v into (56), we see that lir+n G(u)= + oo, i.e. G has a continuous inverse
u— 0

function G™!=G"1(v) defined for each v=0. Since any non-negative solution
z=2z(t) of (55) satisfies

Glz(t) < |/ w(ek—1), (57)
we have
)G H)/w(eK—1))<+ oo for each t20. (58)

The comparison of (55) and (58) yields an explicit bound for V_I/;(wt). What we have
proven is the basic result of this paper:

Proposition 2. For each SI-function g and w>0 there exists a continuous function
o(t)=g,(t, w) defined for t 20 such that W (w,) < g,(t, w) for eacht =0, whenever c, is a
g-tempered solution with W (w,) Ew.

As a consequence we show that the distance travelled by a given particle is also
uniformly bounded in finite intervals of time.

Proposition 3. For each SI-function g and u>0, w>0 there exists a continuous
function o(t)=0,(t,u,w) defined for t20 such that |x{(w,)—xwe)| <o (t,u,w) if
0=s=1, Ix{wo)l Su, Wwo)=w and w, is a g-tempered solution.

Proof. We know that [v,| <g(|x;]) |/ g,(t, w), set

0;= Ossusgtlxi(a)s) — X (@)l (59)

t
and z={ /o (s, w)ds, then
0

0, =g(u+0,)z<2g(u)z+2 [/5':2 (60)
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follows by the subadditivity of g, whence (]/0'_,.—2)2 S(g(u)+2)?, ie.

0, < max{z? (9(u)+22)*} (g(u) +22)* . (61)
Substituting (61) into (60) we obtain that
o =glu+(gw) +22)°]z, (62)

which proves the statement.
The use of W instead of H is justified only if we know that

Q,={w; W(w)< + oo}

for each SI-function.

Proposition 4. There exist such constants B and C>0 depending only on U that
H(0)SW(w)<B+CH () if wef,.

Proof. The first inequality is trivial. For the second one let N () denote the number
of points of w in the unit square of center xe Z2. Since U is a superstable pair
potential (see Section 1 in [4]) there exist such constants B; and C, >0 that

Z (ClN)zc(wu,o)_Ble(wu,o' )

xeZ?
<H(w,p,0), (63)
where , , denotes the configuration obtained from by deleting the points
outside the disc of center u and radius o. Hence
Y. Ni(,,)SCH(o, 1, 0)+ Byo? (64)
xeZ?

follows immediately, B, and C, >0 are new constants depending only on U. The
statement of Proposition 4 follows from (64) by a direct calculation.

The proof of Theorem 2 is based on the following result, it is an extension of
Proposition 3 in [3].

Proposition 5. If w,€ R, holds for atempered solution o, and g is an SI-function, then
w, is g-tempered.

Proof. There exists an SI-function s for which w, is h-tempered ; we may assume that
g(u) <2h(u) because h can be replaced by 3(g+h) otherwise. Let g,(u)=g(u) if
0<u=nand g,(u)=g(n)+min {g'(n+0)h(u—n), 2()/u— /n)} ifuznn=1,2,...;it
is easy to check that g, is an SI-function and g(u) <2g,(u) for each u and n; thus
W%(a)o)g 4I7Vg(w0)=w. On the other hand, g, has the same asymptotic order at
infinity as h does, therefore w, is g,-tempered for each n and Proposition 2 implies

o W, 1, 0) S0, (L, W) ; (65)
at least if o 2 g,(|ul). However, limg, (¢, w)=g,(t, w) uniformly in finite intervals of

time as g,(u)=g(u) if n>u [see (5n5) and (58)]; thus the statement follows directly
from (65) and Proposition 4.
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Finally we deduce a contraction property of the equations of motion from the g-
Lipschitz condition. Let w and & belong to €, for convenience we assume that
J(w)=J(®)=J. Further, X;=x/(®), 0, =v,(®), w>0, p>0, g is an SI-function, L and
[ are defined in (1) and (i), (ii), (iii), R is the range of U in the forthcoming notation.

A (w)=[]/wg(4Rn+4R)L(wg*(4Rn+4R))]"? (66)
d(w,D;w)
= .Z,f (4Rn—|x))f(4Rn—|X,)(2,(W)|x;— X + [v;— D)) , (67)

M w)=1, M,(w)=A4,(w) A,(w)...4,_,(w) if n>1, and
D (w,d;w)= i %Mn(w)d,,(w,&);w). (68)

It is easy to check that (U) implies that 1 (w)= o(n), i.e. li'rln %ln(w) =0 for w>0,

thus D, < + o0 if o, are from Q. Further, D (w,@;w)>0 if o+ m, and for a
sequence o, € 2 we have limw, = if and only if there exist such p>0 and w>0
that lirIlnDp(wn, w;w)=0.

Proposition 6. Suppose that U satisfies a g-Lipschitz condition with an SI-function g,
then there exists a constant q depending onl y on U such that D,(w,®,;w)
=Dy g, Do 3 w), if the solutions o, @ satisfy W(w) Sw, W (@) =w for 0<s<t,
and J(wq) = J(@,).

Proof. Tt is essentially the same as that of Proposition 4 in [3]. If max {|x,], X}
<(4n+3)R, then from (U) and (11) we obtain that

Y lgrad U(x;—x,) —grad U(X, — X)|

Jjel;

<L(wg?(4Rn+4R))| 4 Wg(4Rn +4R)|x;— x|+ Y, Ix;— X, | (69)
jel;

d _— .
Zi—tlxi—fcd_s_lvi—ﬁil almost everywhere, the cardinality of J; and the velocities

appearing in the derivative of f can also be estimated by A Wg(4Rn +4R), see (10),
(11). Further, d,(w,, @, ; w) is an absolutely continuous function of ¢, thus taking into
account the properties of f and the above relations, we obtain that

d
7 d (o, g W)= gh,w)d, . (0, @, ;W) (70)
a.e. in (0,7). Hence, following the proof of Proposition 4 in [3], we obtain the
statement of Proposition 6.

The tools needed to prove the results formulated in Section 3 are all summarized
in the propositions of this section.
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6. Proof of the Theorems

Theorems 1-3 follow from Propositions 2-6 by standard methods discussed in
details in [3], this is why here we only sketch them.

For the proof of Theorem 1, consider the sequence ¢,(f,w) of approximate
solutions. In view of Proposition 4, W(co) < + oo with an SI-function g, thus W is
uniformly bounded at t=0 for the corresponding finite systems. Therefore

Propositions 2 and 3 imply that, given i and T, |vp,(t, @))| < ]/5, where ¢ does not
depend on nand ¢t < T so that using the diagonal method, we can select a convergent
subsequence @,,(t, w). Because interparticle distances are bounded away from zero
if W is bounded this limit is necessarily a solution.

The first statement of Theorem 2 is just Proposition 5. For the second one it is
enough to remark that &,=w,", is a g-tempered solution if w e 2,, s>0, as follows
from Proposition 5. Thus w,=d, €2, and o, is g-tempered.

Theorem 3 is a direct consequence of Propositions 2, 4, and 6.
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