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Abstract. This paper describes a technique for regularizing quadratic path
integrals on a curved background spacetime. One forms a generalized zeta
function from the eigenvalues of the differential operator that appears in the
action integral. The zeta function is a meromorphic function and its gradient at
the origin is defined to be the determinant of the operator. This technique agrees
with dimensional regularization where one generalises to n dimensions by
adding extra flat dimensions. The generalized zeta function can be expressed as
a Mellin transform of the kernel of the heat equation which describes diffusion
over the.four dimensional spacetime manifold in a fith dimension of parameter
time. Using the asymptotic expansion for the heat kernel, one can deduce the
behaviour of the path integral under scale transformations of the background
metric. This suggests that there may be a natural cut off in the integral over all
black hole background metrics. By functionally differentiating the path integral
one obtains an energy momentum tensor which is finite even on the horizon of a
black hole. This energy momentum tensor has an anomalous trace.

1. Introduction

The purpose of this paper is to describe a technique for obtaining finite values to
path integrals for fields (including the gravitational field) on a curved spacetime
background or, equivalently, for evaluating the determinants of differential
operators such as the four-dimensional Laplacian or DΆlembertian. One forms a
gemeralised zeta function from the eigenvalues λn of the operator

In four dimensions this converges for Re (s) > 2 and can be analytically extended to a
meromorphic function with poles only at s = 2 and 5 = 1. It is regular at 5 = 0. The
derivative at s = 0 is formally equal to — ]Γlog/lM. Thus one can define the

n

determinant of the operator to be exρ( — dζ/ds)\s=0.
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In situations in which one knows the eigenvalues explicitly one can calculate the
zeta function directly. This will be done in Section 3, for the examples of thermal
radiation or the Casimir effect in flat spacetime. In more complicated situations one
can use the fact that the zeta function is related by an inverse Mellin transform to
the trace of the kernel of the heat equation, the equation that describes the diffusion
of heat (or ink) over the four dimensional spacetime manifold in a fifth dimension of
parameter time t. Asymptotic expansions for the heat kernel in terms of invariants
of the metric have been given by a number of authors [1-4].

In the language of perturbation theory the determinant of an operator is
expressed as a single closed loop graph. The most commonly used method for
obtaining a finite value for such a graph in flat spacetime is dimensional
regularization in which one evaluates the graph in n spacetime dimensions, treats n
as a complex variable and subtracts out the pole that occurs when n tends to four.
However it is not clear how one should apply this procedure to closed loops in a
curved spacetime. For instance, if one was dealing with the four sphere, the
Euclidean version of de Sitter space, it would be natural to generalize that <S4 to Sn

[5,6]. On the other hand if one was dealing with the Schwarzschild solution, which
has topology JR2 X S2, one might generalize to R2 xSn~2. Alternatively one might
add on extra dimensions to the R2. These additional dimensions might be either flat
or curved. The value that one would obtain for a closed loop graph, would be
different in these different extensions to n dimensions so that dimensional
regularization is ambiguous in curved spacetime. In fact it will be shown in Section
5 that the answer given by the zeta function technique agrees up to a multiple of the
undetermined renormalization parameter with that given by dimensional re-
gularization where the generalization to n dimensions is given by adding on extra
flat dimensions.

The zeta function technique can be applied to calculate the partition functions
for thermal gravitons and matter quanta on black hole and de Sitter backgrounds.
It gives finite values for these despite the infinite blueshift of the local temperature
on the event horizons. Using the asymptotic expansion for the heat kernel, one can
relate the behaviour of the partition function under changes of scale of the
background spacetime to an integral of a quadratic expression in the curvature
tensor. In the case of de Sitter space this completely determines the partition
function up to a multiple of the renormalization parameter while in the
Schwarzschild solution it determines the partition function up to a function oίrJM
where r0 is the radius of the box containing a black hole of mass M in equilibrium
with thermal radiation. The scaling behaviour of the partition function suggests
that there may be a natural cut off at small masses when one integrates over all
masses of the black hole background.

