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Abstract. The existence oi wall or boundary free energies is discussed generally
and analyzed explicitly for general lattice systems with scalar (real-valued) spin
variables. For systems with ferromagnetic (positive) spin interaction potentials,
K, in the bulk and W, for the walls, correlation inequalities and appropriate
stability and tempering conditions are used to establish the existence and
uniqueness of the limiting free energy per unit area, fx{K, W), of an infinite
planar wall.
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0. Introduction

In the statistical mechanics of macroscopic systems, a mechanical system contained
in a spatial domain Ω is specified by a Hamiltonian ffl(Ω) depending on N(Ω)
microscopic variables or "degrees of freedom". Thence the partition function,

) = Z[^f(ί2)] and total free energy F{Ω) = F\_M?{Ω)~] are defined by

(0.1)

where, with T denoting the temperature, we have

F(Ω) = - F(Ω)/kBT9 Jt(Ω) = - Jf(Ω)/kBT, (0.2)

while ΎΐΩ represents the appropriate trace or integration over the N(Ω) microscopic
variables. Provided the interaction potentials entering Jtf are physically reasonable
it is then expected that F(Ω) should become asymptotically proportional to the size
of the system as measured, for example, by the volume V(Ω) = \Ω\ or by the number
of degrees of freedom, N(Ω), assuming that these have some asymptotic density, say,
Q&N/V. Formally the thermodynamic limit may be defined in terms of the free
energy density

f(Ω) = F(Ω)/V(Ω) = - F(Ω)/VkBT, (0.3)

by

fO0 = l i m / ( β ) , (0.4)
Ω->oo

where the limit is taken through a sequence of domains {Ωk} with V(Ω)->co. As a
function of the thermodynamic variables, such as temperature, magnetic field, etc.,
the limiting free energy (density), f^, should possess certain important properties
such as continuity, differentiability and convexity. The last of these implies
thermodynamic stability and such explicit results as the positivity of compress-
ibilities, susceptibilities, and specific heats. Furthermore, one anticipates that in
the limit of an infinitely large system these properties, and /^ itself, should be
independent of the detailed shape of the domains, Ω, bounding the system and
independent of the particular boundary conditions or wall potentials acting at the
boundary, δΩ, of Ω.

The mathematical problem of the existence of the thermodynamic limit was
initially studied by Van Hove [1] for classical particle systems in the canonical
ensemble. Yang and Lee [2] considered the grand canonical ensemble. More
recently, Ruelle and Fisher [3-6] have rigorously established the existence of the
thermodynamic limit for classical and quantal particle systems and proved certain
crucial properties including continuity, almost-everywhere differentiability, and
convexity, subject to suitable restrictions on the interaction potentials and domain
shapes. (The tempering conditions, which play a vital role in the proofs, entail
sufficiently rapid decay of the interaction potentials at large separations, which
excludes Coulomb forces. However, the existence of the thermodynamic limit for
neutral Coulomb systems has been settled by the work of Dyson and Lenard [7],
Lieb and Lebowitz [8].) A proof of the existence of the thermodynamic limit for
systems of Ising spins on a lattice has been carried through by Griffiths [9] (see also
Ruelle [6]).



Wall and Boundary Free Energies 13

It is of both theoretical and practical interest to enquire more closely into the
rate at which the thermodynamic limit is approached for particular sequences of
domains, {Ωk}, and into how this rate is determined by the interactions in the bulk of
a system and, especially, by the nature of the wall or boundary conditions. A first
step in this direction was taken by Fisher and Lebowitz [10] who considered
rectangular, or box domains A, on which periodic boundary conditions were
imposed, thus converting the domain into a torus, 17. Subject to mild restrictions
beyond the usual tempering and stability conditions [3-6], they showed that the
limiting free energy densities/^(TΓ) and/^/l) were identical. (For the boxes, A, they
assumed "hard wall" or free boundary conditions.)

More generally for sufficiently regular domains Ω of volume V(Ω) and surface or
boundary area A{Ω) (taking V und A with appropriate meanings in ^-dimensional
Euclidean space), thermodynamics suggests that the free energy should vary as

F(Ω) = V(Ω)f(Ω) = V(Ω)fm + A{Ω)fx + o[A(O)], (0.5)

when V(Ω\ ^4(Ω)->oo, where/ x is the boundary or wall free energy (per unit area)
which should, like f^, be independent of the shape of Ω but must, presumably,
depend explicitly not only on the bulk interaction potentials but also on the nature
of the wall potentials and on any fields acting only near the boundaries. Since a
torus, Π (periodic boundary conditions), has no boundary, .4(77) = 0, this leads to
the problem of whether the difference between the free energy, F(Λ), of a box A and
the free energy, F{Π\ of the corresponding torus, is asymptotically proportional to
the surface area A(A). In fact, Lebowitz and Fisher [10] were able to prove that if
the pair interaction potentials decrease sufficiently rapidly (roughly speaking, one
power of distance faster than required for the existence of the limiting bulk free
energy) then the difference F(A) — F(Π) for free or hard wall conditions, is at most of
the order of A(A). More precisely, however, one would like to establish the existence
and, as far as possible, the uniqueness of the limit

However, other definitions of the boundary free energy, / x , easily suggest
themselves and the equivalence of such different definitions should also be
considered.

In this and subsequent papers we address these issues. Our present results are for
lattice spin systems such as Ising-like models with continuous, scalar spins st eIR at
the lattice sites i. A following paper will establish conditions sufficient to prove (0.6)
and analogues involving partially periodic (e.g. cylinder) boundary conditions. In
this paper we first discuss the creation of a pair of walls or boundaries by dividing a
d-dimensional lattice domain into two subdomains and severing all interactions
between them. The change in total free energy associated with this process provides
a working definition of the boundary free energy for "free" boundaries (in a finite
system) which plays a central role in our analysis. Change of the potentials near the
boundaries in each subdomain yield different types of wall. Certain properties of
the boundary free energy will follow directly from this formalism—in particular, the
convexity offx as a function of the boundary or surface variables (such as magnetic
fields acting only on the boundary spins or exchange couplings between surface
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spins and those in adjacent layers). The dependance on the bulk variables, such as
the overall temperature, is more complex. Some monotonicity and positivity
properties will be established however, several counterexamples indicate the limits
on possible results. In particular, the nonunίqueness of the expansion (0.5) under
thermodynamic conditions allowing two-phase coexistence must be anticipated (see
Section 2.7).

By specializing to box domains, A, the existence and uniqueness of the limiting
boundary free energy will be proved for Ising-like spins interacting through
ferromagnetic (i.e., positive) potentials. Incidentally, the existence and uniqueness of
the free energy of a "grain boundary" or an interfacial "seam" of altered
interactions, is established. Our basic tools are the Griffiths inequalities [11,12] and
their generalizations [13], in particular, those due to Kelly and Sherman [13, see
also 14]. In a following paper we will consider more general domain shapes and
more general boundary conditions. We will also consider "extended" boundaries
(e.g. on all external boundaries of a box domain) and demonstrate that the
boundary free energy is unaltered under reasonable conditions. For these latter
results stronger restrictions are required on the decay of the interactions, and we
assume thermodynamic conditions for which the decay of the bulk correlation
functions can be controlled. (In the present paper the decay of the correlation
functions is not invoked.)

Our analysis for scalar or Ising-like spins has been extended to planar or two-
component, XY-like spins (^elR2 with \st\ = 1). The results are almost identical but
the detailed proofs will be described separately.

It should be remarked that results bearing directly on (0.5) and (0.6) have been
obtained for various two-dimensional lattice systems by exact, explicit analysis of
closed form expressions for the partition functions. Thus Fisher [15] established
the existence and value of the surface free energy for an m x n rectangular lattice
filled with hard dimers. Ferdinand [16], in a more detailed analysis, showed
explicitly that the boundary contribution to the total free energy vanished for a
torus, and he evaluated explicitly the o(A) terms in (0.5) for both torus and box
[finding constant terms, O(l), depending on the shape factor, m/n, and on the parity
of m and ή]. Likewise Fisher and Ferdinand [17,18] calculated the boundary (and
also grain boundary or seam) free energies for square and triangular Ising lattices
with nearest-neighbor interactions in zero magnetic field. McCoy and Wu [19]
evaluated the boundary free energy more generally for the case where a magnetic
field is imposed on the boundary spins. In fact, McCoy and Wu considered a
cylinder (with periodic boundary conditions imposed in one direction). The o(A)
terms were examined in detail by Au-Yang and Fisher [20] for the case of an infinite
strip (m->oo,ft|> 1) especially as the critical temperature, Tc9 is approached. These
calculations serve, incidentally, to demonstrate that the boundary free energy,
/ x (T), cannot in general be convex in 1/T, the inverse bulk temperature specifically
the boundary specific heat, CX(T), varies as 1/(T-TC) as T^TC±. Similarly, the
boundary energy, Ux(T)ocdfx/dT varies as ln|T— Tc\ and is unbounded.

In the area of rigorous (but nonexplicit) results Lenard and Newman [21] have
proved asymptotic results for the two-dimensional, polynomial scalar field theory,
P(φ)2, with Dirichlet boundary conditions and in circumstances where the mass is
nonzero, which are analogous to (0.5). In view of the connection between the P(φ)2
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field theory and scalar lattice spin systems with polynomial spin weights and nearest
neighbor interactions [22], one can probably prove results by similar methods for
such spin systems under appropriate boundary conditions and for states in which
the correlations are known to decay exponentially. However, no assumptions
regarding the decay of spin correlations are employed in this paper.

An outline of this paper is as follows [see also the Contents list presented
above]: In Section 1 we set out definitions for lattice spin systems including, in
particular, a specification of the lattice structure which allows for a finite number of
spins per cell. The basic spin correlation inequalities for the systems under
consideration are discussed in Subsection 1.3, while in Subsection 1.4 we
characterize "acceptable" boundary conditions (which leave the limiting bulk free
energy invariant). Definitions of planar walls and boundaries and of the corre-
sponding free energies are presented in Section 2, in terms of the dissection of a
domain Ω into two disjoint subdomains, Ωx and Ω2, by a corrugated plane. The
boundary free energy so defined is reexpressed in terms of spin correlation
functions, using a coupling parameter device, in Section 3. Thence various
properties are established including convexity, boundedness, and basic inequalities
relating to decomposition of Ω into subdomains. Finally in Section 4 the central
results of subadditivity and monotonicity for box domains are established and the
existence of the limiting wall or boundary free energy per unit area of an infinite
planar wall is thence proved for arbitrary sequences of box domains. Partial results
are established concerning the uniqueness of the limiting wall free energy under
variations of the "associated boundary conditions" (imposed on the original
boundaries of Ω). The asymptotic analysis uses lemmas on multiply subadditive,
mono tonic functions which may be useful in other contexts.

1. Lattice Spin Systems

ί.ί. Lattice Geometry

Because of the appreciable calculational interest in lattice models of various
structures we treat lattices more general than the customary rf-dimensional
hypercubic lattices, TLd. We thus define a lattice, if, in d-dimensional Euclidean
space as an infinite set of lattice sites arranged in a translationally invariant array of
identical cells each containing q sites. The cells are indexed by integer vectors
n = (na)eΈd and the cell corners are specified by the lattice vectors

R= Σ " A , (l.l l)
α = l

where the d linearly independent vectors αα (α = 1,2,..., d) represent the edges of the
origin cell (n = 0). Individual sites will be labelled i,j,... with sites i=l,2,...9q
located in the origin cell n = 0. Each site belongs to a unique cell nt. Translation by
any lattice vector R transforms if into itself.

A (lattice) domain, Ω, Λ, Γ,... of i f is a finite set of \Ω\, \Λ\, |Γ|,... distinct sites.
The (lattice) boundary or perimeter, dΩ, of a domain Ω is the set of sites in Ω which
belong to cells of Ω which either contain sites not in Ω or adjoin (i.e., have a cell face
in common with) cells containing sites not in Ω. Unless explicitly stated we will
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consider only domains, Ω, which are cell-connected in the sense that any two sites in
Ω can be joined by a continuous curve lying wholly within cells containing sites of Ω.

A collection, A, of sites from a domain Ω, is a finite selection of sites drawn, with
repeats allowed, from the set Ω; we will write AζΩ. (Sylvester [23] uses the term
family in place of collection.) The number of distinct sites in a collection will be
written \A\ but \\A\\ will denote the total number of sites in a collection counting
repeats.

A domain Ω, a plane £P, or a collection of sites A, translated by a lattice vector
will be written Ω + R, &Λ-R, and A + R respectively. Reflection and rotation
operations on the lattice will be denoted 01, and 02Ω and MA will describe domains
and collections transformed by 01. By an obvious extension of the notation we may
write j£? + β = j£? and 0t££ = JS?. In defining planar walls or boundaries we will
consider only lattices which have certain minimal elements of reflection or rotation
symmetry: the specific restrictions will be stated in Section 2.2 below (Condition
D).

A collection of sites couples (or links) a set of (sitewise) disjoint domains if it
contains sites from each domain. We will take Ωγ Ω2 ... Ωm to denote the set of all

m

collections of sites coupling the domains Ωί9Ω2, . . . ,O m and drawn from I ) Ωk.
k=l

The separation or distance between any pair of sites, collections of sites,
domains, or other sets of sites, £f9 will be denoted r(i,j), r(i,A), r(A,B), r(A,Ω),
r(Ω1,Ω2), r(i,ίf\ etc., and will, in each case, denote the minimum (or infimum)
distance between sites in the respective collections, domains, etc. Likewise, the
diameter, d(Ω), d(A), ... of a domain, collection of sites, etc., is defined by

d(Ω)=max{r(iJ)}, (1.1.2)
iJCΩ

and so on. The notation dL(A), etc., will be used to denote the caliper diameter
measured in a direction normal to a given plane 0>.

