Communications in
Commun. math. Phys. 54, 1—19 (1977) Mathematlcal
Physics
© by Springer-Verlag 1977

The Back Reaction Effect in Particle Creation
in Curved Spacetime*

Robert M. Wald**
Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA

Abstract. The problem of determining the changes in the gravitational field
caused by particle creation is investigated in the context of the semiclassical
approximation, where the gravitational field (i.e., spacetime geometry) is treated
classically and an effective stress energy is assigned to the created particles which
acts as a source of the gravitational field. An axiomatic approach is taken. We
list five conditions which the renormalized stress-energy operator 7,, should
satisfy in order to give a reasonable semiclassical theory. It is proven that these
conditions uniquely determine T,,, i.e. there is at most one renormalized stress-
energy operator which satisfies all the conditions. We investigate existence by
examining an explicit “point-splitting” type prescription for renormalizing T,,,.
Modulo some standard assumptions which are made in defining the prescrip-
tion for T,,,, it is shown that this prescription satisfies at least four of the five
axioms.

I. Introduction

In the past several years, a considerable amount of progress has been made in our
understanding of quantum processes occurring in a strong gravitational field. A
satisfactory quantum theory of the gravitational field itself still does not exist [1].
However, the framework of a semiclassical theory describing other quantum fields
present in a strong gravitational field does exist and has been used to investigate
particle creation effects. In this theory the gravitational field is described in an
entirely classical manner as curvature in the geometry of spacetime, in accordance
with the notions of general relativity. The fields (e.g., a scalar, Dirac, or Maxwell
field) which are present in spacetime are described in accordance with the principles
of quantum field theory. It is not believed that this theoretical framework can
provide an exact description of nature, since it cannot be entirely consistent to have
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quantum fields (described in probabilistic terms) interact with a classical gravi-
tational field (with definite, determined values). Rather, this semiclassical theory is
viewed as an approximation to the true—as yet unknown—quantum theory of
gravitation interacting with other fields. Such a semiclassical framework is
analogous to the situation in atomic physics where, for the description of a wide
range of phenomena, it is a good approximation to describe the electromagnetic
field in an entirely classical manner while treating the electrons quantum
mechanically. On dimensional grounds it is generally believed that quantum effects
of gravity should be important at least when the spacetime curvature becomes
comparable to the Planck length (4G/c®)*?~ 10733 cm. However, for less extreme
spacetime curvature, one hopes that the semiclassical approximation will be valid at
least in many situations.

If the gravitational field has suitable asymptotic behavior in the past and future,
a description of the quantum fields in terms of particles will be possible in these
asymptotic regimes. One may then ask about particle creation : If the field is initially
in the vacuum state, how many particles will be present at late times? More
generally, what is the S-matrix? It turns out that a few simple assumptions within
the semiclassical framework described above uniquely lead to an expression for the
S-matrix in a manner which is very nearly free of any mathematical difficulties [2].
Thus, one can make well defined, unambiguous predictions concerning particle
creation in a strong gravitational field.

The most remarkable application of these ideas is, of course, Hawking’s
discovery [ 3] that particle creation near a Schwarzschild black hole will result in a
steady rate of emission of particles with an exactly thermal spectrum [2,4]. This
result is particularly striking in view of the analogies that had previously been
discovered between black hole physics and thermodynamics [ 5, 6]. In the absence
of any experimental or observational confirmation of the predictions of the
semiclassical theory, it is the beauty of Hawking’s result as well as the simplicity,
naturalness, and good mathematical behavior of the theory which gives one
confidence that this approach is on the right track.

In the particle creation calculations referred to above, the spacetime geometry
(ie., gravitational field) is taken to be that appropriate to some classical physical
situation, e.g., the gravitational collapse of a body to form a black hole. The particle
creation is then calculated in this fixed spacetime geometry. However, on physical
grounds it is clear that the quantum particle creation must have some “back
reaction” effect on the spacetime geometry. In particular, for the case of a black
hole, the particle creation calculations show a flux of energy coming from the black
hole. By conservation of energy one would expect this energy flux to be balanced by
a decrease in the mass of the black hole (i.c., a decrease in the energy of the
gravitational field). The determination of the nature and magnitude of the “back
reaction” effect is of great interest and importance in its own right, particularly in
the cosmological context where the “back reaction” of particle creation may have
an important effect on the dynamics of the universe. It is also needed to check the
validity of the particle creation calculations, since if the effect of the “back reaction”
is large, it must be taken into account in these calculations.

In what framework can one analyze this “back reaction” effect ? It is conceivable
that one will need a complete quantum theory of gravitation in order to describe it,
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since to describe it in the semiclassical framework involves having a quantum field
act as a source for a classical field. If, for example, the quantum field source has a
probability of £ of being “very small” and a probability of 1 of being “very large”, it
would not seem reasonable to try to describe the gravitational field to which it gives
rise as a “medium sized” classical field. Thus, in particular, Hawking has expressed
the view that “back reaction” can be described only in the context of quantum
gravity. However, there is clearly some domain of validity to associating a classical
gravitational field to a quantum source. After all, ordinary matter is, of course, in
reality of a quantum nature but it certainly makes sense to assign it a classical
gravitational field. More generally, if the gravitational field is not so strong that the
effects of quantum gravity should be of direct importance, it seems reasonable to
expect the approximation of a classical gravitational field to be valid whenever the
expected quantum fluctuations in the source are negligible compared with the
expected value of the source itself. It is, of course, not obvious whether this domain
of validity extends to cases where particle creation effects are important. However,
the example of particle creation near a black hole suggests that this may be the case
since at least at large distances from the black hole the created particles are
thermally distributed and hence should satisfy the above criterion. Further
indication that the semiclassical approximation may have a wide range of validity in
treating problems of an essentially quantum nature comes from the example of
atomic physics: In atoms with many electrons it is a very good approximation to
treat the electric field classically even though the electrons which give rise to this
field must be treated quantum mechanically ; in general, the “radiative corrections”
to this approximation are negligible. For the remainder of this paper, we shall
assume that the semiclassical approach to the “back reaction” effect has a
nontrivial range of validity.