By functional differentiating the partition function with respect to the
background metric one obtains the energy momentum tensor of the thermal
radiation. This can be expressed in terms of derivatives of the heat kernel and is
finite even on the event horizon of a black hole background. The trace of the energy
momentum is related to the behaviour of the partition function under scale
transformations. It is given by a quadratic expression in the curvature and is non
zero even for conformally invariant fields [7-12].
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The effect of the higher order terms in the path integrals is discussed in Section 9.
They are shewn to make an insignificant contribution to the partition function for
thermal radiation in a black hole background that is significantly bigger than the
Planck mass. Generalised zeta functions have also been used by Dowker and
Critchley [11] to regularize one-loop graphs. Their approach is rather different
from that which will be given here.

2. Path Integrals

In the Feynmann sum over histories approach to quantum theory one considers
expressions of the form

Z = Jd[β]d[φ]exp{iJ[ff,ψ]}, (2.1)

where d[g~\ is a measure on the space of metrics g, d\_φ~] is a measure on the space of
matter fields φ and I\_g, φ~] is the action. The integral is taken over all fields g and φ
that satisfy certain boundary or periodicity conditions. A situation which is of
particular interest is that in which the fields are periodic in imaginary time on some
boundary at large distance with period β [13]. In this case Z is the partition function

for a canonical ensemble at the temperature T=—.

The dominant contribution to the path integral (2.1) will come from fields that
are near background fields g0 and φ0 which satisfy the boundary or periodicity
conditions and which extremise the action i.e. they satisfy the classical field
equations. One can expand the action in a Taylor series about the background
fields:

11.9,0] = Il9o> ΦO]+ IIiθ] + hίΦ] + higher order terms, (2.2)

where

and /2[#] and I2LΦ1 are quadratic in the fluctuations g and φ. Substituting (2.2)
into (2.1) and neglecting the higher order terms one has

(2.3)

The background metric g0 will depend on the situation under consideration but
in general it will not be a real Lorentz metric. For example in de Sitter space one
complexifies the spacetime and goes to a section (the Euclidean section) on which
the metric is the real positive definite metric on a four sphere. Because the imaginary
time coordinate is periodic on this four sphere, Z will be the partition function for a
canonical ensemble. The action I[_g0, φ 0] of the background de Sitter metric gives
the contribution of the background metric to the partition function while the
second and third terms in Equation (2.3) give the contributions of thermal gravitons
and matter quanta respectively on this background. In the case of the canonical
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ensemble for a spherical box with perfectly reflecting walls the background metric
can either be that of a Euclidean space or it can be that of a section (the Euclidean
section) of the complexified Schwarzschild solution on which the metric is real
positive definite. Again the action of the background metric gives the contribution
of the background metric to the partition function. This corresponds to an entropy
equal to one quarter of the area of the event horizon in units in which G = c = h
= fc=l. The second and third terms in Equation (2.3) give the contributions of
thermal gravitons and matter quanta on a Schwarzschild background. In the case of
the grand canonical ensemble for a box with temperature T=β~ι and angular
velocity Ω one considers fields which, on the walls of the box, have the same value at
the point (£, r, 0, φ) and at the point (t + iβ, r,θ,φ + iβΩ). This boundary cannot be
filled in with any real metric but it can be filled in with a complex flat metric or with
a complex section (the quasi Euclidean section [13]) of the Kerr solution. In both
cases the metric is strongly elliptic (I am grateful to Dr. Y. Manor for this point) [14]
if the rotational velocity of the boundary is less than that of light. A metric g is said
to be strongly elliptic if there is a function / such that Re(/#) is positive definite. It
seems necessary to use such strongly elliptic background metrics to make the path
integrals well defined. One could take this to be one of the basic postulates of
quantum gravity.

The quadratic term I2 [(/>] will have the form

hίΦl = ~ ttφAφ(-go)
lf2d4x , (2.4)

where A is a second order differential operator constructed out of the background
fields 0O, φ0. (In the case of the fermion fields the operator A is first order. For
simplicity I shall deal only with boson fields but the results can easily be extended to
fermions.) The quadratic term I2\_g] in the metric fluctuations can be expressed
similarly. Here however, the second order differential operator is degenerate i.e. it
does not have an inverse. This is because of the gauge freedom to make coordinate
transformations. One deals with this by taking the path integral only over metrics
that satisfy some gauge condition which picks out one metric from each equivalence
class under coordinate transformations. The Jacobian from the space of ail metrics
to the space of those satisfying the gauge condition can be regarded in perturbation
theory as introducing fictitious particles known as Feynmann-de Witt [15,16] or
Fadeev-Popov ghosts [17]. The path integral over the gravitational fluctuations
will be treated in another paper by methods similar to those used here for matter
fields without gauge degrees of freedom.