1.2. Spins and Interactions

In specifying the spin systems to be discussed we aim for reasonable generality as
regards the many-point and long range character of the interactions. However, we
do not strive to cover all possible systems. Our main tools will be bounds and
inequalities for the correlation functions; the range of validity of such results will
yield the most significant restrictions on the analysis. A very useful discussion of
continuous scalar spin systems has been given by Sylvester [23] and we mainly
follow his formulation.

With each site i we associate a real-valued spin variable s^elR subject to a spin
weighting σ which is an even probability measure which decays sufficiently rapidly
at infinity that

Trt{eJ^P} = $ex'p(J\sι\
p)dσ(si)<°o , for all J. (1.2.1)

Here p is a positive integer specifying the maximum size ||y4|| of any collections of
spins, A, on which nonzero interactions will be defined. In other words p will be the
polynomial degree of the Hamiltonian (see below). In case interactions involve



Wall and Boundary Free Energies 17

many-point interactions of unbounded order or spin-multiplicities of unbounded
degree (1.2.1) must hold with \st\

p replaced by an appropriate limiting function
increasing more rapidly as ISJ-KX). Ordinary Ising, spin \ variables are, of course,
specified by

dσ(s) = ±[δ(s-l) + δ(s + l)~]ds. (1.2.2)

If the support of the measure σ extends only to |s |^ | | s | | we say the spins are
saturating with spin modulus \\s\\. (Of course one could rescale so that ||s|| = 1 but it is
more informative to leave the spin modulus in evidence.) More generally ||s|| will
denote an effective spin modulus: see Section 1.4 below.

A set of values {sί}Ω for s C Ω will specify a spin configuration in Ω. The product,
with repeats, of all spins in a collection A is defined by

sA=\{Si. (1.2.3)
ieA

For saturating spins we have \sA\ ̂  \\sA\\ = \\s\\
A set of (reduced) interaction potentials K = {KA} = — Φ/kBT of degree p is a

real-valued function on the collections of sites Aζ,<£ with \\A\\ ^ p , which respects
the lattice symmetries so that

• KΛ + R = KΛ and KΛA = KΛ. (1.2.4)

A potential acting on a single site, A = {/}, is called a field ^ = Kf. When convenient
we will write KA = K(A).

Finite range potentials are those for which the range

£°° = max {d(A)} (1.2.5)
A,KΛ*O

is bounded.
A set of potentials, KΩ, for a domain Ω, is defined similarly on all collections A £

Ω. In general these potentials will not have the lattice symmetries as defined above.
[However, we could require that (1.1.5) hold within Ω i.e., whenever A, A + R, and
MA are drawn from Ω.~]

The correlation inequalities on which our analysis rests (at this stage) have been
established for:

Definition 1.2. Purely ferromagnetic interactions in a domain Ω o r a lattice j£?5 are
those for which

K^O or KA^0, (1.2.6)

for all A drawn from Ω or from if, respectively.
Our strategy of proof could also be based on systems for which the Fortuin-

Kasteleyn-Ginibre [14] sets of inequalities apply, such as lattice gases described by
two-valued occupation variables ρf = 0,1, and with positive interaction potentials.
When reexpressed in terms of Ising spins, s = ± 1, the FKG conditions admit spin
interactions which are not purely ferromagnetic. However, we have not carried
through the details of this analysis.
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A (reduced) Hamiltonian on a domain Ω is defined by

&(Ω)=-je(Ω)/kBT= Σ KA*A> (1-2.7)
AςΩ

and the corresponding partition function is

(1.2.8)

where T r Ω = Π T r ; T n e tota^ free enerθy> % Ω ) , of the domain, and the free
ieΩ

energy per site, /, are defined by

f(K,Ω) = \Ω\~ 1F{K9Ω) = \Ω\~X lnZ[Jf(O)] . (1.2.9)

Note that by well known methods [3-6, 24] one can show that f(K, Ω) is a convex
downward (or concave) function on each KA and on all the KA together.

If the domain potentials KQ

A are equal to those for the infinite lattice the
corresponding Hamiltonian is denoted

^°(Ω) = Σ KA*A, (1.2.10)
ACΩ

and is said to be the Hamiltonian of the domain Ω with free boundary conditions.
The corresponding free energy per site will likewise be called/°(X, Ω). Note that the
free boundary conditions defined here differ from the boundary conditions
typically used in field theoretic polynomial spin models [22] and also from "hard
wall" conditions in the lattice gas interpretation of the standard Ising model.

The expectation value of a function Q of spins in Ω is defined as usual by

(1.2.11)

When the spins are saturating, one or more fields hΩ may be allowed to approach
± GO in the calculation of expectation values. The same results can be achieved with
a modified Hamiltonian M"\ derived from jfr by (i) deleting the infinite terms hfsp

and (ii) replacing the "frozen" spin variables Sj by ± \\s\\ (as hf-^ ± oo) in all other
interaction terms, and (iii) dropping any constant contributions involving only
frozen spin terms. The residual trace operations over the frozen (or saturated) spins
may be dropped.

13. Spin Correlation Inequalities

For purely ferromagnetic interactions in a domain Ω spin correlation inequalities of
the Griffiths-Kelly-Sherman type [11-13] are valid and will be important for our
analysis. For polynomial spin interactions of the type discussed above, Sylvester
[23] has presented rather transparent proofs. Under the conditions stated by
Sylvester [23], and presumably with even greater generality, we have the GKS
inequalities

(1.3.1)

(1.3.2)

These inequalities yield an elementary but most useful result:
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Lemma 1.3. // </>ζ denotes an expectation value taken with the Hamiltonίan ζ

) in which j ^ 0 and 2tfγ are purely ferromagnetic then <s^>ζ is
monotonic nondecreasing in ζ and, in particular,

< ^ > ζ = 1 ^ > ζ = 0 . (1.3.3)

Proof. Since J^x is purely ferromagnetic we may write Jf 1 = £ KB

ΩsB with K'B ^ 0.
BςΩ

Then we have

with

_ / c \ ζ — V K'Ω[(s s \ζ — (ϊ ^ζ <ίs ^ ζ 1 Π 3 4 Ϊ
«C BCΩ

from which the lemma follows by (1.3.2) and the nonnegativity of K'B. D

1.4. Thermodynamic Limit and Acceptable Boundary Conditions

Our interest will be restricted to sets of interactions K for which the thermodynamic
limit exists and is unique for reasonable sequences of domains. In addition, to
establish the finiteness of the boundary free energy,/ x , we will need bounds on the
spin correlation functions (sA}Ω (uniform in Ω). In the case of saturating spins the
trivial

A. Uniform correlation bound

l<Λi>ΩI^IN I M I 1, (allΩ), (1.4.1)

will suffice. In the same circumstances a proof of the thermodynamic limit along
well established lines [3-6] follows from the

B. Stability condition

11*11= Σ Στ¥ί
l— 1 ΆJI I I

|KJM ι μ ι l <oo, (1.4.2)

in which {A} denotes a complete set of collections A which are translationally
inequivalent on j£f. Finite range potentials of finite degree, p, certainly satisfy B. For
pair potentials [KA = 0 unless A = {ΪJ '}] decreasing with separation as \r(i,j)~]~d~σ,
one requires σ > 0 for stability similar sufficient power-law decay conditions can be
stated for many-site interactions [4].

More generally, however, in the case of unbounded or nonsaturating spins the
available results are more restricted. Sylvester [23] has discussed the situation
recently and has stated and proved various theorems for potentials of finite range,
for pair potentials, etc. Lebowitz and Presutti [25] have extended the discussion to
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Hamiltonians more general than the spin polynomials (1.2.7). (See also Ruelle
[26,27].) Rather than enter into these questions we will merely restrict attention to
systems and to thermodynamic states for which bounds of the form A may be
established with some appropriate assigned value of ||s||, which is then an effective
spin modulus. For such systems the condition B should, perhaps with some slight
strengthening, suffice to ensure the existence and uniqueness of the thermodynamic
limit for free boundary conditions, namely,

fJK)= \hnf°(K,Ω), (1.4.3)

provided the sequences {Ωk}k^oo used in taking the limit β ^ o o satisfy various
standard shape conditions [3-6] which, in particular, will imply that |3Ω|/|β|-»0.
Henceforth the notation Ω-^co will always imply a suitably restricted sequence of
domains. The most obvious example [4] is a

Definition 1.4. Simple sequence of domains:

Ωk = {i;ίeξd

kΩ0}, ^ - o o , (1.4.4)

where Ωo denotes a compact, simply connected continuum domain which is
isotropically expanded by factors ξk to form the continuum domain ξd

kΩ0.

Further concrete examples will occur below in considering walls explicity. We
remark that proof of the thermodynamic limit for purely ferromagnetic in-
teractions is particularly straightforward if Lemma 1.3 is utilized.

Now consider a general sequence of domains for which KΩ^KA as Ω-»oo and
define the deviation Hamiltonian by

Δ&(Ω) = JT{Ω)-&0(Ω)= X ΔKΩsA, ΔKΩ = KΩ-KA. (1.4.5)
ACΩ

This clearly isolates any special boundary conditions incorporated in KΩ as well as
including terms which might, physically, be rather regarded as changes in bulk fields
or interactions. Now the simple inequality l/<e~ Q >^e < Q > ^<e Q >, yields

f(Ω)-f%Ω) = ln(e^)Ω/\Ω\^(ΔJt)Ω/\Ω\, (1.4.6)

where the superscript zero denotes an expectation taken with free boundary
conditions, and

f(Ω)-f°(Ω)=-\n(e-^)Ω/\Ω\^(ΔM*)Ω/\Ω\. (1.4.7)

If we accept the correlation bound A for K and KΩ, the right hand sides of these
inequalities may be bounded in terms of

s(κ,Ω)= Σ \AK°\\\sAf
A". (1-4.8)

ACΩ

Then the assumption of

C. Acceptable boundary conditions

S(K,β)/|β|->0 as β-+oo, (1.4.9)
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is sufficient to ensure that the thermodynamic limit exists and is independent of the
boundary conditions explicitly that is

limf(K,Ω) = fJK). (1.4.10)
ί3->oo

We shall consider only such acceptable boundary conditions but it is instructive
to characterize them in more concrete fashion. Accordingly let us first introduce a
surface range, and corresponding finite-range boundary conditions.

Finite range boundary conditions are specified by a surface range

Rx= max {d(A),r(A,dΩ)}, (1.4.11)

which is bounded (uniformly in Ω). Since the deviation potentials AK^ are nonzero
only within distances 2RX of the perimeter of Ω we clearly have:

Lemma 1.4.1. Finite range boundary conditions of finite degree p, are acceptable (i.e.,
C holds) and, furthermore, \f(K,Ω)-f°(K,Ω)\ is of order \dΩ\/\Ω\ as Ω^oo, that is,
bounded by a surface term.

Note that the bulk potentials K may be of long range (R™ = oo) even if Rx < oo.
In that case f(K, Ω) may differ from the limiting free energy, /^(X), by something
asymptotically greater than a surface term (see below). More generally, to allow for
long-range boundary conditions we introduce:

Cτ Tempered boundary conditions of exponent τ are defined by the condition

S.(K Ω)= Y I4^2[||S | |IMII< -
Λ j A n \A\ m =la + r(i,dΩ)γ, (1.4.12)

where C, and a are fixed positive constants. To use this definition note that

S(K,β) = £ Sj[K,Ω)^Σ CIQ], (1.4.13)
icΩ icΩ

where ρ. = α + r(i, dΩ) measure the distance of i from the boundary of Ω. Now the
number of sites at distance r from a given site increases as rd~ *. Hence the number of
sites, vπ(Ω), in Ω with (n-l)aSQi<na is certainly bounded by c1n

d~1\dΩ\ for
suitable cv From this we can conclude:

Lemma 1.4.2. Tempered boundary conditions of exponent τ>d are acceptable and
\f(K, Ω) - f°(K, Ω)\ is bounded by a surface term.

Again, long-range bulk potentials may prevent \f(K,Ω) — foo(K)\ being also
bounded by a surface term. This tempering result can be greatly strengthened if
attention is restricted to simple sequences of domains, (1.4.4). In that case as /c->oo
we have, on dimensional grounds, vn(Ωk)&ξd

k~
Λg0(n/ξk), where go(x) is a fixed

function depending on the shape of the original continuum domain Ωo. On
estimating S(K, Ωk) by an integral we find S(Ωk) = O(ξd

k~
τ) = o{\Ω\), for τ < 1 but S{Ωk)

= OiξΊ'1) = O(|δΩk|) for τ > 1. On the boundary τ = 1 a factor Inξk is needed. Thus
we can establish:
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Lemma 1.4.3. For a simple sequence of domains [Definition 1.4] tempered boundary
conditions are acceptable ifτ>0. Furthermore, ifτ>l then \f(K,Ωk) — f°(K,Ωk)\ is
bounded by a surface term.