In classical general relativity, the source of the gravitational field is the stress-
energy tensor T,, of the fields present in spacetime. The gravitation field (described
by the spacetime metric) is related to T,, via Einstein’s equation,

G,,=8nT,, (1.1)

where G, is the Einstein tensor. In quantum theory, observables are described as
operators acting on the Hilbert space of states of the system. Hence, in quantum
theory, the stress-energy tensor should become an operator. A natural procedure
for treating the “back reaction” effect in the semiclassical approximation then
suggests itself: we require that the classical Einstein tensor be set equal to the
expected value of the stress energy tensor in the given quantum state,

G,,=8n(T,,>. (1.2)

More precisely, the structure of the theory is as follows: For each (suitably well
behaved) classical spacetime geometry, there should exist a stress-energy operator
for each field of interest. A spacetime together with a quantum state of the field
which satisfies Equation (1.2) is considered to be a solution of this semiclassical
Einstein theory. This solution is to be taken seriously if the characteristic radii of
curvature of the spacetime are much greater than the Planck length and if the
expected fluctuations in T, in this state are negligible compared with {T,,». In the
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limit where the field can be described classically (ie., a large number of
appropriately distributed particles and negligible particle creation), the theory
should reduce to classical general relativity.

It is natural to postulate that the stress-energy operator is given in terms of the
quantum field operator by the same formula by which the classical stress-energy
tensor is related to the classical field. It is here, however, that a serious problem
arises. The quantum field operator does not exist as an operator defined at each
point of spacetime ; only “smeared” fields make sense mathematically, i.e., the field
is an operator valued distribution on spacetime. When one performs operations
which are linear in the field, this distinction is basically just a technical point; for
example, it leads to no difficulties in the derivation of the S-matrix [2]. However,
nonlinear operations on distributions, such as taking products, have no obvious
mathematical meaning. Since the stress-energy is quadratic in the field, the formula
for the stress-energy operator involves a product of distributions and hence must be
viewed as only a formal expression. Therefore, it is not surprising that when one
naively attempts to calculate expectation values of the stress-energy operator, one
gets infinite answers. Thus, some sort of renormalization prescription must be
given.

In flat spacetime there is a completely satisfactory solution to this re-
normalization problem: normal ordering. One can view this prescription as
renormalizing the energy of the vacuum state to zero. However, in curved
spacetime, when particle creation takes place there is no invariant vacuum state and
thus there is no natural analogue of normal ordering. Furthermore, even if no
particle creation occurs (e.g., in a stationary spacetime) it is not at all clear that
normal ordering is correct, since vacuum polarization effects may cause the stress-
energy of the vacuum state to be nonzero. Thus, the problem of renormalizing the
stress-energy tensor in curved spacetime is a nontrivial one, as has been further
demonstrated by the considerable amount of effort that has gone into attempts to
solve it.

A number of proposals for renormalizing T, are discussed by DeWitt [ 7]. More
recently, dimensional regularization [8] and zeta-function [9] techniques have
been developed and further work has been done on the “point-splitting” method
[10,11]. However, all the prescriptions that have been given thus far are either
applicable only to a very restricted class of spacetimes (e.g., the “adiabatic
regularization” scheme of Parker and Fulling [12]) or have ambiguities (e.g., the
direction dependent terms in the “point-splitting” approach), or, at the very least,
have features which are ad hoc. The extent to which the different procedures agree
or disagree has not been fully investigated.

In this paper, we shall take a different approach to the stress-energy
renormalization problem. Rather than develop a particular renormalization
scheme, we shall list conditions that the renormalized stress-energy operator should
satisfy in order to give a reasonable semiclassical theory of “back reaction” within
the framework described above. These five axioms are stated in Section II. In the
absence of any likelihood of experimental or observational verifications of “back
reaction” predictions, conditions such as these are the only available criteria for
deciding whether any given renormalization prescription is likely to be the correct
one.
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The main result of the paper is the following: the axioms stated in Section II
uniquely determine a renormalized stress-energy operator. In other words, there
can be at most one stress-energy operator which satisfies all the axioms. This result
is proved in Section III. However, the proof does not establish existence of such an
operator.

The question of existence is investigated in Section IV by considering an explicit
“point-splitting” type prescription for renormalizing T,,. The discussion here is
based on several technical assumptions for which complete proofs have not been
given, so the results have more the flavor of plausibility arguments than theorems.
We show that this prescription yields a stress-energy operator which satisfies at
least the first four axioms. However, the last axiom is very difficult to check since it
requires a detailed knowledge of how certain quantities change under variations of
the spacetime geometry. Thus, while existence of the renormalized stress-energy
operator is not shown, we do establish (modulo the technical assumptions) that
the first four axioms are self-consistent. Some concluding remarks are made in
Section V.