In the case when the background metric g0 is Euclidean i.e. real and positive
definite the operator A in the quadratic term / 2[0] will be real, elliptic and self-
adjoint. This means that it will have a complete spectrum of eigenvectors φn with
real eigenvalues λn:

Aφn = λnφn. (2.5)

The eigenvectors can be normalized so that

=δnm. (2.6)
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Note that the volume element which appears in the (2.6) is (g0)
112 because g0 is

positive definite. On the other hand the volume element that appears in the action /
is (— g)112 = — i(g)1/2 where the minus sign corresponds to a choice of the direction
of Wick rotation of the time axis into the complex plane.

If the background metric g0 is not Euclidean, the operator A will not be self-
adjoint. However I shall assume that the eigen functions φn are still complete. If this
is so, one can express the fluctuation φ in terms of the eigen functions.

Φ = Σ"nΦn- (2-7)

The measure d[φ] on the space of all fields φ can then be expressed in terms of the
coefficients an:

ά[_φ-] = Y\μdan, (2.8)
n

where μ is some normalization constant with dimensions of mass or inverse length.
From (2.5)-(2.8) it follows that

(2.9)

3. The Zeta Function

The determinant of the operator A clearly diverges because the eigenvalues λn

increase without bound. One therefore has to adopt some regularization procedure.
The technique that will be used in this paper will be called the zeta function method.
One forms a generalized zeta function from the eigenvalues of the operator A:

In four dimensions this will converge for Re(s) > 2. It can be analytically extended to
a merophorphic function of s with poles only at s = 2 and s = 1 [18]. In particular it

is regular at s = 0. The gradient of zeta at s = 0 is formally equal to-]Γlog/lw. One
n

can therefore define dGtA to be Qxp(-dζ/ds\s=o) [19]. Thus the partition function

(3.2)

In situations in which the eigenvalues are known, the zeta function can be
computed explicitly. To illustrate the method, I shall treat the case of a zero rest
mass scalar field φ contained in a box of volume V in flat spacetime at the
temperature T=β~1. The partition function will be defined by a path integral over
all fields φ on the Euclidean space obtained by putting τ = it which are zero on the
walls of the box and which are periodic in τ with period β. The operator A in the
action is the negative of the four dimensional Laplacian on the Euclidean space. If
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the dimensions of the box are large compared to the characteristic wavelength β,
one can approximate the spatial dependence of the eigenfunctions by plane waves
with periodic boundary conditions. The eigenvalues are then

Aw = (2π iβ-1n)2 + fc2 (3.3)

and the density of eigenvalues in the continuum limit is

U F K f c (3 4)

when n>0 and half that when n = 0. The zeta function is therefore

4πV (

The second term can be integrated by parts to give

ί < f e * 2 i + 2 Σ Sdkk2(4π2β-2n2 + k2Γ°\. (3.5)

00

Put /c = 2τm/?-1sinh);. This gives

SπV °

(2π)3

 ni

(3.6)

ί2irr '"'/cv*" ~v

• (2-25)"1 x - Γ (V 2 ) Γ ( S - 3 / 2 ) (3 7 )
X 2 Γ(s-l)

where ζR is the usual Riemann zeta function Σn~s. The first term in (3.5) seems to
n

diverge at fc = 0 when 5 is large and positive. This infra red divergence can be
removed if one assumes that the box containing the radiation is large but finite. In
this case the k integration has a lower cut off at some small value ε. If s is large, the k
integration then gives a term proportional to ε 3 " 2s. When analytically continued to
5 = 0, this can be neglected in the limit £-»0, corresponding to a large box.

The gamma function Γ(s— 1) has a pole at s = 0 with residue —1. Thus the
generalised zeta function is zero at 5 = 0 and

C'(0) = 2πVβ~ 3ζR( - 3)Γ(1/2)Γ( - 3/2) (3.8

= π-vτ3

45
thus the partition function for scalar thermal radiation at temperature Tin a box of
volume V is given by

π2VT3

l o g Z = ! L ί r (3 9)
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Note that because ζ(0) = 0, the partition function does not depend on the
undetermined normalization parameter μ. However, this will not in general be the
case in a curved space background.