It is clear that these results are essentially best possible. Finally, to show more
explicitly what is entailed in the tempering condition, consider pair interactions
[AKA

} = 0 unless A = {i,j}~] bounded by power law decays. It is then not hard to
prove:

Lemma 1.4.4. Pair interaction potentials satisfying

ΔK^KCJρϊjή;*, (all Ω), (1.4.14)

where, with a fixed positive constant a,

ρ y = α + min{r(ί,3Ω), r(/,3Ω)}, r^r&j), (1.4.15)

represent tempered boundary conditions of exponent τ provided σ ^ τ .

2. Walls and Boundaries of Domains

2.1. Motivation

If the bulk interaction potentials KA decay sufficiently rapidly with distance, i.e. as
d(Ά)^>oo, and if the deviation potentials AKΩ

A are sufficiently small away from the
boundaries of Ω (as discussed above), we expect F(K, Ω) and ^f^K) to differ only
by a term of order \dΩ\. It is then reasonable to hope that the limit

exists and represents the boundary free energy per boundary site. However it is clear
(i) that the sequence of domains {Ωk} should now satisfy additional regularity
conditions, (ii) that / x will depend explicitly on the shape and orientation of the
limiting Ωk with respect to the axes of the lattice JSf, etc., and (iii) t h a t / x will also
depend directly on the detailed properties of 34?(Ω) in as far as these specify both
bulk and wall potentials.

These considerations show that a more precise specification of the walls or
boundaries of interest is imperative. Ideally the wall potentials should be defined
relative to some hypothetical null boundary with zero boundary free energy. Free
boundary conditions are not satisfactory in this sense since they certainly give rise
to a nonzero boundary free energy of their own. For these reasons we define walls
and boundaries by creating (or "cutting") a pair of conjugate walls of definite
structure in an otherwise spatially uniform system, as indicated schematically in
Figure 1. Since it is impossible to create only a single wall without, at the same time,
making a bulk change in free energy (by removing a half-lattice or half domain), we
will assume that the lattice if, the potentials K, and the wall potentials W (to be
defined explicitly below) have minimal symmetry such that both walls in a conjugate
pair have identical boundary free energy (in the thermodynamic limit).

Now an ideal, translationally invariant planar wall can reside only in the infinite
lattice (Fig. 1). To define the free energy of such a wall we will first cut out a finite



Wall and Boundary Free Energies 23

' t

Fig. 1. The creation of a wall (or pair of boundaries) with potentials VKby cutting an infinite lattice if by a
plane & with perpendicular bλ

Fig. 2. Illustration of the intersection of a wall with a finite domain Ω which is decomposed into two
disjoint domains, Ωx and Ω2. The faces of the finite wall in Ω are labelled Lί and L2 and their area will be
denoted | L\. The symbol W indicates the "associated wall potentials" involved in the domain Ω (see
below)

domain Ω which is divided by the wall into disjoint domains Ωγ and Ω2 with
β = β 1 u β 2 , as indicated in Figure 2. Comparison of the free energy F(Ω) with the
total free energy, F(Ωί) + F(Ω2), of the two subdomains yields a difference which
may be associated with the finite wall, with faces L1 and L2, of total size (or "area")
2\L\, which have been created. (The area, \L\, of a finite wall will be defined precisely
below.) Thence the wall or boundary free energy, / x , of the finite wall may be
defined by

Definition 2.1.

= (\Ω\/2\L\) \J(K, ΩJ+ f(K, Ω2) - f(K, β ) ] . (2.1.2)
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The factor \ is included so that / x may be regarded as the free energy for a single
face. We use the notation fx in place of / x because both normalization, "per unit
area", used here and the basis for comparison differs from that utilized in (2.1.1). As
above, W denotes the set of wall potentials describing the cuts, etc., made in
constructing the wall. It must be noted, however, that F(Ω), F(Ωί), and F(Ω2) also
depend explicitly on the nature of the associated wall potentials, W, imposed on the
original boundaries of Ω and on the remaining parts of those boundaries in Ω1 and
Ω2, i.e., on the ΛKΩ

A.

We now introduce various definitions that will enable us to make the
construction of walls precise.

2.2. Lattice Planes, Blocks, and Symmetry

A set {bβ}, of d' = d—l linearly independent lattice vectors bβ (β = l,2, ...,d'),
specifies a d'-dimensional plane, 0>, a lattice plane, containing the corners of the cells
at

«'» = Σ hbβ f o r ι=(
β=l

Translation of the lattice by any JRJ1 leaves both lattice i f and plane & invariant. If
the set {bβ} consists of the set of cell edge vectors {αα} with one vector, say aγ,
removed we say 0> is a cleavage plane conjugate to ay.

Now let bL denote a formal vector, possibly of zero magnitude \bL\, which
specifies a directed normal to 3P and consider a division of the lattice into two semi-
infinite half-lattices, <£γ and if2, satisfying:

D(i) Separation

Se^Se^Se and J ^ n i f 2 = 0 ; (2.2.2)

(ii) Translational invarίance

The half-lattices ifx and if2 are invariant under translations parallel to 0>,
explicitly,

J?ί + bβ = J?1, &2 + bβ = &2, (β = l,2,...,d'); (2.2.3)

(iii) Minimal symmetry
There is a symmetry operation 31 & of the lattice, if, satisfying

όftύΰ —ύpύftcp— cp oft co _ a? Π 0 ά\
*sb opts — ts , L/Z' ^ o i i — oZ' 9 9 *sv <φ<=^-/ 9 — = > ^ 1 y^.^.^i

(iv) Limited corrugation
All sites on the positive side of 0* (in the sense determined by bj for which r(i,0>)
> \bλ\ ̂ 0 belong to S£γ and vice versa for 5£2 we will assume that bL is the shortest
vector for which this is true.

A simple cleavage wall is defined on a cleavage plane by \bλ\ =0; the two half
lattices then simply contain all cells with indices n satisfying ny^0 and nγ<0,
respectively, for appropriate y.

The significance of these statements can be appreciated from Figure 3. The first
condition merely states the separating property of a wall. The translational
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v • /

Fig. 3. Example of the detailed construction of a wall in a two-dimensional lattice ££ with cell vectors a1

and α 2 and q = 6 sites per cell. Note the defining lattice plane & (dashed line), the normal vector bL

limiting the corrugations of the wall, the plane vector bv which specifies the translational invariance of
the wall, and the block edge vector b0 = 2a0 with ao — avk block adjoining 0> is shaded. The division of
££ into S£ i and S£ 2 by the wall is fixed by the zig-zag parallel pairs of lines. The open circles are centered
on points about which a rotation, 0t9i through an angle π carries <£ λ into $£2, and & into itself (although
the cell corners on ^ , marked by crosses, are carried into those not marked). By redefinition of the cells
with respect to the sites, a wall could be built on planes like &>' not containing cell corners (in this
realization of the cells)

invariance along a wall, necessary for the existence of a limiting boundary free
energy, is embodied in D(ii). Condition D(iv) allows for finite corrugations of the
wall, or face of a half-lattice, of maximum depth or height |6J. Finally, D(iii)
specifies the minimal lattice symmetry with respect to the plane ^ , needed to ensure
that the two faces of the half-lattices are physically identical. Note that 31 # need not
necessarily carry the cell corners on & specified by (2.2.1) into themselves: see
Figure 3.

In constructing walls it should also be borne in mind that the placing of sites in
the cells of a lattice may be changed by adding an arbitrary vector to the position
vectors of all sites, without altering the statistical mechanics of the situation. For
example, in Figure 3 a shift r 0 = \{ax + a2) would effectively bring the cell corners to
the cell centers so that a plane (line) like 0>' in Figure 3 could equally be the basis for
constructing a wall (even though it contains no cell corners).

The intersection of a domain Ω with a wall decomposes Ω into two disjoint
subdomains, Ω1=ΩnJ?1 and Ω2 = Ωn^2, as illustrated in Figure 2. The domains
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formed of the sites in cells of Ωλ adjacent to cells containing sites of Ω2 may be called
the face, Γ1? of the wall in Ωv The area of a wall face in Ω could then be defined
simply in terms of the cell contents |J\ | and \Γ2\. However, it proves more convenient
to define area in a way which explicitly recognizes the translational in variance of a
wall. Accordingly, in place of cells we introduce blocks by the following definition:

Definition 2.2. A block, with edge α 0 and faces parallel to a wall with plane SP and
defining vectors bβ (β = l,2, ...,d), is a set of sites contained either in the
parallelepiped defined by edge vectors bo,b1,..., bά,, with b0 = ka0, where α 0 is a cell
vector not parallel to & and k is the smallest positive integer such that bQ bL> \bL\2,
or in a parallelepiped equivalent under translations by the block vectors

* i = Σ ' Λ > l = (Jβ)e%d. (2-2.5)
β = 0

Any sites lying on the plane @> or on the translates & + lobo, are assigned to a block
or its adjoining neighbor in accord with the assignment implied by the wall
construction.

A block, adjacent to the wall plane 0> and constructed with the selection ao = a^
is shown shaded in Figure 3. The condition specifying the integer k is chosen (for
convenience) so that only blocks adjoining the wall plane 0> can contain sites from
both S£λ and JS?2. (See Figure 3 where k = 2.) It is easy to see that for simple cleavage
walls, blocks are identical to cells. Blocks are indexed by the integer vector /.

ΎhQ faces of a wall intersecting a domain Ω are now redefined as the sets, L1 ? and
L2, of complete blocks adjacent to 0* and contained in Ωx or Ω2, respectively. The
area, \Lγ\, of the face, L1 ? is defined as the number of blocks in L1 and similarly for
\L2\. We define the area of the wall in Ω as

ILI^dLJ + ILJ), (2.2.6)

although in practice we will be mainly interested in situations where \Lί\ = \L2\ = \L\.
The perimeter dLγ, of the face L1 is the set of \dLx\ blocks in L1 which adjoin

blocks not completely contained in Ω.

2.3. Wall and Boundary Potentials

An infinite planar wall, W, is specified by a lattice plane &>, with defining vectors bβ

(j8 = O51, ...,d'), normal bl9 and minimal symmetry operation 0t&9 and by a set of
wall potentials, {WB), such that the total potentials of interaction in the presence of a
wall are given by

KΊ = KA+WA. (2.3.1)

The wall potentials should be of the same degree p as the bulk potentials K and,
furthermore, must satisfy the conditions

E(i) Separation (or decoupling)

KB+WB = 0 all βeJSVJS?2. (2.3.2)

(ii) Translational invariance

WB, 0S = l,2,. . .,d') (2-3.3)
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(iii) Minimal symmetry

WΛ,B = WB. (2.3.4]

In E(i), recall that 5£γ <£2 denotes the set of all collections of sites with
nonempty intersections with both 5£γ and i? 2 . Evidently this condition enables one

to decompose the formal lattice Hamiltonian if^ = Σ(KA + WA)sA into a sum oJ
A

two parts, Jtf™ and Jf2°°, which are independent, or uncoupled, in that they have no
spin variables in common. If this decoupling property is dropped we would be
discussing grain boundaries or seams. Many of our arguments, however, would go
through unaltered.

A free boundary wall, corresponding to free boundary conditions is specified, in
accordance with the definition (1.2.10), by

WB=-KB for all EeJSVJS?2

= 0 , otherwise. (2.3.5)

A ferromagnetic wall (in practise in a purely ferromagnetic system) satisfies the
condition

WB^-\KB\ for all B. (2.3.6)

Such a wall retains the purely ferromagnetic character of the system with a wall.
Note that it includes free boundary conditions.

A subfree wall (in a purely ferromagnetic system) is specified by potentials
satisfying

0^WB^-\KB\, for all B. (2.3.7)

The significance of these conditions is that after removing the bulk interactions K
coupling J£?

1 and if2, the internal interactions near the wall are also weakened.
Clearly subfree walls are also ferromagnetic.

A superferromagnetic wall in a saturating spin system, may be regarded, from the
perspective of one half-lattice as obtained (a) by imposing an infinite field on all the
spins in the complementary half-lattice and vice-versa, and (b) by increasing the
internal interactions remaining in the two half-lattices. Apart from their intrinsic
interest there are various more specific reasons for considering such walls, as will
emerge below. On applying the rules for handling infinite fields, the corresponding
wall potentials may be written

WB=-KB for

= W$+ Σ'KJsJ/KU, for
ADB

or

BCSe2, with WB°^0, (2.3.8)

where the superscript dot indicates that the sum runs only over A in jS^ i ^ .
Evidently superferromagnetic walls are ferromagnetic (in a purely ferromagnetic
system). If WB° = 0 the wall is simple superferromagnetic.
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For bulk interactions of finite range OR00 < oo) superferromagnetic walls can
also be realized by imposing infinite fields, /z = + oo, on all spins i in a "channel"
which extends to a distance R°>^RGO on both sides of 9. One may then remove the
contribution to the free energy due to frozen spin terms of the form i£ c | | s c | | . This
construction indicates a certain fundamental arbitrariness in any definition of
boundary free energy which will be demonstrated more explicitly below.

We will need suitable norms for wall potentials in order to bound the surface free
energy. Accordingly, consider first, free boundary conditions. A particular nonzero
interaction potential KA will contribute to the wall free energy under all translations
A=>A' = A + R for which AfeJ£1'J£2. The number of such translations, which are
also distinct under translations /?]' parallel to the wall, is easily seen to be bounded
by co\_dL(A) + 2|ftJ], where c0 is an appropriate geometrical constant (involving the
orientation of the wall, the number of cells in a block, etc.). Since \bλ\ is fixed and
finite we accordingly define bounded free wall potentials by

Σ cχ), (2.3.9)
AcίAj

where the sum runs over all translationally inequaivalent collections A, while the
vail plane SP specifies the direction for the caliper diameter dλ(').