II. Axioms for T,

nv

In this section we shall state and discuss the precise mathematical conditions which
the renormalized stress-energy operator should satisfy. Our first task is to make
more precise the class of spacetimes on which T,, should be defined and what type
of mathematical object T,, is.

We shall take the class of spacetimes to consist of C* spacetimes which are
sufficiently well behaved asymptotically in the past and future to admit asymptotic
notions of positive and negative frequency solutions®. This permits one to
characterize the states of the quantum field in terms of “in” and “out” Fock spaces.
We shall further require that the spacetime be such that the condition, tr(E'E) < oo,
described in Reference [2], is satisfied, so that the S-matrix relating the “in” and
“out” states really does exist. We do not mean to suggest that this is the only class of
spacetimes on which T,, should be definable ; however, T, should be defined at least
on this class.

What type of mathematical object should T, be? It is clearly demanding too
much to require that for each point p in spacetime, 7,,(p) be an operator mapping
the Hilbert space & of quantum states into itself; neither the field operator nor the
normal ordered stress-energy operator in flat spacetime éxist in this sense. For the
purposes of this paper, it will be important that T,, be defined at each point of
spacetime but it will only be necessary that the matrix elements of T, be well
defined. Thus, it will suffice to require that the renormalized T,, be a bilinear map

T, FxF—-T(2,0)

uv
defined on a dense domain of vectors in & x Z. (Here & denotes the dual of the

Hilbert space of states # and 7 (2,0) denotes the vector space of 2-covariant index
symmetric tensor fields on spacetime.) This is a reasonable requirement since both

! This includes many nonasymptotically flat spacetimes where the Feynman propagator con-

structions of e.g., Rumpf [13], Hartle and Hawking [14], or Candelas and Raine [15] are available



6 R. M. Wald

the normal ordered stress-energy operator and the field operator do exist in this
sense. For @, Ye % we will denote T#v(d’;, ¥)as (P|T,,|¥) and refer to this quantity
as a matrix element. We further require that all diagonal matrix elements {¥|T,,[?)
(i.e., all expectation values) be real and that the expectation values in, say, the “m” or
“out” vacuum states be smooth (C*) tensor fields.

As mentioned in Section I above, the formal expression for T,, is ill-defined
mathematically and naive calculations yield infinite expectation values. However,
as we shall now illustrate for the case of a scalar field, the formal expression does
yield unambiguous, finite results when used to calculate the matrix element between
orthogonal states, i.e., (®|T, | ¥} for (| ¥) =0. Classically, the stress-energy tensor
of a massless Klein-Gordon field ¢ is given by,

T,,=V.0V,0—59,.V,0V ¢ 2.1)

where V, denotes the covariant derivative. The formal expression for the quantum
stress-energy operator is,

T,=3V, V.0 + V.0V, —g,,V, oV °¢) (2.2)

where ¢ is the quantum field operator We can express ¢ in terms of the “in
annihilation and creation operators a;, aj by,

¢= ZGa +G.al) (2.3)

where each G, is a classical solution of the (curved space) scalar wave equation
which is asymptotically positive frequency in the past (see, e.g. Ref [2]).
Substituting this into Equation (2.2), we can formally write T,, as a “mode sum”,

T,=3 Z {(2r,G¥V,G;~9,,V,GV°G]aa;
+ [VﬂGinG +Y,GV,G—g,V,GV G Jdla;
+[V,G¥,G;+V,GYV,G,—g,Y,GV°G laal
+[2V,GV,G,—g,,V,GV°G lafal}. (2.4)
Suppose we naively attempt to use this expression to calculate an expectation value,

e.g. for the “in” vacuum state |0, >. In this case, only the a;a] terms contribute and we
find,

<0in|’174v10in> I%Z [VﬂGinGi + VvGiVuGi

_gquaGiVaGi] . (25)

As is well known, this sum does not converge. However, if we use the formal
expression to calculate a matrix element between orthogonal states, the a;a] type
terms do not contribute infinite sums and we get unambiguous, finite results. For
example, the matrix element of T, between |0,,> and a 2-particle in-state consisting
of particles in states k and [ is simply,

KIT,)0:,) =307,Gi 7, G+ V.G, Gy
~9.,7,G VGl (2.6)
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In a similar manner, it is not difficult to see that one will always get finite results for
the matrix element between any two orthogonal states of the form of a finite linear
combination of a finite number of “in” creation operators (for smooth 1-particle
states) acting on [0;,>. (States of this form are dense in &.) The answer that one
obtains does not depend on the choice of basis G, nor on the expansion of ¢ in terms
of “in” annihilation operators (i.e., one gets the same answer if one, say, expands ¢ in
terms of the “out” operators).

If we require that the renormalized T,, must agree with the above mode sum
expression for the matrix element between orthogonal states (see axiom 1 below),
then the problem of finding all expectation values of the renormalized T, reduces to
the problem of finding a single expectation value, since the difference between two
expectation values can be expressed as a matrix element between two orthogonal
states. Thus, the problem of renormalizing T,, is essentially a “c-number” problem?.

We shall now list our five axioms for the renormalized T,,. A discussion of each
of these axioms is given below. In the following, T,, denotes the renormalized
operator, while {7,,> denotes its expectation value in some state.