From the partition function one can calculate the energy, entropy and pressure
of the radiation.

^ ^ ( 3 l 0 )

(3.11)

One can calculate the partition functions for other fields in flat space in a similar
manner. For a charged scalar field there are twice the number of eigenfunctions so
that logZ is twice the value given by Equation (3.9). In the case of the
electromagnetic field the operator A in the action integral is degenerate because of
the freedom to make electromagnetic gauge transformations. One therefore has, as
in the gravitational case, to take the path integral only over fields which satisfy some
gauge condition and to take into account the Jacobian from the space of all fields
satisfying the gauge condition. When this is done one again obtains a value logZ
which is twice that of Equation (3.9). This corresponds to the fact that the electro-
magnetic field has two polarization states.

One can also use the zeta function technique to calculate the Casimir effect
between two parallel reflecting planes. In this case instead of summing over all field
configurations which are periodic in imaginary time, one sums over fields which are
zero on the plates. Defining Z to be the path integral over all such fields over an
interval of imaginary time τ one has

where b is the separation and A the area of the plates. Thus the force between the
plates is

4. The Heat Equation

In situations in which one does not know the eigenvalues of the operator A, one
can obtain some information about the generalized zeta function by studying the
heat equation.

F ( t ) + AF(y9t) = 0 (4.1)

here x and y represent points in the four dimensional spacetime manifold, t is a fifth
dimension of parameter time and the operator A is taken to act on the first
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argument of F. With the initial conditions

F(x9y90) = δ(x9y) (4.2)

the heat kernel F represents the diffusion over the spacetime manifold in parameter
time t of a unit quantity of heat (or ink) placed at the point y at t = 0. One can express
F in terms of the eigenvalues and eigenfunctions of A:

F(x9 y, t) = Σexp( -λnt)φn(x)φn(y). (4.3)
n

In the case of a field φ with tensor or spinor indices, the eigen functions will carry a
set of indices at the point x and a set at the point y. If one puts x = y9 contracts over
the indices at x and y and integrates over all the manifold one obtains

Y(t)EΞ jTrF(x, x9 t)(go)^2d4x = £ exp(- ^ ί ) . (4.4)
n

The generalized zeta function is related to Y(t) by a Mellin transform:

Σ ^ l (4.5)

A number of authors e.g. [1-4] have obtained asymptotic expansions for F and
Y valid as ί->0+. In the case that the operator A is a second order Laplacian type
operator on a four dimensional compact manifold.

1 - 2 . ( 4 6 )

where the coefficients £„ are integrals over the manifold of scalar polynomials in the
metric, the curvature tensor and its covariant derivatives, which are of order In in
the derivatives of the metric

. (4.7)

DeWitt [1,2] has calculated the bn for the operator - Π+ξR acting on scalars,

b o=(4π)" 2

ft2 = (2880π2)"1

• ίRabcdRabcd -RabKb + 30(1 - 6ξ)2R2 + (6 - 30ξ)ΠK] . (4.8)

Note that bγ is zero when ζ — \ which corresponds to a conformally invariant scalar
field.

In the case of a non-compact spacetime manifold one has to impose boundary
conditions on the heat equation and on the eigenfunctions of the operator A. This
can be done by adding a boundary to the manifold and requiring the field or its
normal derivative to be zero on the boundary. An example is the case of a black hole
metric such as the Euclidean section of the Schwarzschild solution in which one
adds a boundary at some radius r = r0. This boundary represents the walls of a



Zeta Function Regularization of Path Integrals 141

perfectly reflecting box enclosing the black hole. For a manifold with boundary the
asymptotic expansion for Y takes the form [20].

f-2 , (4.9)

where, as before, Bn has the form (4.7) and

where cn is a scalar polynomial in the metric, the normal to the boundary and the
curvature and their covariant derivatives of order 2n-1 in the derivatives of the
metric and h is the induced metric on the boundary. The first coefficient c0 is zero
because their is no polynomial of order — 1. McKean and Singer [3] showed that
c i = 2 ^ when ξ = 0 where K is the trace of the second fundamental form of the

boundary. In the case of a Schwarzschild black hole in a spherical box of radius
r0, c2 must be zero in the limit of large r0 because all polynomials of degree 3 in the
derivatives of the metric go down faster than r^ 2.