For long range forces this condition is clearly more restrictive than the bulk
tability Condition B [(1.4.2)]. Thus, if pair potentials decrease as l/rfj

+σ, σ > 0
uffices to satisfy B but σ > 1 is necessary for F(i). The need for such a stronger
condition was already observed by Fisher and Lebowitz [10]. However, for finite
'ange potentials K the Condition F(i) is implied by B.

For the remaining or internal wall potentials, WB which do not link i f x and if2, it
ίuffices to require the boundedness condition

(2.3.Ϊ0)

where {Bψ is the set of all collections Bc^?

ί which are inequivalent under
translations Λj1, parallel to the wall. [Note we use E(iii) to restrict B to ί^.]

The import of this condition can be appreciated by relating it to the previous
discussion in Section 1.4 concerning acceptable boundary conditions. In the first
place the Definition (1.4.11) of finite range boundary conditions extends trivially to
wall potentials by replacing Ω by i£γ and AKA by WA. Then in parallel to Lemma
1.4.1 we have

Lemma 2.3.1. Finite range wall conditions of finite degree p, satisfy the condition F(ii).

Likewise the tempering exponent τ can be defined for wall potentials by making
he corresponding replacement Ω=>£?

ί,AKA^>WAin (1.4.12). With this understand-
ng it is easy to prove

Lemma 2.3.2. Tempered wall potentials W of exponent τ > 1 satisfy the condition F(ii).

This should be compared with Lemma 1.4.3. It follows from Lemma 1.4.4. that
3air potentials bounded by C1/ρτ

ijr
d

ij

hσ. [where Qtj is defined in (1.4.15)] verify the
vail bound F(ii) for σ ^ τ > 1. Note this is compatible with the requirement σ > 1 on
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the bulk potentials which is needed for F(i). However, the tempering condition is
primarily a restriction on decay perpendicular to the wall; the partial sums
St(K, JS^) [see (1.4.12)] will remain bounded with much slower decay laws parallel.
In particular, if the pair potentials decay as l/r^+σ" for ρij<R0, one needs only
σ" > — 1 (and finite degree p) for F(ii).

2.4. Finite Walls and Associated Boundary Conditions

In order to approach the infinite walls introduced above through a suitable
sequence of finite domains we first make precise the concept of a finite wall with
potentials W in a domain Ω. To recapitulate and extend the notation we write

(2.4.1)
AςΩ

with, as before,

*°{K,Ω)= Σ KA*A, (2-4.2)
ACΩ

and, now,

Σ (2.4.3)
BςΩ

where the associated wall potentials, W={W^}, are defined on all domains Ω via

W? = K°-KB, all BCΩ, (2.4.4)

and are taken to be of the same degree, p, as the bulk potentials K. Note that the
associated wall potentials are defined only for B drawn from Ω since we will not
investigate the free energies of the (associated) boundaries described by W, we do not
need to worry about decoupling properties. However, the associated walls must be
acceptable (in the sense of Condition C) and will have to satisfy certain further
conditions which limit their influence on the wall W.

Associated wall potentials describing free, ferromagnetic, subfree and super-
ferromagnetic conditions may be defined in analogy with the corresponding
definitions for infinite planar walls in Section 2.3. However, linking conditions like
the first part of (2.3.5), are not needed since WB is defined only for BζΩ. As in the
infinite wall case, simple super ferromagnetic associated wall potentials are realized
by imposing infinite fields, ^ = + 00, on all spins i within a distance R° > |K°° of the
perimeter, dΩ, of Ω. The condition needed in all cases to maintain the necessary
ferromagnetic character, in a purely ferromagnetic system with a ferromagnetic
wall, is

Wg^-KB-WB, all BζΩ. (2.4.5)

Note that free associated boundary conditions (WB = 0 for B ζ Ω) are automatically
of ferromagnetic character when WB^: —KB.

We now assume that Ω is separated by a planar wall with given potentials W,
into two subdomains Ω± and Ω2 as described above. (See also Fig. 2.) We define the
separate, uncoupled Hamiltonians for the subdomains by

JJ £ {K°+WA)sA9 (2.4.6)
ACΩ,
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and similarly for ffl2. Note this is equivalent to taking J ^ = MP(Ω1) with potentials

K^=KΛ + W^+WA9 for AQΩ19 (2.4.7)

and similarly for KΩ/.

The total (reduced) wall Hamiltonian, if(Ω\ for the finite wall in the domain Ω
may now be defined via

(2.4.8)

After some algebra this yields the basic relation

#-(£>)= £ WAsΛ- Σ W§sB. (2.4.9)
AςΩ BEΩI Ω2

The first term here is merely the expected contribution in Ω of the potentials W
describing the infinite wall in ££. The second term is bounded by

U(W9W9Ω) = £ |W?|| |s| | l | Bll, (2.4.10)
BeΩ1Ω2

and represents a "corner" or perimeter effect arising from interference between the
wall potentials, W, and the independently assigned associated boundary potentials
acting on Ω. By (2.4.4) this term vanishes identically if the associated boundary
conditions are free. More generally, however, we will need:

G. Associated boundary acceptability

(i) u{W9W9Ω)=U(W9W9Ω)/\L\^uo(W)<ao9 (2.4.11)

where u0 is independent of Ω and of the wall potentials; and

(ii) u(W9W9Ω)^O9 as Ω ^ o o . (2.4.12)

The first part of this condition will yield a uniform bound on the contribution
the interference term can make to fx the second part ensures that the interference
actually vanishes in the thermodynamic limit. If the range, Rx, of the associated
boundary potentials W, is defined as in (1.4.11) with AK^=W^, and if Ω is of
reasonable shape relative to W it is easy to prove

Lemma 2.4.1. Associated boundary potentials of finite range (Rx <oo) and finite
degree satisfy

u(W,W,Ω)Sc3(\dL1\ + \dL2\)/\L\> (2A13)

provided \Γ\^c4.(\dLί\ + \dL2\) where Γ = {iCdΩ; r(i,0>)<2Rx} and c3 and c 4 are
constants independent of W and Ω.

The condition involving Γ simply asserts that the boundary of Ω stays away
from the wall except near the perimeters dLί and dL2. If the perimeter-to-area ratio,
{\dLy\ + |5L2|)/|L|, of the wall approaches zero as Ω-> oo, as will be the case for simple
sequences (1.4.4), we see that finite range associated boundary potentials satisfy G.
However, the previous tempering conditions for long-range boundary potentials
are not sufficient to imply G because they permit slow decay parallel to the
boundaries of Ω. Rather than introduce further tempering conditions analogous to
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(1.4.12) we will merely state:

Lemma 2.4.2. If the associated wall potentials W contain only pair potentials subject
to

with ρu defined by (1.4.15), then the acceptability Condition G is satisfied for simple
sequences, (1.4.4), provided τ > 0 and σ>l.

Proof We sketch a proof along the lines used for Lemma 1.4.3. For large k-+co (in
the sequence {Ωk}) we have formally, from (2.4.10) and (2.4.14),

u=U/\Lk\<C2\Lk\-iμρ$rd-1drωk(ρ,r)ρ-*r-d-% (2.4.15)

where ωk(ρ, r) is the density of pairs of sites i and j in Ωk in which i and j lie on
opposite sides of the wall plane & and at a separation r, while the site i is at a
distance ρ from the boundary, dΩk, and the site j is not closer to dΩk. On
dimensional grounds we have I L J o c ^ " 1 and ωk(ρ,r)πξk~

2rgί(ρ/ξk) where the
shape function gγ(x) depends on the original continuum domain Ωo. Substitution in
(2.4.15) yields a bound on u of the form ξk

τ jg1(x)x~τdx^dr/rσ. Provided σ > 1 and
τ > 0 , this vanishes when fc-*αo. D

Notice that the restriction σ > 1 is expected in the light of earlier surface results
but τ > 0 is weaker than might have been anticipated. The weaker condition suffices
since the associated boundary conditions only play an interfering role for regions
near the wall. When one has τ > l the contribution of PFwill amount only to a
perimeter correction satisfying (2.4.1).

Finally, for the sequence of domains {Ω} and the walls in them, we need a shape
condition which maintains the "integrity" of the wall and ensures that the total

strength of the wall potential term, £ WAsA in (2.4.9), is asymptotically no greater
AcΩ

than a multiple of the wall area, |L(Ω)|, as defined in (2.2.6). Specifically we need to
exclude pathological situations in which the lattice plane, &>, intersects Ω only in a
"small" region, of wall area |L|, but "grazes" Ω over an indefinitely greater area in the
vicinity of which, by the Definition (2.4.6), wall potentials are introduced into one or
both subdomains Ωx and Ω2. If the subdomains themselves form simple sequences
this cannot occur more generally we will require:

H. Wall integrity

For all (allowable) 0> and Ω there is a vector tf (Ω), not parallel to 0>, and a pair of
extended wall faces L\ and L\, i.e. a set of \L\\ + \L\\ blocks adjacent to ̂ , satisfying

\L(Ω)\/(\L\\ + \Li\)^δ>0, (2.4.16)

for fixed δ, and such that for each ieΩ there is a translation parallel to b*(Ω) which
carries i into a cell belonging to the extended faces.

In effect this condition asserts that Ω lies within a cylinder of a cross section
which does not exceed some uniformly bounded multiple of |L(Ω)|.
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2.5. Definition of Boundary Free Energy

Finally we define explicitly the boundary free energy per block of a finite wall, W, in
a domain Ω with associated wall potentials W, cut from a lattice with bulk potentials

(2.5.1)

where \L\ is the area of the wall in Ω as defined in (2.2.6). If we use (1.2.9) this may be
rewritten as

exp[2|L|/ x (K9 W9 W, β)] = Z [ J f + T T ] / Z [ J f ] . (2.5.2)

with Jf7 and # " defined in (2.4.8) and (2.4.9). More generally if the decoupling
property E(i) is violated this definition would stand as the definition of a grain
boundary or seam specified by W.

If either of the minimal symmetry conditions D(iii) and E(iiί) are violated fx

must be interpreted as the mean boundary free energy of a conjugate pair of wall
faces in Ωλ and Ω2, respectively. The special case of free associated boundary
conditions (WB = 0) will be denoted by f°x (K, W9Ω).

Interest now focuses on the existence and properties of fx in the limit Ω-+co
with Ωί9 Ω2 -* oo and \L\ -* oo. We expect the limit, when it exists, to depend on K and
FFbut, at least under suitable restrictions, not on the associated wall potentials W or
Dn the sequences {Ωk}.

1.6. Arbitrariness of Boundary Free Energy

NQ must point out that in the Definition (2.5.1), there is a concealed physical
imbiguity in the process of cutting the domain Ω into subdomains. Mathematically,
he prescription is quite unique and corresponds physically to an infinitely thin
'barrier" being placed between Ωx and Ω2 which "screens out" all interactions
>etween the two subdomains. To approximate this physically, however, we would
leed to employ a barrier of finite thickness, say an "empty channel" of width 2R°
>RCO and uniform crossection in which all interactions are removed, as illustrated
n Figure 4 where box domains Λ,Λί9 and A2 are shown. This latter situation is the
ame physically as that in which we reduce the length of each of the two subdomains
ί1 and A2 by jR°, thus creating reduced subdomains A\ and A'2 shown in Figure
[(b). By translation these can be derived from a reduced total domain, A' [Fig. 4(c)].
"or large enough systems, the boundary free energy derived from A' differs from
hat derived from A by a multiple of the bulk free energy f^ (K). Specifically we will
ind

fx{Λ)^fΛΛ')-c5R°f^ as Λ9Λ'^co9 (2.6.1)

vhere c5 is a geometrical factor depending on the orientation of the walls, and
letails of the lattice. This ambiguity arises in a similar way with fully ferromagnetic
vails.

We conclude that in real physical terms, boundary free energies are defined only
φ to the addition of a multiple (positive or negative) of the bulk free energy. It
ollows immediately that properties such as definite convexity or monotonicity in
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(α)

(b)
Λ;

κ R i r R >

A;

μ-N-R0-

Λ'2 A',
(c)

Fig. 4 a—c. Definition of surface free energy to a system with bulk potentials of finite range, R™,
illustrating an ambiguity in the definition of/x. In a a free wall is defined in A in accord with the general
definition (involving decoupling potentials). In b an expanded free wall is constructed by deleting all spin
interactions in a channel of width R° >^R°°. Finally in c this expanded wall is reassembled into a free wall
in a reduced domain Λ'

the bulk fields and potentials, which might have been conjectured for fx (K, W),
cannot in fact hold generally if this kind of ambiguity is considered. Note, however,
that this does not apply to properties defined only with respect to the wall
potentials, W. Indeed, the convexity of fx{K, W,W,Ω) with respect to the wall
potentials follows directly from the Definition (2.5.2) as will be recorded again
below.