1. The formal expression for T,, discussed above is valid for calculating the
matrix element (@|T,,|¥) between any two orthogonal states, (P|¥) =0.

2. Normal ordering is valid in Minkowski spacetime (i.e., flat spacetime with the
standard R* topology).

3. For any state, the expectation value {T,,> is conserved, V*{T, > =0.

4CmmmwinmaﬁmdﬁfﬁméxnpaMpMmpmqmwmmdmeS
only on the spacetime geometry to the causal past of p, i.e. changes in the metric to
the future of p or at spacelike separations from p do not affect {T,,) at p.

(b) For a fixed “out” state, T,,» at p depends only on the spacetime geometry to
the causal future of p.

5. For fixed “in” or “out” state, (T, varies continuously with the spacetime
metric in a sufficiently strong manner to guarantee that the dynamics of the
semiclassical theory, Equation (1.2), be of the same nature as the dynamics of
classical general relativity Equation (1.1). The precise condition adopted here is the
following (see Proposition 7.4.7 and Section 7.7 of Hawking and Ellis [17]):
Consider a sequence {(g,,),} of C* spacetime metrics which agree outside a fixed
compact region and are such that the components of (g,,), and the derivatives of
these components up to fourth order (in a fixed chart) converge uniformly to a C*
metric g,, and its derivatives up to fourth order, respectively. Then we require that
for fixed “in” or “out” state {{T,,>,} and its derivatives up to third order converge
(pointwise) to { T, » and its derivatives up to third order, respectively. (As discussed

2 Though not always stated in this manner, the above remarks are well known (see, e.g. Wightman
[16]1)

3 It is possible to consider changes in the spacetime geometry which leave the causal past of p
unchanged but which behave badly enough in the asymptotic past (outside the lightcone of p) to destroy
the notion of an “in” Fock space or, at least, obscure the identification of the “in” Fock space of the new
spacetime with that of the old one. In such a case, the phrase “for fixed ‘in’ state” has no meaning. Thus,a
more precise statement of condition 4(a) is : for variations of the spacetime geometry which vanish in the
causal past of p and are sufficiently well behaved in the asymptotic past of the spacetime to permit
identification of the new and old “in” states, {7,,,> at p is unchanged. In particular, for an asymptotically
flat spacetime, (7, at p must not change when the spacetime metric is varied in an arbitrary manner to
the future of any asymptotically flat spacelike hypersurface passing though p
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below, this condition should perhaps be weakened to pequiring only that {<T,,>,}
and its derivatives up to second order converge.)

We should note the absence in the above list of any local positive energy
condition on {T,,»>. For most fields of interest, a local positive energy condition is
satisfied by the classical stress energy. This condition is a major hypothesis of the
singularity theorems of classical general relativity (see e.g., [ 17]). However, itis nota
reasonable condition to impose on expectation values of the renormalized quantum
stress-energy operator, since it is not even satisfied by the normal ordered stress
energy in flat spacetime*. Namely, if, in flat spacetime, we consider a state consisting
of a superposition of the vacuum state and a number ¢ times a two particle state,
then for sufficiently small ¢ the expected normal ordered stress-energy will be
dominated by the cross-term involving the matrix element of T,, between the two
particle state and the vacuum. However, the local energy density of this term need
not be positive [see Eq. (2.6) above], as is already clear from the fact that the sign of
this term changes if we reverse the sign of e. (On the other hand the total energy of
this cross term vanishes and the expected total energy of the state is positive.) Since
the state vector describing particle creation in a weak gravitational field is precisely
of the form of the vacuum state plus a small amplitude times a two particle state (see
e.g. [2,19]) it is clear that a local positive energy condition should not be satisfied
when particle creation occurs?.

We have already discussed above the meaning of the first axiom. Since the
formal expression certainly should bear some relation to the renormalized T, and
since the matrix element between orthogonal states of the formal expression gives
finite results in a straightforward, unambiguous manner, it seems reasonable to
expect it to be the “right answer”.

The second axiom also requires little further discussion. Normal ordering gives
a completely sensible, physically reasonable, and generally accepted prescription
for T, in Minkowski spacetime. Furthermore, assuming axiom 1, it is equivalent to
postulating that the stress-energy of the vacuum state in Minkowski spacetime is
zero. Note that axiom 2 applies only to globally Minkowski spacetime ; we do not
rule out Casimir-type effects [7] for topologies other than IR*, and indeed we shall
see at the end of Section IV that such effects must be present.

Axiom 3 is, of course, satisfied by the classical stress-energy tensor ; it expresses
the local conservation of non-gravitational energy. If it were not automatically
satisfied for every spacetime in classical theory, then the Bianchi identity V'*G,, =0
would impose this condition on solutions of Einstein’s Equation (1.1), which
presumably would lead to stringent consistency relations; “very few” solutions
would exist. [Thus, for this reason, the classical equation R, =4xnT,, ie,
G,,=4n(T,,—3Ty,,) is not acceptable.] Similarly, it seems difficult to imagine that
using Equation (1.2) one could obtain a reasonable semiclassical theory (which
reduces to general relativity in the appropriate limit) unless axiom 3 is satisfied.