In a compact manifold with or without boundary with a strongly elliptical
metric g0 the eigenvalues of a Laplacian type operator A will be discrete. If there are
any zero eigenvalues they have to be omitted from the definition of the generalized
zeta function and dealt with separately. This can be done by defining a new operator
A = A — P where P denotes projection on the zero eigenfunctions. Zero eigenvalues
have important physical effects such as the anomaly in the axial vector current
conservation [21,22]. Let ε >0 be the lowest eigenvalue of A (from now on I shall
simply use A and assume that any zero eigenfunctions have been projected out).
Then

[ ] ( 4 . 1 0 )

As ί-» oo, Y->e~εί. Thus the second integral in Equation (4.10) converges for all s. In
the first integral one can use the asymptotic expression (4.9). This gives

(4.1D

Thus ζ has a pole at s = 2 with residue Bo and a pole at s= 1 with residue B1-\-Cί.
There would be a pole at s=0 but it is cancelled out by the pole in Γ(s). Thus
ζ(0) = £ 2 + C2. Similarly the values of ζ at negative integer values of s are given by
(4.11) and (4.10).

5. Other Methods of Regularization

A commonly used method to evaluate the determinant of the operator A is to start
with the integrated heat kernel
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Multiply by exp( — m2t) and integrate from ί = 0 to t= oo

then integrate over m2 from m 2 =0 to m2 = oo and interchange the orders of
integration to obtain

(5.3)

One then throws away the value of the righthand side of (5.3) at the upper limit and
claims that

= -]r1Y(t)dt. (5.4)
o

This is obviously a very dubious procedure. One can obtain the same result from the
zeta function method in the following way. One has

logdeU=-ζ'(0)

ίferH <5 5)

Near 5 = 0

1
(5.6)

Γ(s)

where γ is Euler's constant.
Thus

log dεt A= -Lim\(l
[

(5.7)

If one ignores the fact that the two integrals in Equation (5.7) diverged when 5 = 0,
one would obtain Equation (5.4). Using the asymptotic expansion for Y, one sees
that the integral in Equation (5.4) has a t~ 2, t~ \ and a logί divergence at the lower
limit with coefficients %B0, Bv and B2 respectively. The first of these is often
subtraced out by adding an infinite cosmological constant to the action while the
second is cancelled by adding an infinite multiple of the scalar curvature which is
interpreted as a renormalization of the gravitational constant. The logarithmic term
requires an infinite counter term of a new type which is quadratic in the curvature.

To obtain a finite answer from Equation (5.4) dimensional regularization is
often used. One generalizes the heat equation from 4-hi dimensions to 2ω + l
dimensions and then subtracts out the pole that occurs in (5.4) at 2ω = 4. As
mentioned in the introduction, this is ambiguous because there are many ways that
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one could generalize a curved spacetime to 2ω dimensions. The simplest generali-
zation would be to take the product of the four dimensional spacetime manifold
with 2ω — 4 flat dimensions. In this case the integrated heat kernel Y would be
multiplied by (4πί) 2 " ω Then (5.4) would become

log d e U = - j ί 1-ω(4π) 2-£ 07(ί)Λ . (5.8)
o

This has a pole at 2ω = 4 with residue ζ(0) and finite part - ζ'(0) + (2γ + Iog4π) x ζ(0).
Thus, the value of the log Z derived by the dimensional regularization using flat
dimensions agrees with the value obtained by the zeta function method up to a
multiple of ((0) which can be absorbed in the normalization constant. However,
if one extended to 2ω + 1 dimensions in some more general way than merely
adding flat dimensions, the integrated heat kernel would have the form

, (5.9)

where the coefficients Bn(ω) depend on the dimensions 2ω. The finite part at ω = 2
would then acquire an extra term B'2{2). This could not be absorbed in the
normalization constant μ. One therefore sees that the zeta function method has the
conceptual advantages that it avoids the dubious procedures used to obtain
Equation (5.4), it does not require the subtraction of any pole term or the addition of
infinite counter terms, and it is unambiguous unlike dimensional regularization
which depends on how one generalizes to 2ω dimensions.