2.7. Dependence on Associated Wall Conditions

In a subsequent article we will establish, under sufficiently strong conditions, that
the limiting boundary free energy / x is actually independent of the associated wall
potentials W. To see that this cannot be the case in general, however, consider the
situations illustrated in Figures 5 (a) and (b). Suppose the system is a two-
dimensional ferromagnet in zero bulk field and at a temperature T lower than Tc it
could be a nearest-neighbor, spin \ Ising model. Consider a box domain (or
rectangle) A of dimensions 2N x L which is then divided by a wall of length L into
two subdomains A1 and A2 each of dimensions NxL. Suppose the wall is of
ferromagnetic character in the sense that W involves large fields which freeze the
boundary spins in a "plus" or "up" orientation. In the first instance, (a), consider
associated wall potentials Wa which similarly freeze the spins in an up orientation.
Equivalently one may think of the spins being fixed as plus along the boundary of A
and along the corresponding boundaries oϊA1 and A2: see Figure 5(a). The spins in
the bulk, both with and without the wall present, will then tend to favor the plus or
up direction as indicated in the figure. Compare this now with the second situation,
Figure 5(b), in which the associated boundary potentials, Wb, are similar except that
the sign of the field imposed on the boundary is reversed on all except the central
length of 2M of the 2N spins on each side, with M < L. In this situation the spins in
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(α)

K-N-M-++* 2M >-H-N-M—H

-—X.i
Fig. 5 a and b. Illustrating the effects of the associated boundary conditions on the definition of a
boundary free energy under conditions allowing two-phase coexistence, specifically a two-dimensional
ferromagnet in zero field beneath Tc. In a the boundary spins are all held plus (or up) by large boundary
fields. In b the boundary fields have been reversed on parts of the boundary leading to the appearance of
interfaces which contribute differently to the free energy with or without a central wall

the bulk will tend to assume radically different configurations. When the wall is
present the free energy will be minimized by the appearance of two interfaces
separating up phases from down phases. If Σ is the ίnterfacial free energy per unit
length, the free energy will be higher by an amount of order 2ΣL. (Abraham [28]
has performed rigorous calculations for the square Ising model establishing the
existence of this incremental free energy.) On the other hand, before the wall is
inserted the free energy will be minimized by two interfaces, of length about M,
which more or less cling to the boundaries, as illustrated in Figure 5(b). When the
boundary free energy of the central wall is computed according to the Definition
(2.5.1) we will thus find the difference

Δfx = / x (K, W, % A) -fx (jζ W, Wφ A\ «(2LΣ - 2MΣ)/2L = [1 -

(2.7.1)

Hence, if the limit Λ, Av A2-+oo is taken in any way other than with M/L-+1, there
will remain a non zero difference between the boundary free energies for the two
different associated boundary conditions. (Note this will be true even if M->oo
provided M<L, as assumed originally.) In this case the source of the problem is
easy to grasp but it is evident that it will be harder to control the interfaces for more
complex shapes and more elaborate associated boundary conditions.

3. Correlation Expressions and Basic Inequalities
3.ί. Correlation Function Formulations

The basic Definition (2.5.2) of the boundary free energy can be rewritten as

(3.1.1)
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that is, as an expectation value in the wall-free domain Ω. This reveals the potential
utility of correlation function inequalities. It is more effective, however, to linearize
the exponential by writing (as in Lemma 1.3)

(3.1.2]

Then, the expectation values being well defined, we have

2\L\fx{K,W,W,Ω) = }dCOr>&, (3.1.3)

where (-)ζ

Ω denotes an expectation computed with ^(Ω). Through (2.4.9) this
expresses / x directly in terms of spin correlation functions (sA}.

Since our analysis well use positivity and associated monotonicity properties, it
is convenient to decompose the wall Hamiltonian as

iT = iΓ+-ir_, (3.1.4)

where W+ and 1V_ are purely ferromagnetic Hamiltonians. Explicitly we can write

B, (3.1.5)
AcΩ2 BeΩ1 Ω2

with the notation

X±=H\X\±X)^0, and ΔWB=WB-WB. (3.1.6)

The boundary free energy may then be decomposed as

/x(β)=/t(Ω)-/;(β), (3.1.7)

where the partial boundary free energies,

f±

x(Ω) = m-1]dζ(ψ ±)t

b, (3.1.8)
0

entail only expectation values of ferromagnetic (nonnegative) interactions. These
expressions will provide the basis for all further analysis.

It may be worth noting that this decomposition can also be achieved in
nonlinear form, for example via

e x p ( 2 | L | / ± H < ^ > ^ , (3.1.9)

where < >^ denotes an expectation computed with Jf~ (Ω) = ̂ ?(Ω) — ifr_ (Ω). (If Jf
is restricted to be purely ferromagnetic, JΊ?~ might reasonably also be so restricted.)

3.2. Properties of Boundary Free Energy

At this point we may record certain properties of the boundary free energy which
hold uniformly over the domains Ω, Ω l5 and Ω2 and will hence be inherited by any
thermodynamic limit.

Proposition 3.2.1. Boundary convexity. The boundary free energy fx (K, W, W, Ω) is a
convex downward (or concave) function of any wall potential WB, and of all the wall
potentials together.
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Proof. As already remarked, this follows by well known results on convexity (see e. g.
[24]), from the Definition (2.5.2) and from the fact that no WB enters, as such, into
the Hamiltonian j f (Ω) defined in (2.4.1). D

Remark 3.2.1. Note that (i) continuity, (ii) differentiability almost everywhere, (iii)
one-sided differentiability everywhere, and (iv) monotonicity of the derivative of
fx iW) with respect to any combination of the WB, all follow from convexity by
standard arguments [29].

The proposition applies equally to potentials WA where A is a collection
coupling Ω1 and Ω2, provided the separation condition E(i), WA = — KA, is not
imposed as an identity. In applications, however, convexity in the interactions
decoupling Ω is not of much interest.

Remark 3.2.2. Counterexamples to a conjecture of concavity (or convexity) in the
bulk potentials K, may be found in the linear chain {d=ϊ) spin \ Ising model with
nearest-neighbor pair interactions of strength K2 and wall potentials vanishing
except for W{_10}= - X 2 a n d W{_2f_ί} = W{0Λ) = W2 where - 2 , -1,0, and 1 label
sites in linear order. The boundary free energy (for any sufficiently long chain) is
easily found to be

fχ (K, W) = In cosh(X2 + W2) - f In cosh K2. (3.2.1)

By examining the derivative with respect to K2 for large \W2\, this is seen to be
neither convex nor concave in K2. (Note we have imposed the separation condition
W{_γ 0}= —K2 as an identity; however, this does not alter the conclusion.)

Proposition 3.2.2. Boundedness. Under Conditions F (Section 2.3), A (Section 1.4),
G(i) and H (Section 2.4), there is a bound

| / x (K, W, W, Ω)\ < C x (K, W, W), (3.2.2)

independent of Ω, and likewise for f^(K,W,W, Ω).

Proof. The first step is to use the linearized correlation relation (3.1.3), the basic
expression (2.4.9) for Ψ(Ω\ the spin correlation bound (1.4.1) [Condition A], the
wall integrity [Condition H for fixed δ > 0 ] , and the finiteness of the norms || W\\ 0

and || W\\ 1 in (2.3.9) and (2.3.10) [Condition F], to bound terms WAsA which couple
or do not couple the subdomains, respectively. The associated wall terms in (3.1.3)
are then bounded via (2.4.10) and (2.4.11) [Condition G(i)]. •

Remark 3.2.3. The significance of this result lies, of course, in the sufficient
conditions on the bulk potentials, wall potentials, and associated wall potentials
discussed in Sections 1.4,2.3, and 2.4 in connection with the Conditions C, F, and G.
Recall, in particular, Lemmas 1.4.4,2.3.1, and 2.4.2 which relate to pair interactions
bounded by power law decays of the form l/ρ]^0.

Now, when the bulk potentials K are purely ferromagnetic, the Griffiths
inequalities (Section 1.3) lead to various positivity and monotonicity properties of
the boundary free energy. However, since, in general, Hi contains both positive and
negative potentials, conditions must also be imposed on the boundary conditions.

Proposition 3.2.3. Negativity and monotonicity. If the bulk potentials K are purely
ferromagnetic, the associated wall potentials W are ferromagnetic \_see (2.4.5)], and
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the finite wall Hamίltonίan is nonpositive in the sense Ψr

+ = 0, then fx (K, W, W, Ω) is (i)
negative and (ii) monotonic nonincreasing in KB for any B.

Corollary. The negativity and monotonίcity of / x (K) hold for subfree wall conditions
^ — WAf^KA; see (2.3.6)] and free or ferromagnetic associated wall conditions,

Proof The conditions on K and W stated in the proposition ensure that ^(Ω) is
purely ferromagnetic. Furthermore, —if = iί^_ is also purely ferromagnetic by
assumption and hence, by (3.1.2) and (3.1.5), so is ^ζ(Ω) for 0 ̂  ζ ^ 1. Negativity and
monotonicity then follows from (3.1.3) by using (1.3.1), which implies (sA}

ζ ^ 0 , and
Lemma 1.3. The corollary follows from (3.1.5) since the conditions stated yield

Remark 3.2.4. When the wall contains positive, ferromagnetic interactions (WB>0)
the Hamiltonian W is no longer of definite sign, and negativity and monotonicity
are in doubt even when K is purely ferromagnetic. In fact, it is easy to find
counterexamples in one-dimensional Ising models. Furthermore, if the potentials K
are ferromagnetic and nontrivial, in the sense that they couple Ω1 and Ω2, one
cannot have iV purely ferromagnetic since the decoupling condition E(i) would be
violated. Thus, no simple positivity results can be expected either.

Remark 3.2.5. Finally, note that monotonicity in the bulk potentials implies that / x

can be regarded as the derivative with respect to a bulk field h, or with respect to the
overall inverse temperature, θ = l/kBT, of a convex function of h or of θ. This fact
partially answers the question of what the thermodynamic behavior of / x (K, W)
might be.

3.3. Inequalities on Domains

Except for the last proposition, our discussion to this point has allowed for
potentials of arbitrary sign, i.e. ferromagnetic or antiferromagnetic in character.
From this stage on, however, attention is restricted to systems with purely
ferromagnetic bulk interactions in which, furthermore, the wall and associated wall
potentials are also ferromagnetic so that all intermediate Hamiltonians are likewise
fully ferromagnetic. For such systems we will give a proof of the existence of the
thermodynamic limit for the boundary free energy. The basic tools will be two
simple propositions which are based on the GKS inequalities, and which relate the
boundary free energy for a compound domain to those defined on the subdomains.
It is convenient to state and prove these propositions here. The first proposition
concerns a basic inequality for domains in which the associated boundary
conditions are subfree (Section 2.3). A parallel proposition will be established for
superferromagnetic associated walls in saturating spin systems (Section 2.3) in
which, in addition, the bulk interactions must be of finite range.

Proposition 3.3.1. Compound domains. Let a domain Ω with associated wall potentials
W be intersected by a planar wall with potentials W. Suppose Ω is decomposed into two
disjoint subdomains Ω' and Ω" with associated wall potentials, W and W'\ and let Ωv
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Fig. 6. A planar wall with potentials W9 intersecting a compound domain Ω formed from two
subdomains Ω' and Ω"

Όotentials W, W, W\ and Wf\ are ferromagnetic \see (2.3.6) and (2.4.5)], and (c) the
associated wall potentials satisfy the subfree consistency relations

for \WB^WB^0 for BcΩ", (3.3.1)

then the partial boundary free energies f\ and fx for given K and W satisfy the
Inequalities

\L\ ft (W, Ω) £ \L\ / ± (W, Ω') + \L'\ / ± (W", Ω"), (3.3.2)

where \L\, \L\, and \Lf\ are the areas of the wall in Ω, Ω\ and Ω", respectively.

Proof The partial free energies entering the inequality to be proved can be expressed
3y (3.1.8) and (3.1.5) in terms of spin expectation values computed in partially
:oupled domains with Hamiltonians, _Jf (Q = ̂  + C ^ &'&) = &'+ ζitr', and
Hr'lζ) = tf" + ζitr\ where Jtf = tf{Ω\ #" = je(Ωf), etc. The later two (-dependent
Hamiltonians can be combined into a compound Hamiltonian,
ffi{ζ) = tf"g) + &"&\ for the compound domain Ω t = Ω 1 u Ω 2 = ί 2 . The
Conditions (a) and (b) ensure that all these Hamiltonians are purely ferromagnetic
for OlΞC^l The idea of the proof is simply that the difference
Aβ?(ζ) = &(ζ) — ffi{ζ) is also purely ferromagnetic so that, by appeal to the GKS
nequalities as embodied in Lemma 1.3 [with j ^ 0 = jf^(ζ) and ^ =AJί(?(ζ)']9 one
las <s^> ζ^<s^> t ζ for any correlation function entering the partial free energy
expressions. Provided the corresponding coefficients are non-negative, the in-
equality follows. Owing to the possibility of interference between the various wall
Dotentials the algebraic details are a little complicated.

We first check the ferromagnetic character of ΔJfr(ζ). The Definitions
2.4.1), (2.4.6), and (2.4.9) show that zlif(C) is a sum only of the following terms:

(i) (KB + ζWB+ WB)sB, for all BEΩ' Ω",

(ii) (WB - WB) sB, for all B ς Ω\ and B ς Ω'2,

(iii) (1 - 0 (WB- W'B) sB, for all BeΩ\ -Ω2,
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and similar terms with W'B replacing WB, etc., and, finally,

(iv) -ζWBsB, for all BeΩ\

where Ω' denotes the set of all collections linking at least three of the subdomains
Ω\, £2'2, Ω\, and Ω"2. The purely ferromagnetic nature of the terms (i) for ζ ^ 1 follows
from the ferromagnetic character of W and W [see (2.4.5)]. The consistency
Conditions (3.3.1) ensure the ferromagnetic nature of the terms (ii) and (iii) for ( ^ 1.
Finally the sub free character of W makes the terms (iv) ferromagnetic for ζ g:0. The
use of Lemma 1.3 is thus justified.