Axiom 4 basically says that if one creates particles to the future ofa point p (or at
spacelike separations from p) the effects of this particle creation should not register

4 This fact has also been noted by Davies and Fulling [18]

> Hawking [17] has shown what is essentially the converse of this statement : The dominant energy
condition together with conservation (axiom 3) imply that if the stress energy is zero initially, it must
remain zero, i.e. no particle creation can occur
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at p. Since, in the semiclassical framework one still assumes the spacetime notions of
general relativity, it is reasonable to demand that the causal properties of spacetime
be compatible with relativity. One frequently describes phenomena in quantum
field theory in acausal language, e.g. “particles propagating backward in time”.
However, all physical effects that have thus far been investigated are causal. In
particular, the matrix elements of the field operator itself (which are perfectly well
defined and require no renormalization) satisfy axiom 4.

Axiom 5 is a rather technical condition. In order to motivate it, we shall make a
few heuristic remarks concerning classical dynamical evolution in general relativity.
It is well known that in a fixed chart one can view the vacuum Einstein equation

G,,=0 (2.7)
as a second order hyperbolic system of equations for the components of the metric.
Consider, now, the Einstein Equation (1.1) with the classical stress-energy tensor 7,
of some field acting as a source. If we fix initial data for the field on some Cauchy
surface, we can view the field and hence this classical 7, as a (nonlocal) functional
of the spacetime metric. Suppose, however, that this nonlocal functional were to
include a “local curvature piece” i.e., a term whose value at point p depends on
derivatives of the metric components higher than first order at p, e.g., a fourth order
term like V,V,R, where R is the scalar curvature. In that case, the character of the
dynamical evolution of Einstein’s equation with source would be entirely different
than that of Einstein’s equation in vacuum. In the example just quoted, the
evolution would have the character of a fourth order system

V.V,R=—G,, +(nonlocal part of T,)

rather than that of the second order system G, =0. Note that this is true even if the
“local curvature” term is “small”, ie., if one adds to a differential equation a term
containing higher order derivatives than originally appeared in the equation, the
character of the equation becomes entirely different, even if the new term enters
multiplied by a small coefficient®.

However, the phenomenon described above does not occur in classical general
relativity ; the dynamics of Einstein’s equation with a source has the same character
as Einstein equation in vacuum. The reason why this is so is that the classical stress-
energy tensor satisfies a classical version of axiom 5. Axiom 5 is a precise
mathematical condition which expresses the intuitive notion that the stress energy
contains no “local curvature term”. A “local curvature term” depending on second
order or higher derivatives of the metric components would not vary continuously
with the metric in the manner required by axiom 5.

The proof of Proposition 7.4.7 of Hawking and Ellis [17] shows that the
classical field and its derivatives up to fourth order vary continuously (in a weak
sense) under the variations of the metric considered in axiom 5. The classical version
of axiom 5 then follows if we assume that the classical stress energy is a polynomial

6 A simple illustration of this point is provided by the ordinary differential equation f + f =0. The
solution of this equation is, of course, Ce ™/, i.e., an exponentially decreasing function. However, if one
adds the “small” term —e&f to this equation, then for 0 << 1 one picks up a solution which grows
exponentially as e'%. Thus, this “small” term completely changes the stability properties of the original
solutions and the effect of this term actually becomes more and more drastic as ¢—0.
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in the field, its first derivative, and the spacetime metric, and if we ignore distinctions
between weak convergence and pointwise convergence. (The proper convergence
properties could probably be proven by the methods described on page 223 of
Garabedian [20].) The arguments outlined in Section 7.7 of Hawking and Ellis [17]
show that if axiom 5 is satisfied, the Cauchy problem for the Einstein equation with
source is well posed and the dynamical evolution is of the same character as for the
vacuum Einstein equation.

The motivation for imposing axiom 5 on the quantum stress-energy tensor
should now be clear. As described in the introduction, we want the semiclassical
theory, Equation (1.2), to reduce to general relativity in the classical limit. However,
if the quantum stress energy does not satisfy a condition like axiom 5, it is difficult to
imagine how this can happen. As previously illustrated in Footnote 6, even in cases
where the quantum corrections are “small”, violation of axiom 5 would imply that
these correction terms could drastically alter the character of Einstein’s equation. In
particular, the stability properties of solutions would surely be quite different from
that of classical general relativity. Thus, it appears that axiom 5 is necessary for the
semiclassical theory to look anything like general relativity for small but finite .

In making the above statements, we should be a bit more careful about the
required orders of differentiability. As mentioned above, the classical stress-energy
tensor of most fields satisfies the classical version of axiom 5. On this ground it
seems most reasonable to impose on the quantum stress energy the strong version of
axiom 5 given above. However, if axiom 5 were weakened slightly be requiring only
{{T,>,} and its derivatives up to second order (rather than third order) to
converge, this would, roughly speaking, still only permit “second derivative type
terms in the metric” in (T, . It is quite plausible that the semiclassical Equation
(1.2) could still have the basic character of a second order hyperbolic system which
reduces to Einstein’s equation in the classical limit. (On the other hand, further
weakening of axiom 5 in this manner would not be acceptable.) Thus, it is possible
that only this weakened version of axiom 5 should be imposed. In particular for the
case of the conformally invariant scalar field, even the classical stress energy
satisfies only the weakened version of axiom 5, since it contains second-order
derivatives of the field as well as Ricci tensor terms. Thus, at least for the case of this
field, only the weakened version of axiom 5 should be imposed on its quantum stress
energy.