6. Scaling

In this Section I shall consider the behaviour of the partition function Z under a
constant scale transformation of the metric

If A is a Laplacian type operator for a zero rest mass field, the eigenvalues transform
as

λn = k^λn. (6.2)

Thus the new generalized zeta function is

ζ(s) = ksζ(s) (6.3)

and

log d e t i = log d e t A - logfc£(0) . (6.4)

Thus

+ (logμ-logμK(0). (6.5)
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If one assumed that the normalization constant μ remained unchanged under a
scale transformation, the last term would vanish. This assumption is equivalent to
assuming that the measure in the path integral over all configurations of the field φ
is defined not on a scalar field but on a scalar density of weight \. This is because the
eigenfunctions of the operator A would have to transform according to

φn = k~ιφn (6.6)

in order to maintain the normalization condition (2.6). The coefficients an of the
expansion of a given scalar field φ would therefore transform according to

άn = kan (6.7)

and the normalization constant μ would transform according to

μ = k~V (6.8)

if the measure is defined on the scalar field itself, i.e. if

dW]=Πxdφ(x). (6.9)

However if the measure is defined on densities of weight \, i.e.

dlφl=Πx(g(x))mdφ(x) (6.10)

then the normalization parameter μ is unchanged.

The weight of the measure can be deduced from considerations of unitarity. In
the case of a scalar field one can use the manifestly unitary formalism of summing
over all particle paths. This gives the conformally invariant scalar wave equation if
the fields are taken to be densities of weight \ [23]. By contrast, the "minimally
coupled" wave equation D</> = 0 will be obtained if the weight is 1. In the case of a
gravitational field itself one can use the unitary Hamiltonian formalism. From this
Fadeev and Popov [17] deduce that the measure is defined on densities of weight \
and is scale invariant. Similar procedures could be used to find the weight of the
measure for other fields. One would expect it to be \ for massless fields.

These scaling arguments give one certain amounts of information about the
partition function. In DeSitter space they determine it up to the arbitrariness of the
normalization parameter μ because De Sitter space is completely determined by the
scale. Thus

logZ = £2logr/r0, (6.11)

where r is the radius of the space and r0 is related to μ. In the case of a Schwarzschild
black hole of mass M in a large spherical box of radius r0,

\ogZ = B2logM/M0+f(r0M-1) , (6.12)

where again Mo is related to μ. If the radius of the box is large compared to M, one
would expect that the partition function should approach that for thermal radiation
at temperature Γ=(8πM)~1 in flat space. Thus one would expect
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It should be possible to verify this and to calculate the lower order terms by
developing suitable approximations to the eigenvalues of the radial equation in the
Schwarzschild solution. In particular / and logZ will be finite. This contrasts with
the result that one would obtain if one naively assumed that the thermal radiation
could be described as a fluid with a density of logZ equal to_π2/9 0T

3 where
T= T(l — 2Mr~ *)~ 1 / 2 is the local temperature. Near the horizon T would get very
large because of a blueshift effect and so logZ would diverge.

For a conformally invariant scalar field B2 = — JJ for DeSitter space and ̂  for
the Schwarzschild solution. The fact that B2 is positive in the latter case may
provide a natural cut off in the path integral when one integrates over background
metrics will all masses M. If the measure on the space of gravitational fields is scale
invariant then the action of the background fields will give an integral of the form

00

J exρ(-4πM2)Ar MM . (6.14)
o

This converges nicely at large M but has a logarithmic divergence at M = 0.
However if one includes a contribution of the thermal radiation the integral is
modified to

00

J Qxp(-4πM2)M-1+B2dM . (6.15)
o

This converges if B2 is positive. Such a cut off can however be regarded as suggestive
only because it ignores the contributions of high order terms which will be
important near M = 0. One might hope that these terms might in turn be represented
by further black hole background metrics.

7. Energy-Momentum Tensor

By functionally differentiating the partition function one obtains the energy
momentum tensor of the thermal radiation

(7.1)
υyo

The energy momentum tensor will be finite even on the event horizon of a black hole
background metric despite the fact that the blueshifted temperature T diverges
there. This shows that the energy momentum tensor cannot be that of a perfect fluid
with pressure equal to one third the energy density.