To check the positivity of the coefficients of the correlation functions we use
(3.1.5) to rewrite the difference of the two sides of the inequality as

\L\Δ f *=\\ dζ\\ Σ + Σ + Σ + Σ

+ [ Σ + Σ
LΩΊ Ω'ί Ω'2Ώ

+ Σ
ΩΊΏ'2

+ Σ V^BH<^-{sB^)HΛWi-ΔW^){sB^-]\, (3.3.3)
Ω'i Ω'i )

where ΔWB = WB-WB, ΔWB = WB-WB, etc, while Ω' is defined as above. By the
Definitions (3.1.6) the coefficients WA, ΔW^, and ΔW^ are nonnegative. By
Lemma 1.3.3, «5^>ζ — <5^>tζ) is nonnegative f o r O ^ ζ ^ l . Hence the first line in the
formula for Δf* is nonnegative. Since Jf(C) is purely ferromagnetic the GKS
inequality (1.3.1) implies (sA}

ζ ^ 0. This ensures the nonnegativity of the second line.
Finally the separation Condition (2.3.2) gives A WB = - KB - WB, Δ WB = - KB - WB,
etc, in the last two lines, which, combined with the sub ferromagnetic consistency
relations (3.3.1), yields ΔW^^ΔW^. Thus each term in the expression is
nonnegative and the proposition is proved. D

Remark 3.3.ί. It is clear from the proof that the role of the consistency relations
WBίk WB and WB^WB, is to ensure that no interactions in jfr7 + M?" are stronger
than in Jf7. If the associated wall potentials are located only near the boundaries,
and match on the common boundaries of Ω, Ω\ and Ω" the consistency relation has
real effect only where the boundary between Ω' and Ω" meets the boundary of Ω.

Remark 3.3.2. The proposition applies even if the wall fails to intersect one
subdomain so that, say, Ώ'{ is empty. The resulting basic subferromagnetic
inequalities then read

/*(X, W, W, Ω) ̂ /±(K, W, W\ Ω'). (3.3.4)

Furthermore, this inequality applies even when Ω" itself is empty so that Ω' = Ω. In
this trivial case the result is easily proved by direct appeal to Lemma 1.3.

Remark 3.3.3. Note that the main wall potentials, W, are not restricted to be subfree
all that is required is WA^—KA (all A) i.e., ferromagnetic character.

We turn now to the statement and proof of a somewhat more restricted basic
inequality for superferromagnetic associated boundary conditions.
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Proposition 3.3.2. Compound domains with super ferromagnetic walls. Consider, as in
Proposition 3.3.1 (and Fig. 6), a domain Ω with associated wall potentials W which is
decomposed into disjoint subdomains Ω' and Ω" with associated wall potentials W and
W". //(a) the spins are saturating with modulus \\s\\, (b) the bulk potentials, K, are
purely ferromagnetic and of finite range, R"°, (c) the wall potentials W are
ferromagnetic \see (2.3.6)] and of finite range Rx, (d) the associated wall potentials, W,
W, and W" are superferromagnetic and formed by imposing fields ht= + oo on each
spin ieΩ which satisfies r(i,dΩ)^R°, (see Section 2.3) and similarly for Ω' and Ω",
where

R°^^max{Rco,Rx}, (3.3.5)

and (e) the associated wall potentials satisfy the superferromagnetic consistency
conditions

WB^WB^0 for BζΩ', WB

f^WB^0 for BQΩ", (3.3.6)

then the partial boundary free energies for given K and W satisfy the inequalities

+ y±(Ω1, Ω") + Y2±(W; a, Ω"), (3.3.7)

where the boundary interference terms are

( + Σ W M , (3-3.8)
\Ω\Ώ'{ Ω'2'Ω'ί/

Y2=2ΣAWA\\SA\\> w i t h AWA = WA-WA, (3.3.9)
AsΩ'

in which, as before, Ω' denotes the set of collections linking at least three ofΩ\, Ω'2, Ω\,
and Ω"2.

Proof. The idea of the proof, as in Proposition 3.3.1, is to compare the spin
expectations, computed in the two partially coupled domains with Hamiltonians
JT(0 and JP\ζ) = 3tf"{ζ) + Jfr"(ζ). Conditions (b), (c), and (d) ensure that these
Hamiltonians are purely ferromagnetic for O ^ ζ ^ l . The superferromagnetic
boundary conditions will be used to show that the difference Hamiltonian Jf f(ζ)
— &(ζ) is also purely ferromagnetic if proper allowance is made for the terms
coupling Ω' and Ω". Hence Lemma 1.3 yields (sA)

u ^ <^> ζ, so that, again allowing
for coupling terms, the inequality (3.3.7) follows from the partial free energy
expressions (3.1.8) and (3.1.5).

As a first step, note that in calculating <s^) t ζ we may add any constant term to
UP^O without changing expectation values. Hence consider the incremental
Hamiltonian

(3.3.10)
BeΩ'Ώ"

in which the "interaction" term involves only the constant spin moduli \\sB\\
= ||s| |"β". Note, furthermore, that owing to the range Condition (3.3.5) any
collection B for which (KA + WA + ζWA) is nonvanishing contain only spins that are
fully frozen (sf = ||s||) by the infinite boundary fields, h{, acting in the subdomains Ω'
and Ω" so that one may replace ||sB | | by sB in this definition of Δffl^. On using the



Wall and Boundary Free Energies 41

Definitions (2.4.1), (2.4.6), and (2.4.9) the only contributions to A^(ζ) are then
found to be

(i) {WB - WB)sB9 for all B cΩ1 and BCQ2,

(ii) (l-ζ)(W^-WB)sB, for all BeQ\-Q'2

and similarly for BeΩ'[ Ω2, with WB replacing WB, and

(iii) ζWBsB, for all BeΩ'.

The superferromagnetic consistency Conditions (3.3.6), ensure that all these terms
are ferromagnetic. This justifies an appeal to Lemma 1.3.

The second step is to calculate Δf} this leads to the same expression (3.3.3) as
before but the aim is now to prove that \L\Δf* is less that Y^ -f Y2. Accordingly,
note that the first line in (3.3.3) will now be nonpositive since <s^>ζ:g<s^>tζ. The
terms in the second line are majorized by Yf and Y2 as defined in (3.3.8) and (3.3.9),
because (sA) ^ \\sA\\ (all ζ). In the third and fourth lines the correlation inequality
ensures the nonpositivity of the terms involving A W^ and AWB

f±. The remaining
terms are nonpositive since <s β > ζ ^0 by the ferromagnetic condition and because
the separation condition (2.3.2) yields AWB = -(K B + WB) and ΔWB=-{KB + WB)
so that superferromagnetic consistency, (3.3.6), gives AWB H^AW'-gr and, likewise,
ΔWf^Δ WB

 ±. This proves the inequality (3.3.7). D

Remark 3.3.4. The finite range Condition (3.3.5) can be relaxed significantly. Thus
suppose, for concreteness, that the boundary separating Ω' and Ω" can be regarded
as a planar wall, W". Then R™ and Rx can be replaced by the range of the bulk
interactions, K, and of the original wall potentials, W, normal to this wall, i.e., with
the diameter d(A) of a collection A replaced with the caliper diameter dλ(A) with
respect to the defining plane 0*'" in the range definitions.

Remark 3.3.5. For finite range bulk and wall potentials satisfying B and F the
boundary interference terms, Yf and 72

±, in (3.3.7) can be bounded by a constant,
depending only on K and W, times the length, say \dL'"\, of a suitably defined
common perimeter of the faces £ 1 and L1 (or L2 and L2). For simple sequences of
domains {Ωk}, {Ω'k}, {Ω'k'}, one will have |dL'"|/|L|->0 in the thermodynamic limit.

Remark 3:3.6. As in Proposition 3.3.1 the inequality (3.3.7) applies even when one
subdomain fails to intersect the wall. Provided r(&>9 Ω") > 2R° the sums defining Y*
and Y2

± become empty. The basic superferromagnetic inequalities then reduce to

fHKrW9W9Ω)^fί(K9W,W9Ω
r)9 (3.3.11)

where, as before, the only restriction on K and P^is their ferromagnetic character
(KA =0> ^A= ~&A)' Again the inequality remains valid with Ω' replaced by Ω.

4. Thermodynamic Limit for Box Domains

In this chapter we establish a variety of existence and uniqueness theorems for the
boundary free energies defined on general sequences of box domains, AL>N. First we
define appropriate box domains. Then, using the propositions established in
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Chapter 3 to compare different boxes, we prove basic subadditive inequalities for
fx(Λ) and f*(Λ). Finally, the thermodynamic limit for / x follows from sub-
additivity lemmas, and some uniqueness theorems follow from the propositions on
comparing domains.

4.1. Definition of Box Domains

We are interested in establishing the existence of the thermodynamic limit of
fx (K, W, Ω) for a set of wall potentials ^corresponding to a definite lattice plane £P.
In Section 2.2 we showed how the lattice could be decomposed relative to 0* into
disjoint blocks labelled by an integer vector Z = (/o, Z1?..., ld>) with df = d— 1, which
specifies translations by block vectors Rt with components bφbv ...bd, [see (2.2.5)].
Blocks with l0 =0 lie adjacent to the wall on the S£x side of 0> blocks with Zo = — 1
lie adjacent to the wall on the opposite, JSf2 side. Recall also that the area of a wall in
a finite domain Ω is defined [in (2.2.6)] in terms of the number of blocks in Ω
adjacent to the wall. It is thus convenient to choose a collection of standard
domains constructed by assembling sets of blocks into "rectangular" arrays. Ac-
cordingly we introduce:

Definition 4.1. A box or box domain, ΛLfN of crossectional area \L\ and length N, is a
set of L1L2...Ld,N>0 blocks with labels satisfying

0<lβSLβ for l^β^d', and 0</ o ^iV, (4.1.1)

or a set of blocks equivalent under translation by a block vector.

Note that a box ΛLtN of length N = NX+N2 (JVl9 N2>0) with first label
satisfying N1>l0^—N2, is intersected by the wall Was illustrated in Figure 7(a).
The wall area is

\L\=L1L2...Lά,, (4.1.2)

while N1 and N2 represent the length of the box on the two sides of the wall. The
corresponding boundary free energy will be denoted

fNι + N 2 ) , (4.1.3)

and the partial free energies f^(Λ) and f*(Λ) will be written analogously.

4.2. Super- and Subadditive Inequalities

We now use the propositions of Section 3.3 to compare the partial boundary free
energies for different boxes with free or simple superferromagnetic associated wall
conditions. This leads to certain superadditive, subadditive, and monotonicity
inequalities for the boundary free energy, fx(Lί9..., Ld; Nl9 N2). We consider first

free associated boundary conditions (J^=0).
*

Lemma 4.2.1. Super additivity. The partial boundary free energies for boxes ΛL}Nι+N2

with (a) free associated wall potentials and (b) ferromagnetic bulk and wall potentials,
K and W[see (2.3.6) and (2.4.15)], satisfy for any y (l^γ^df) the inequalities

L;), (L;,Z/;>O), (4.2.1)
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Fig. 7a—c. Schematic illustrations of a box domain ΛL>Ni+N2 in d = 3 dimensions showing a the
intersection with a wall plane, ̂ , b decomposition into two box domains intersecting the walls, and c into
two box domains, one not intersecting the wall. Note that box domains are not in general rectangular in
the original Euclidean space

where the undisplayed arguments Lv ..., Ly_ 1 ? . . ., Ld,, Λ
Γ

1, and N2 are the same in all
terms.

Proof. By the translational in variance of the wall potentials [Condition E(ii)] the
box A with Ly = L'y + L", can be regarded as decomposed into two similar boxes A'
and A" but with sides L'y and L'y, respectively [as illustrated in Fig. 7(a) and (b) for
γ = 2,d = 3~]. Then note that Conditions (a) and (b) of Proposition 3.3.1 are satisfied
(ferromagnetic character). Furthermore, the free associated wall conditions on A
and on A' and A" satisfy the sub ferromagnetic consistency condition of Proposition
3.3.1. On using (4.1.2) the lemma follows immediately from the proposition. •

Lemma 4.2.2. Monotonicity. The partial boundary free energies for boxes AL Nί + Nl

with (a) free associated wall potentials and (b) ferromagnetic bulk and wall potentials,
satisfy, for N'l9 iV'2^0, the inequalities

^f^{L;Nι,N2), (4.2.2)

^fH^;N1,N2). (4.2.3)

Proof As illustrated in Figure 7(c), the domain A of the total length Nx +N\ +N2

can be decomposed into domains of length Nλ+N2 and JVi Application of
Proposition 3.3.1 is justified as in the proof of Lemma 4.2.1, and, on recalling
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Remark 3.3.1, this leads immediately to (4.2.2.). The second inequality follows
likewise. D

Now we consider simple superferromagnetίc associated boundary conditions, W*,
realized by taking WA = 0 except for the imposition of fields ht= + oo on each
(saturating) spin in A for which r(i, dΩ)SR° where, for finite range bulk and wall
potentials, the channel width R° satisfies (3.3.5) of Proposition 3.3.2 [but see also
Remark 3.3.4].