As we shall show in Section III below, the strong version of axiom 5 together
with the other axioms uniquely determines a stress-energy operator, i.e., not more
than one can exist which satisfies the above axioms. If we impose the weaker version
of axiom 5, the corresponding result is that the stress-energy operator is uniquely
determined up to a multiple of the classical Einstein tensor G,, times the identity
operator. (This remaining ambiguity in T,, can then be eliminated by imposing
some additional scaling assumptions (i.e., by dimensional arguments) as we shall see
in more detail in Section II1.) We should emphasize that axiom 5 is used in the
uniqueness proof only to exclude the addition of local curvature terms to the stress-
energy tensor. Thus, the uniqueness proof will remain valid under any restatement
of axiom 5 which preserves the intuitive meaning described above.

The “conformal anomaly” discussed recently by a number of authors [21, 8, 9]
provides a good illustration of the implications of axiom 5. The term “conformal
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anomaly” refers to the claim that the trace of the quantum stress-energy tensor of a
conformally invariant field may be nonzero, even though the trace of the classical
stress energy vanishes identically. In two-dimensional model spacetimes studied by
Davies et al. [22] and others, one can have a conformally flat spacetime—all two-
dimensional spacetimes are conformally flat—which is flat outside a compact
region and yet has the property that particles of a conformally invariant field are
created. This implies that the quantum stress-energy tensor cannot be conformally
invariant, even though the classical stress-energy tensor is conformally invariant.
Since the tracelessness of the classical stress energy can be viewed as a consequence
of its conformal invariance, it is not surprising that the quantum stress energy
should lose its tracelessness as well, as Davies et al. [22] found. However, it is not at
all clear that similar behavior should occur in four-dimensional spacetimes. It is
well known that two-dimensional manifolds have anomalous conformal properties,
and the above phenomenon may be merely a reflection of this fact. In particular, it is
not difficult to show that in four dimensions no particle production can occur for a
conformally invariant field in a conformally flat spacetime which is flat outside a
compact region. Thus, the type of particle creation effect which occurs in two
dimensions and strongly suggests a conformal anomaly in the trace of the stress
energy does not occur in four dimensions.

The above axioms do not say anything directly about the existence of non-
existence of conformal anomalies. However, the form of the conformal anomaly
in the trace of the stress-energy tensor of a conformally invariant scalar field
proposed by a number of authors [21, 8, 9] violates axiom 5, since, according to
these results, it is a purely local curvature term containing derivatives of the metric
up to fourth order’. As discussed above, such a violation of axiom 5 would imply
that the semiclassical Equation (1.2) is a fourth order (or worse) system, and it is very
difficult to see how general relativity could arise as its classical limit. In particular, it
is not at all obvious that this theory will even contain Newtonian gravitation as a
limiting case, since as discussed above the stability properties of the solutions may
have an entirely different character.

III. Uniqueness

We shall now show that the five axioms given in the previous~secﬁon uniquely
determine a renormalized stress-energy operator. Let T, and T, be two stress-
energy operators defined on the general class of spacetimes discussed at the
beginning of Section II and satisfying axioms 1-5. We set

U =T —T

ny wv tupv:e (3' 1)
Our aim is to show U, =0.

By axiom 1, the matrix element between any two orthogonal states of T,, is
equal to that of T,,. This means that the matrix element of U, between any two
orthogonal states must vanish. But this implies that U ,, is a multiple of the identity

operator, i.e., it is of the form,
U,,=u,l (3.2)

7 Interestingly, in two-dimensional spacetimes [22] this trace contains only derivatives of the metric

up to second order and thus is consistent with the weakened form of axiom 5
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where u,, is an ordinary (“c-number”) tensor field on spacetime and I denotes the
identity operator. (This is most easily shown by considering the matrix elements of
U,, in an orthonormal basis. The off-diagonal matrix elements must vanish; the
diagonal elements must all be equal, since if any two were unequal one could take
linear combinations of them and construct orthogonal states for which the matrix
element of U, is nonvanishing.) u,, is, of course, a functional of the spacetime
geometry alone.

Next, we apply the causality condition, axiom 4. Since T, and 7]” satisfy axiom
4(a), so does U ,,, i.e., for fixed “in” state (U ,,» at p depends only on the spacetime
geometry to the causal past of p. But by Equation (3.2), this expectation value (for
any normalized “in” state) is just u,,(p). Thus, u,, (p) is a functional of the spacetime
geometry to the past of p alone. But by exactly the same argument, Condition 4(b)
implies that u,,(p) depends only on the spacetime geometry to the future of p!
Hence, u,,(p) can depend only on spacetime geometry at p itself, ie., it is a
completely local object. Thus, we have proven that if g, and g/, are two spacetime
metrics which agree in an open neighborhood of p, then u,,(p)=u, (p).

We now use axiom 5 to show that u,(p), in fact, can only depend on the
components of the metric and their first derivatives (in some fixed chart) at p. The
proof of this result is similar to the proofthat a distribution with support consisting
of a single point must be a sum of delta functions and derivatives of delta functions
at that point (see, e.g., Courant and Hilbert [23], page 785). We first establish that
u,,(p) depends only on the metric and its first four derivatives at p.