One can express the energy momentum tensor in terms of derivatives of the heat
kernel F:

δlogZ = ±δζ'{0)-μ-ίδμζ(0)-±logβίπμ2)δζ(0). (7.2)

The second term on the right of (7.2) will vanish if one assumes that μ does not
change under variations of the metric. This will be the case if the measure is defined
on densities of weight \. The third term can be expressed as the variation of an
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integral quadratic in the curvature tensor and can be evaluated directly. To
calculate the first term one writes

U U )-rfshs)Jr nx> (7.3)
™ I1 W 0 J s = 0

Therefore

d \ 1 ? s-i i/2 4 1
ds LΓ(5)J I X'X' 9o \s=0 '

To calculate δF one uses the varied heat equation

(7.5)

with δl(go(y))1/2F(x,y,0J]=0. The solution is

y)mF(x, y, ί)] = - ί ί F(x, z, ί ~ ί ')^ffe y, t')go{y)go{zγi2d^dt'. (7.6)
0

Therefore

δ [F(x9 x, ί) (go)
ίl2d4x = -1 f δ4F(z, z, ί) ( ^ 0 ) 1 / 2 ^ ^ . (7.7)

Where the operator ^̂ 4 acts on the first argument of F.

The operator δΛ involves δgab and its covariant derivatives in the background
metric. Integrating by parts, one obtains an expression for Tab in terms of F and its
covariant derivatives. For a con formally invariant scalar field.

T —
ab~ds

1
ab

^ ( 0 o ) - 1 / 2 . (7.8)

Where indices placed before or after F indicates differentiation with respect to the
first or second arguments respectively and the two arguments are taken at the point
x at which the energy momentum tensor is to be evaluated. In an empty spacetime
the quantity B2 is the integral of a pure divergence so B2 vanishes.

8. The Trace Anomaly

Naively one would expect 7̂ α, the trace of the energy momentum tensor, would be
zero for a zero rest mass field. However this is not the case as can be seen either
directly from (7.8) or by the following simple argument. Consider a scale
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transformation in which the metric is multiplied by a factor fc=l+ε. Then

= B2 (8.1)

if the measure is defined on densities of weight \. Thus for the case of a conformally
invariant scalar field

lReMRaM-RabR'*+ ΠR] (8.2)

The trace anomalies for other zero rest mass fields can be calculated in a similar
manner.

These results for the trace anomaly agree with those of a number of other
authors [7-12]. However, they disagree with some calculations by the point
separation method [24] which do not obtain any anomaly. The trace anomaly for
De Sitter completely determines the energy momentum because it must be a
multiple of the metric by the symmetry. In a two dimensional black hole in a box the
trace anomaly also determines the energy momentum tensor and in the four
dimensional case it determines it up to one function of position [25].

9. Higher Order Terms

The path integral over the terms in the action which are quadratic in the
fluctuations about the background fields are usually represented in perturbation
theory by a single closed loop without any vertices. Functionally differentiating
with respect to the background metric to obtain the energy momentum tensor
corresponds to introducing a vertex coupling the field to the gravitational field. If
one then feeds this energy momentum tensor as a perturbation back into the
Einstein equations for the background field, the change in the logZ would be
described by a diagram containing two closed loops each with a gravitational vertex
and with the two vertices joined by a gravitational propagator. Under a scale
transformation in which the metric was multiplied by a constant factor fc, such a
diagram would be multiplied by k~ 2. Another diagram which would have the same
scaling behaviour could be obtained by functionally differentiating logZ with
respect to the background metric at two different points and then connecting these
points by a gravitational propagator. In fact all the higher order terms have scaling
behaviour k'n where n^2. Thus one would expect to make a negligible
contribution to the partition function for black holes of significantly more than the
Planck mass. The higher order terms will however be important near the Planck
mass and will cause the scaling argument in Section 6 to break down. One might
nevertheless hope that just as a black hole background metric corresponds to an
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infinite sequence of higher order terms in a perturbation expansion around flat
space, so the higher order terms in expansion about a black hole background might
in turn be represented by more black holes.
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