Lemma 4.2.3. Subadditivity. The partial boundary free energies in saturating spin
systems for boxes AL^Ni+Ni with (a) simple super ferromagnetic associated boundary
conditions satisfying (3.3.5), and (b) ferromagnetic bulk and wall potentials of finite
range and finite degree p, satisfy, for any y (l^y^d')

( L ; + L ; ) / X

± ( L ; + L ; ) ^ L ; / X

± ( L ; ) + L ; 7 X

± ( L ; ) + Y O ( K , W), (4.2.4)

where the undisplayed arguments K, W, W*, Ll9..., Ly_l9 Ly+1, ...,Ld,, Nl9 and N2

are the same in all terms, and L'γ, Ly ^ Ly where Ly is large enough to avoid triviality
(i.e., no unfrozen spins in A' or A"), and Y0(K, W) is a finite constant independent of
N1,N2, and L.

Proof. With a decomposition of A of the form illustrated in Figure 7(b), Conditions
of (a), (b), (c), and (d) Proposition 3.3.2 are all met. Condition (e) of the proposition
(consistency), follows since WA = 0 except for the infinite fields on the boundary
spins in which, by definition are also infinite in A' and A". Application of the
proposition together with (4.1.2) leads to the desired result but with Yo replaced by

\U\-1(Y1

± + Y2

±)^Wr1 Σ W±\\sΛ\\, (4.2.5)
AeΛ' Λ"

where the contact perimeter between A' and A" is

\U\=(\Lβ. (4.2.6)
β*y

On the right of (4.2.4) WA = 0 has been used in (3.3.9) which has then been combined
with (3.3.8) and augmented by some nonnegative wall potentials \Vχ (with A not in
A\ ' A\, A'2 A"2, or A'). Now following the discussion of bounded wall potentials
(Conditions F in Section 2.3), it is not hard to see that for bulk and wall potentials of
finite range and degree that the sum in (4.2.5) can be bounded by Y0{K, W)\U\ with
finite Yo. D

Lemma 4.2.4. Monotonicity for super ferromagnetic associated walls. Under the
conditions of the previous lemma the partial boundary free energies satisfy

L;N1,N2), (4.2.7)

for N1 sufficiently large and N\ ^ 0 , and likewise in terms of N2 and N'2.

Proof The decomposition of A shown in Figure 7(c) is used together with
Proposition 3.3.2 and Remark 3.3.6. D
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4.3. Subaddίtive and Monotonic Functions

In this section we prove some general lemmas concerning the limiting behavior for
large arguments of multiply subadditive and monotonic functions. These results
represent extensions of well known theorems for ordinary subadditive and
monotonic functions and serve to show the existence of a limiting value which is
independent of how the various arguments approach infinity.

A function g(x) defined on IR or TL is said to be subadditive [30] if it satisfies

g(x + y)£g(χ) + g(y). (4.3.1)

Likewise a function g(x) = g(xv ..., xd) on IRd or Έd will be called multiply subadditive
if it satisfies

for all y ( l ^ y g d ) . (4.3.2)

The close relation of the partial free energies / * (L Nv N2) to such functions will be
made explicit below. The following lemma, essential to our final results, generalizes
the well known result for d = 1 (proved e.g., by Hille [30]). However our definition of
multiply subadditive is quite distinct from the "vector subadditivity" studied by
Rosenbaum [31].

Lemma4.3.1. Subadditivity. Let g(x) = g(x1, ...,xd) be multiply subadditive on 1R+ or
TL\ (the subscript indicating xβ>0 all β) and suppose

WΓΊ0(*)l<J+<oo, (4.3.3)
d

where \\x\\= \\ xβ. Then the limit

j o 0 = l imHxIΓ 1 ^*), (4.3.4)
χ->-oo

in which xl9x2, .. ,xd approach infinity in any way, exists and equals

j - = liminf||jc|Γ1^(jc). (4.3.5)
χ-^oo

Proof. For given ε > 0 there is an x = k such that

\\k\rιg(k)<(ί+ήj-. (4.3.6)

For any arbitrary x satisfying xβ^kβ (all β) write

Xβ = (nβ +1)kβ + cβ with nβ integral and 0<cβ<kβ. (4.3.7)

Then to g(x) = g(nίk1+k1cί,...,ndkd + kd + cd) we may apply the subadditive
inequality (4.3.2) n1 times with γ = ί to yield

g(x)^nίg(kl9x29...9xd) + g(kί+cί9x29...9xd), (4.3.8)

and n2 times with y = 2 to yield

+ n2g(k1+cί9k29x39...9xd) + g(k1+cί9k2 + c29x39...9xd). (4.3.9)
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On repeating for the variables x 3,x 4 ?..., xd we obtain

1 2 d , (4.3.10)

where the remainder is given by

Π
V β=ί

=Σ Π [ v / n Γ l ) + l]# 1 +v 1 c 1 , fc 2 + v 2c 2 5 . .4 d + v ή ) ; (4.3.11)

in which vβ = 1 — vβ = 1 or 0 and the primed sum runs over the 2d — 1 values of v for
which at least one vy vanishes. Now on using (4.3.6) and the bound (4.3.3) we obtain

in which each product in the sum over v is of order ί/ny for some γ as jt-> oo (which
implies n-»oo). On taking the limit in any way we hence obtain

ε ) j - , (4.3.13)
JC->00

which proves the lemma. •

We now consider monotonic functions. A function h(y) = h(yί,y2, >>.,yd) on IRd

or TLd is said to be multiply monotonic nonίncreasing if

for / y ^0 and all y {l^y^d). (4.3.14)

The basic result is:

Lemma 4.3.2. Monotonicity. Ifh(y) is a multiply monotonic nonincreasing function on
lRd or 7Ld which is bounded below by h~', then the limit

hoo=\imh(yι,y2,...,yd)^h-, (4.3.15)
y->oo

exists and is independent of the way in which yl9 ...,yd approach + oo.

Proof Define h°(z) = h(z,z, ...,z). By repeated application of (4.3.14) this function is
monotonic nonincreasing in z. Since it is bounded below by h~, the limit

limft°(z) = f £ , (4.3.16)
z-> oo

exists. Now for any y define zm a x = maxj? {yβ} and zmin = minβ{yβ}. Repeated
application of (4.3.14) then yields

h°(zmjSh(y)Sh0{zmin). (4.3.17)

When y-+oo we have zmax->oo and ^m i n-^oo, and so by (4.3.16) the limit h^ exists
(and equals h^). D

We now consider functions which are subadditive in some arguments and
monotonic in others.
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Lemma 4.3.3. Subadditivity and monotonicity. Let g(x,y)=\\x\\j(x,y) with

\\χ\\ = ΓΊ xβ be a function which is subadditive on jteJRd' (or TLά) and monotonic on
β=l

yeW1' (or ΊLά") [in the senses (4.3.2) and (4.3.14)7. Then if\j(x, y)\ is bounded, the limit

lim J(*,JO=./OO, ( 4 3 1 8 )

x,y->oo

exists and is i n d e p e n d e n t of t h e w a y in which t h e variables x ί 9 . . . , x d , , y l 9 . . . 9 y d »
approach + o o .

Proof First note that g1(x)= lim\\x\\j(x,y) is subadditive in JC so that

lim lim j(χ,y) = / l f 0 0 , (4.3.19)
χ-> oo y-* oo

exists, where the notation JC-> oo means that the separate components, xβ, approach

+ oo in any way (and likewise for j?->oo). Conversely, j2(y)= lim j(x,y) is
* - > • 0 0

monotonic in y so that the limit with reversed order, namely

lim lim7(jc,y)=72jOO - (4.3.20)
y-+co JC-> oo

also exists. Secondly note that for fixed x and yλ we have

limj{x,y)^j(x,yi), (4.3.21)
j?-> oo

because7*(jc, y) is monotonic on y. Now suppose yo( ) is an arbitrary function except
that yo(x)-+cc as JC->GO. By setting y1 = yo(x) and letting JC^OO we conclude

7 l f 0 0 ^Iiminf7(jc,yo(x)) = lϊminjj(x,y)=j- , (4.3.22)

where, finally, the xα and yβ approach + oo in any way. On the other hand we have
similarly, by monotonicity for any fixed j 2 ,

7 + = lim sup7(x, y) = lim supj(x, yo(x)),
JC,J->OO χ->coyo

^hmj(x,y2), (4.3.23)

which, on letting y2^°o, yields7J ^ j 2 00.
Lastly it remains to prove that 7 J =7 ~ this will be achieved by proving that

Ji, 00 =Ji, 00 To this end consider subsequences defined by xβ = 2nβ (1 ̂  β^ d'\ where
n = (nβ) is an integer vector, and set

j(2n*,...,2n*'9y)=J(n;y). (4.3.24)

The existence of the limits in (4.3.19) and (4.3.20) means that any subsequence
converges, so we have

lim lim7(n;j0=7 l f O O

 a n d lim l iπ^n;y)=j 2 t O 0 (4.3.25)
n - • 0 0 j>-• 0 0
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However, the subadditive inequality (4.3.2) yields

for any γ ( l $ y g d ' ) (4.3.26)

This means j(n y) is a multiple monotonic function in the variables n and y
together. It follows immediately from Lemma 4.3.2 that limw y^ J(n y) exists and is
independent of the order of limits. By (4.3.25) we thus have jliOU

=J2,oo which
completes the proof. D

We may now apply these lemmas to the inequalities found in Section 4.2 for the
partial boundary free energies.

4.4. Existence Theorems

[n this section we first establish the existence of the limiting boundary free energy,
fx(K, W) for arbitrary sequences of boxes with ferromagnetic interactions and free
associated boundary conditions. Then boxes with general sub free associated
boundary conditions, W, will be shown to yield the same limiting boundary free
energy (independent of W). A parallel argument establishes the existence of a
[imiting boundary free energy f*(K, W), for boxes with saturating spins, in-
teractions of finite range, and simple superferromagnetic boundary conditions.
Boxes with general superferromagnetic associated boundary conditions, W, are
shown to yield the same limit/*, independent of W. However, the identify of/° and
f* is not established here. (It will be proved in a following paper with the aid of
correlation decay assumptions.) Nevertheless, some further uniqueness results,
specifically for "flat" boxes, are established for more general associated boundary
conditions.

Theorem 4.4.1. Existence for free associated wall potentials. For a sequence of boxes
AL Nί+Nl [see Fig. 7(a)] with (a) free associated wall potentials (W=0) and (b) bulk
Όotentials, K, and wall potentials, W, which are ferromagnetic [see (1.2.6) and (2.3.6)7
2nd which satisfy the boundedness Conditions A (Section 1.4) and F (Section 2.3), and
the defining Conditions D and E (Sections 2.2 and 2.3), the limiting boundary free
znergy

f°ΛK,W)= lim fx{K,W,W=0;L,N1,N2), (4.4.1)
L,Nί,N2^oo

?xists and is independent of how the limits L^oo, ...,Ld,-+co, iV^-xx) and JV2->oo
τre taken. Furthermore, f®(K, W) is convex downward in the potentials W, and, if
WA^0 all A, negative and monotonic nonincreasing in the potentials K. The limits,
Γx ±(K, W) ̂ 0 , of the partial free energies f*{K, W,W = 0;Λ), are similarly uniquely
iefϊned.

Proof. We will use the decomposition (3.1.7), namely

fx(K, W, W;Λ)=f+

x(K, W, W;Λ)-f-(K, W, W A). (4.4.2)

By hypothesis the conditions required by Lemmas 4.2.1 and 4.2.2 are satisfied so
hat the functionsj±( L, N) = —/J(L 1 ? ...,Ld,;N\,N2) are multiply subadditive and
nonotonic in the sense of Lemma 4.3.3. Furthermore the uniform boundedness of
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\j±{L, N)\ follows from Proposition 3.2.2 which is applicable by virtue of Conditions
A, F, and ΪVΞΞO (which implies G). The existence of the separate l imits/^ = lim/^
(L,Nί,N2) and their independence of the way Lγ, ..., JV2 approach infinity, ther
follows, from Lemma 4.3.3, and this proves (4.4.1).

Finally the convexity in W, and the negativity and monotonicity in K when
WA^0 (all A) follow from Propositions 3.2.1 and 3.2.3. •

Remark 4.4.1. It is worth stressing that, apart from the ferromagnetic restrictior
[WΛ + KA^0 for AeSe 1 J^ 2 ] and the boundedness of the norms || W\\o and || W\\ λ

of Condition F, the wall potentials can be quite general both as regards sign,
strength and range. Furthermore, in the case of saturating spins, superfer-
romagnetic walls are also allowed [see (2.3.8) where, indeed, the condition W°B^ί
may also be relaxed]. Recall, however, that Condition F(i) [(2.3.9)] implies that the
bulk potentials, K, decay in directions normal to the wall plane, 0>, at a rate
essentially one inverse power of distance faster than needed for bulk stability.
Finally note that the wall separation Condition E(i) has not played a vital role in the
existence proof. Thus the arguments also establish the existence of a limiting grain
boundary or seam free energy.

We now consider associated boundary potentials which are sub free.

Theorem 4.4.2. Uniqueness for subfree associated potentials. For a sequence ofboxet
with ferromagnetic bulk and wall potentials satisfying the conditions of Theorem 4.4. i,
and with associated wall potentials, W, which are subfree [(2.3.7) and (2.4.5)] ana
satisfy the tempering condition Cτ [{IΛ. 12)7 with exponent τ > 0, the limiting boundary
free energy,

lim fx(K,W,W;L,Nl9N2)9
L,Nί,N2^oD

exists and is equal to f°x (K, W), the limit for free associated boundary conditions,
independent of W and of how the limit is taken.