Letg,, and g, be two spacetime metrics whose components at p and derivatives
of components up to fourth order are equal at p. We prove that u,,(p)=u,(p) as
follows: By smoothly joining the metric obtained from the fourth order “Taylor
series” polynomial in the coordinates—determined by the components of g, and
their derivatives at p — to the actual spacetime metric g,,, one can (by accomplishing
this joining closer and closer to p) explicitly construct a sequence of spacetime
metrics {(g,,),} Which are fourth degree polynomials in the coordinates in a
neighborhood of p and converge to g, in the manner specified in the hypothesis of
axiom 5. One can also construct a similar sequence {(g,,),} converging to g,,. Since
9, and g,, agree up to fourth derivatives at p, these sequences will have the property
that for each n, (9,,),=(g,,), in a (sufficiently small) neighborhood of p. From the
results we have already established using axiom 4, it follows that at point p
(U= (u,w) since these quantities are sensitive only to the spacetlme geometry at p.
But axiom 5 implies that the limit of the sequence {(u,,),} is u,, and the limit of
{(w,,),} is u,,. Hence, u, (p)=u,,(p)-

We have now shown that u,, at p is a function of the metric and its first four
derivatives at p alone. However, if u,,(p) had a nontrivial dependence on derivatives
of the metric of second order or higher, then the derivatives of u,, up to third order
would have a nontrivial dependence on derivatives of the metric of higher order
than fourth. It is easy to show that this would contradict axiom 5. Thus, we obtain
the desired result that u, (p) depends only on the metric and its first derivative at p.
Note that we are really only using axiom 5 to give a precise expression to the notion
that neither 7,, nor T,, should contain any “local curvature terms” involving
derivatives of the metric of second order or higher.
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We have now shown that u,,(p) is a function of the metric and its first derivative
at p. However, it is well known that the most general tensor of rank (2,0) which can
be constructed out of the components of the metric and their first derivatives in
some chart at p is a constant multiple of the metric tensor itself. Thus, there exists a
constant C such that u, (p)=Cyg,,(p). C is, of course, independent of the spacetime
geometry, since otherwise u, (p) would not be a function of only the metric and its
first derivatives at p. Putting all the above results together, we have shown that,

U,,=Cg,l. (3.3)

Consider, now, the case of Minkowski spacetime. By axiom 2, (normal ordering) T,,,
and T,, must agree in this case, so U,,=0 for Minkowski spacetime. Hence C=0
and we obtain our final result,

U, =0. (3.4)

v
Note that axiom 3 (V“(T,,>=0) was not used in this uniqueness proof.

If we had used the weakened form of axiom 5, the proof would have proceeded
as above except that we would have found that u, (p)is a function of the metric and
its derivatives up to second order at p. Many tensors can be constructed out of the
metric and its first and second derivatives. However, we now use axiom 3, which
implies that F*u,,=0. According to a result of Lovelock [24], this condition
restricts the most general form of u,, to

u,,=Cq,,+CG,, (3.5)

where G, is the Einstein tensor and C and C’ are constants. Again axiom 2 implies
C =0, and we are left with the result that 7,, and T, can differ at most by a multiple
of the Einstein tensor G,,. .

It is clear that this remaining ambiguity is of a trivial nature. Since T,,=T,,
—C'G,,1, if we write the semiclassical Equation (1.2) for T,, and bring the term in
G,, to the left-hand side of the equation we see that it is equivalent to the
semiclassical equation for 7,, but with a different numerical value of the
gravitational constant G. Intuitively it is clear that this arbitrariness should go away
if we impose further requirements on the theory which imply that in the classical
limit, the semiclassical theory should reduce to general relativity with the correct
value of the gravitational constant, ie., that the renormalized T,, already
incorporates any renormalization of the gravitational constant which may occur. A
suitable set of such requirements are the following scaling assumptions: The only
fundamental lengths which occur in the semiclassical theory are the Planck length
(hG/c*)''? and (for a massive field) the Compton wavelength of the particles #/mc.
The stress-energy operator is independent of G. Furthermore, the expected stress
energy of, say, the “in” or “out” vacua should go to zero (or, at last, not diverge) in
the limit #A—0. Under these assumptions (which are frequently made implicitly if not
explicitly) simple dimensional arguments show that u,, cannot equal C'G,, unless
C'=0. Thus, we again recover uniqueness.

It should be emphasized that the above uniqueness proofs show that there can
be at most one stress-energy operator T,, which satisfies the axioms, but, of course,
the proofs do not establish that one actually exists. This issue will be dealt with in
the next section.
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Finally, we remark that a close analogy exists between the phenomena of
particle production by a gravitational field and the production of charged particles
by an external electromagnetic field in flat spacetime. In the electromagnetic case,
one would expect the particle creation to “back react” on the electromagnetic field
via a current operator j,. One can write down analogues of axioms 1-5 for j,. The
uniqueness proof given above for T, then carries over to a uniqueness proof forj, in
the electromagnetic case.

IV. Existence

In this section we shall attempt to demonstrate the existence of a renormalized
stress-energy operator satisfying axioms 1-5. For concreteness we explicitly
consider the case of the massless Hermitian scalar field,

v7ip=0. (4.1)

We shall give a “point splitting” type prescription for T,,, which, it will be argued,
satisfies at least the first four axioms. However, one would need further detailed
information on how certain quantities vary under changes of the metric in order to
check axiom 5. Thus, we do not succeed in demonstrating existence, but we do show
that the first four axioms are self-consistent. Since several key assumptions on
which the prescription for T,, is based have not been rigorously proven (at least as
far as I am aware), the results of this section must be considered as plausibility
arguments rather than theorems.