Proof. Again the decomposition (4.4.2) will be employed. The first step is to compare
the partial free energies f*(W;A) with those for the same box A but with free
associated wall potentials (W=0). Appeal to Proposition 3.3.1 [recalling Remark
3.3.2] yields an inequality from which, using Theorem 4.4.1, we conclude

limsup/ί (K, W9 WU)ύf°ΛK, W). (4.4.3)
A —> oo

The second step is to compare the box A = AL>Nί+N2 with a reduced box
A' = ΛL, Nl+Nl, where, as illustrated in Figure 8,

and N'2 + RSN2, (4.4.4)

on which free associated boundary conditions are imposed. If the associated wall
potentials, W, are of finite range, Rx, and we choose R > Rx it is easy to see that the
subfree consistency relations (3.3.1) of Proposition 3.3.1 are satisfied. Noting that
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-R-H

= Λ\Λ' -N;-

Λ'

-Nί-

| h~R—

I
Fig. 8. Insertion of a reduced box Λ', with free associated boundary conditions, into a box A with more
general associated boundary conditions

/ x (Γ) is nonnegative for the difference domain Γ = A\A' we then conclude from the
proposition that

\L\fUW; L,Nl9N2)^\L'\f±(W=0; L'9N'l9N'2). (4.4.5)

Now divide by | L\ and (i) let L,N'l9 N'2-+ oo at fixed # so that | L\/\ L| -• 1, followed
by (ii) N'l9N 2->ao. Theorem 4.4.1 then yields

W9
ί,W)9

(4.4.6)

from which, in combination with (4.4.3), the present theorem follows.

However, for associated wall potentials of infinite range the sub free consistency
relations (3.3.1) fail, so we first introduce the truncated associated wall potentials
W^ defined, for given Λ, by

if

= 0, if A contains sites in A'. (4.4.7)

With these truncated potentials, the consistency relations are satisfied so
Proposition 3.3.1 can be applied to obtain (4.4.5) but with W replaced by W\ In
order to compare / x (K, W9W;Λ) and fx (K9 W9 W

f A) we use the following crude
but informative lemma:

Lemma 4.4.1. Iffx and f\_denote the wall free energies in a finite domain with
Hamiltonians $ and ffi = Jf7 + J , respectively, then

|/t

x-/x|g2«J»/|L|, (4.4.8)

where \ L\ is the wall area and <<•>> denotes the maximum modulus of the expectation
over the ensembles with total Hamiltonian jfr, jfr*, 2tf + iV9 and ̂  + # " f , in which
if is the wall Hamiltonian, and # " t — Ψ* = £Γ represents the change in the wall-
associated-wall interference term [see (2.4.9) and (3.1.5)7-
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Proof By the Definition (3.1.1) and straightforward rearrangement we have

exp[2 |L|(/Wχ)] = γ r { e

1 , (4.4.9)

where the subscripts indicate the paricular ensemble involved. Repeated use of the
inequality <β^>^^ < J > , the triangle inequality, and the relation <<J'>>rg<<J>>,
proves the lemma. •

To use the estimate (4.4.8) we identify J^1" — Jf in terms of the difference between
W and W^ as

£1{L9N19N2;R9N'19N2)= £ WAsA. (4.4.10)
AnΛ'ΦO

Then the correlation bound A yields

(4.4.11)

where, for icΛ',

St= Σ \WΛ\\\s\\"Λ"/\A\£C/R\ (4.4.12)

in which the last inequality follows from the tempering condition Cτ and the
specification (4.4.4) of A'. Finally the lemma yields

\fx(A)-fx(Λ)\S2\A'\C/\L\Rτ = c6(N'1+N'2)\L'\/\L\R\ (4.4.13)

where c6 is a constant. Now when, in (4.4.5) with W^ replacing W, we let L, Nί9N2,
and R approach infinity at fixed N^ and N'2 in such a way that R/Ly^>0 (all γ) we
have I L'\/\ L\->1 and, since τ > 0 by hypothesis, \f\ — / x | ->0. On finally allowing
N\,N'2->ao we recapture (4.4.6) for the full associated potentials W, and by (4.4.3)
the theorem then follows.

Remark 4.4.3. It is clear that the power law tempering condition, Cτ, could be
relaxed further; all that is required in the proof is that the contribution of the
associated wall potentials vanishes as the distance, R, from the walls becomes
infinite.

For saturating spin systems with interactions of finite range we now establish
similar results for superferromagnetic associated boundary conditions.

Theorem 4.4.3. Simple superferromagnetic associated potentials. For a sequence oj
boxes AL Nl+Nl in a system with saturating spins of modulus \\s\\, and ferromagnetic
bulk and wall potentials, K and W, of finite range, R"° and Rx, respectively, and of
finite degree p, subject to simple superferromagnetic associated boundary conditions,
W*, imposed on a channel of width R° ̂  f max {R™, Rx} (see Proposition 3.3.2), the
limiting boundary free energy

f*ΛK,W)= lim fx{K,W,W*;L,N1,N2), (4.4.14)
L,Ni,N2-*oo
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and the corresponding partial free energies, / * * , exist and are independent of R° and
of how the limit is taken. Furthermore / * (K, W) is convex downward in the wall
potentials, W, and the partial free energies satisfy the inequalities

(K, W), f°χ-(K, W)^f*-{K, W), (4.4.15)

where the superscript 0 denotes free associated boundary conditions (Theorem 4.4.1).

Proof The conditions stated ensure the validity of Lemmas 4.2.3 and 4.2.4
(subadditivity and monotonicity). The inequality (4.2.4) of Lemma 4.2.3 involves the
additive constant Y0(K, W) but it is straightforward to check that

jHL\W=fϊ{K,W,W*; L;N19N2)+YO(K,W) £ Lj\ (4.4.16)

yields a multiply subadditive and monotonic function in the sense of Lemma 4.3.3.
Furthermore, the finite range and degree conditions stated, imply, by Lemmas 2.3.1
and 2.4.1, Conditions F and G(i) which, in turn, by Proposition 3.2.2, means that j ±

is uniformly bounded. Consequently the limits / * * and / * exist and are unique.
The convexity of f*(K,W) in W follows from Proposition 3.2.1. Finally, the
inequalities (4.4.15) follow by using the GKS Lemma 1.3 and the correlation
expressions (3.1.8) for f^(K9W9W,Λ) to compare free associated boundary
condition, W=0 with the simple super ferromagnetic conditions, W*9 and using
Theorem 4.4.1. D

Remark 4.4.4. The finite range restrictions on K and W can be relaxed significantly.
Some range restrictions are required for Lemma 4.2.3 which in turn rests on
Proposition 3.3.2 (decomposition of domains) but, as observed in Remark 3.3.4, it is
3nly the finiteness of the ranges of K and W normal to the associated (or side) walls
3f the boxes that is needed. Thus the bulk and wall potentials could be of infinite
range in the direction of the block vector b0. By utilizing saturated spin barriers of
width R°, which are allowed to increase sufficiently fast to GO in the limit Λ-+ GO, it
should be possible to replace even these weaker finite range restrictions by a
:empering condition.

Remark 4.4.5. The inequalities (4.4.15) provide a relation between the boundary free
mergies for superferromagnetic walls and for free walls. Proof of the reverse
nequalities would, of course, establish f°x(K,W)=f*ί(K,W). There are good
*easons to believe this equality and, indeed, in the following paper we shall present a
3roof under the assumption of correlation decay. The difficulty of a proof without
uch an assumption may be seen along the lines of the argument of Section 2.7.
Specifically, if a first order transition occured as a function of field, h, at some non-
zero hσ9 then the free and superferromagnetic boundary conditions would, for
't = hσ, yield distinct bulk phases with distinct wall free energies. In reality, for
ferromagnetic systems, Yang-Lee theorems prove the absence of such phase
ransitions for hσ φ 0. However, this fact must be embodied in the argument in some
le finite way.
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Theorem 4.4.4. Superferromagnetίc associated walls. Under the conditions of
Theorem 4.4.3 the limiting boundary free energy for a sequence of boxes AL>Nι +Ni with
saturating spins and super ferromagnetic associated wall potentials W [WA^.O, see
Section 2.3~\ of finite range Rx, exists and is equal to f%(K,W) (Theorem 4.4.3)
independently of W, and likewise for the partial boundary free energies.

Proof. The first step is to compare simple, W*, and general superferromagnetic
boundary conditions, W, on the same box A. Using Proposition 3.3.2 in the form
(3.3.11), and taking the limit yields

\\m\ΏΪf±{K9W9W\ L, Nl9 N2)^f*±{K9 W). (4.4.17)

Following the proof of Theorem 4.4.2, the second step is to introduce the
reduced box Λ' = ΛL,fNί+N2 (Fig. 8) satisfying (4.4.4) with R>RX, on which only
simple superferromagnetic associated conditions are imposed. The superfer-
romagnetic consistency relations of Proposition 3.3.2 are then satisfied and we may
conclude

i(W;A\Γ), (4.4.18)

in which Γ = A\A\ with corresponding wall L" and associated wall potentials W'\
while Yf and Y2 are given in (3.3.8) and (3.3.9). Now, as in the proof of Theorem
4.4.3, the finite range and degree conditions imply that f*(W",Γ) is bounded
independently of Γ. Likewise it is straightforward to show that (Yf + Y2) is of the
same order as the common wall perimeter of A' and Γ, i.e., bounded by

d'

cΊ\L'\ £ L~ \ Thus, on (i) taking the limit L,Nl9N2^ao in (4.4.18) at Gxed R9N'l9
β=l

and N2 so that \Lf\/\L\-+l and | JL"|/| Γ.|—•O, and then (ii) letting N'l9N
f

2-+ao9 we
conclude

limsuρ/*(K, W9 W Λ^f^iK, W). (4.4.19)

In combination with (4.4.17), this proves the theorem. D

Remark 4.4.6. As in the proof of Theorem 4.4.2 for subfree associated walls, the
result could be extended to tempered superferromagnetic associated potentials of
infinite range. However, this is not especially satisfying in light of the facts (a) that
the finite range of K and W normal to the associated walls would still be needed and
(b) that with the available tools we cannot prove the equality of f°x(K, W) and
f*ΛK,W).

Finally we prove a result for boxes with arbitrary associated potentials imposed
on the side walls (namely those of lengths JV̂  and JV2).

Theorem 4.4.5. Arbitrary associated side wall potentials. Consider a sequence of
boxes AL Nί +Ni with ferromagnetic bulk and wall potential satisfying the conditions of
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Fig. 9. Illustrating a box ΛLtNi+N2 with arbitrary additional associated wall potentials, W\ imposed over
bands of width M1 and M 2 on the side walls

Theorem 4.4Λ and subject to subfree associated wall potentials, W, except over bands
of width M1^N1 and M2^N2 on the side walls (see Fig. 9) where arbitrary
tempered additional wall potentials W\ of exponent τ > 0 [see (1.4.12)7 are imposed
with the understanding that W\ vanishes except for AcA' = ΛL>Ml + M2. Then the
corresponding limiting boundary free energy exists, is unique, and is equal tof°x (K, W)
independent of W and W\ provided (M1 +M 2)/[L y]

τ->0 (all y) as A->oo where

(4.4.20)

z\ for

z/\nz, for τ = l ,

z, for τ > 1.

Proof The theorem is a straightforward application of Lemma 4.4.1 to bound the
difference between the free energies, f\{Λ) and fx(Λ), with and without the
additional potentials W\ To bound <<=S>> of the lemma, it suffices to estimate

S\K,A>)= £ Σ

iCΛ' icAςΛ'

id A'

(4.4.21)

where the inequality embodies the tempering condition Cτ [see (1.4.12)] in which C
and a are constants while rt here denotes the distance from site i to the side walls of A
[or, more formally, rt = r(i, dAL>00)]. Now with Lm = Lγrn = minβ{Lβ}, note that r is
bounded by c8Lm. By the geometry of the box A\ the total density of sites distance r
from the sides is bounded by c9(Mί + M2)\ L\/Lm, from the pair of opposite sides not
involving Lm, plus

c l o ( M 1 + M 2 ) X | L | / L ^ ( r f - 2 ) c l o ( M 1 + M 2 ) | L | / L m , (4.4.22)

from the remaining (d — 2) pairs of sides. Hence by Lemma 4.4.1 we have

(4.4.23)

where [z] τ is defined in (4.4.20). The proof is completed by taking Λ-*co and using
Theorem 4.4.2. D
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Remark 4.4.7. The added wall potentials W* may be quite arbitrary, subject to the
tempering condition, and, in particular need not respect the ferromagnetic character
of the remaining potentials K, W, and W so that negative fields and anti-
ferromagnetic couplings are allowed. Furthermore, they could be superfer-
romagnetic (if the spins saturate).

Remark 4.4.8. The theorem applies with Mί =Nί and M2=N2 so that for "flat"
boxes, with (Nί+N2)/[.Ly]

τ-+0 as L, Nu N2->co, arbitrary associated wall
potentials are allowed along the side walls.

Remark 4.4.9. It is clear from the proof that the bands of arbitrary added potentials,
W\ need not be disposed just as shown in Figure 9. Indeed, the bands may be
broken up in any way provided the total contribution to S\K, A') is asymptotically
small relative to the wall area | L\. However if arbitrary potentials are imposed on
the "far walls" of A (of area | L\) the proof of uniqueness fails since S1" always remains
of order | L\. Thus we cannot prove the identity of/°(K, W) and/*(X, W) this way.

Remark 4.4Λ0. A precisely analogous theorem may be proved if the subfree
associated potentials W are replaced by superferromagnetic potentials, provided,
naturally, that f°(K, W) is replaced by f*(K, W).
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