We begin by recalling some results on second order hyperbolic wave equations
originally proven by Hadamard [25]. If we consider an equation like Equation (4.1)
in a 4-dimensional analytic spacetime, we may seek a solution S(x) which has
singularity structure near the point x' of the form

S(x,x)=Ujo+VInc+W (4.2)

where 20 is the square of the geodesic distance between x and x" and U, ¥, and Ware
analytic functions of x. If we write ¥ and W as a power series in o,

Vixx)= ¥ Vi),
o 4.3)
W(x,x')= Y W(x,x")d'
1=0

substitute this in Equation (4.1) and set the coefficient of each power of ¢ equal to
zero, we get an equation for U and recursion relations for ¥, and W,. One can show
[20] that the equation for U uniquely determines it up to normalization, and given
U, each V] is uniquely determined. W;(x, x') is completely arbitrary but given W, all
the remaining W(l = 1) are uniquely determined by the recursion relations. One can
then show [20] that the series expansions for ¥V and W actually converge in a
sufficiently small neighborhood of x/, so this procedure truly does yield a solution of
Equation (4.1). We will refer to such a solution as a Hadamard elementary solution.

The existence of Hadamard elementary solutions has been a powerful tool in
analyzing solutions to second order equations. In the case of an elliptic equation of
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second order, an analogous construction also works and one can prove [20] that
S(x,x") viewed as a function of x’ (for fixed x) is a fundamental solution of the
adjoint equation. This fact allows one to prove existence theorems for solutions. In
the hyperbolic case, the Hadamard elementary solution has been used to prove that
the Cauchy problem is well posed [20].

In the following we shall assume that the above construction also works for C*
spacetimes (with the series for 1 and W now interpreted as asymptotic series). We
shall also use the following facts about Hadamard elementary solutions. First, as
has already been noted above, with the normalization of U chosen, a Hadamard
elementary solution is completely characterized by the arbitrary function Wy(x, x').
Furthermore, U and V' do not depend on W, ie., W, enters only the recursion
relations for W(Iz1). For a self-adjoint equation like Equation (4.1), we shall
assume® that if Wy(x, x') is chosen symmetric in x and x', Wy(x, x') = W,(x’, x), then so
is the Hadamard solution, S(x, x") = S(x’, x). Finally, we note that the solution for U
and the recursion formulae [20] for ¥, and Wj(I=1) involve integrals along the
geodesic joining x and x' and thus, given Wy(x, x), the Hadamard solution in a
(convex) neighborhood of x" is completely determined by the spacetime geometry in
that neighborhood.

As is well known, the quantum field operator ¢(x) in curved spacetime makes
complete mathematical sense when interpreted as an operator valued distribution.
On the other hand, as mentioned in Section I, no obvious mathematical meaning
can be given to the products like ¢(x)¢(x) and, indeed, this is the origin of the stress-
energy renormalization problem. However, a product like ¢(x)¢p(x) (ie., the
product of two distributions at different spacetime points) makes perfect sense as a
2-point distribution, i.e., if we smear separately in x and x’' we get a well-defined
operator. In particular, the expectation value in any state

Gx, x) =2 P(x)p(x) + P(x)p(x)> (4.4)

is a well-defined distribution in x and x'. Since ¢ satisfies Equation (4.1) (in a
distributional sense), G(x, x') is also a (distributional) solution of Equation (4.1) in
each variable. One may formally express the expected stress energy < T,,» in terms of
G(x,x") as [10]

(T, (x)>=3% 113 wvvG+vV,G—g,V V" G} 4.5)

where the primed indices denote vectors in the tangent space at x" so that,e.g., V. V,G
denotes the bitensor formed by fixing x’ and taking the derivative of G at x and then
fixing x and taking the derivative of V,G at x'. The limit in Equation (4.5), of course,
does not exist. The basicidea of the “point splitting” renormalization prescription is
to examine the singularity behavior of this limit, identify the divergent terms,
subtract them off, and get a finite result.

The starting point for detailed study of this limit is the assertion that G(x, x') is,
in fact, a Hadamard elementary solution. (This may be verified directly for flat
spacetime and it is certainly plausible that it should remain true in curved spacetime,

8 Ttshould be possible to give a proof of this statement directly from the recursion relations for ¥;and
W,. In the elliptic case the analogous result follows from the arguments on page 165 of Garabedian [20]



16 R. M. Wald

but as far as [ am aware, no complete proof has been given.) Assuming this is the
case, the quantity inside the brackets in Equation (4.5) is finite provided x and x’
cannot be connected by a null geodesic (i.e., a(x, x") +0). One can explicitly compute
the behavior of this quantity as x’' approaches x along a timelike or spacelike
geodesic. Some ambiguities arise in extracting the “finite piece”, however, from the
fact that it depends on the direction of “point splitting” as well as the precise manner
in which x" approaches x (e.g., even if x' is required to approach x along a geodesic
one gets different results depending on whether one uses “endpoint expansion” or
“midpoint expansion” [11]). .

We propose here a slightly modified type of “point-splitting” prescription which
is free of the above direction dependent and limit taking ambiguities. To
renormalize a particular expectation value, we take G(x, x') for that state, Equation
(4.4), and subtract from it a Hadamard solution S(x, x') constructed in the manner to
be specified below. To compute (7, >, we substitute this difference

F(x, x")=G(x, x")— S(x, x") (4.6)
in place of G in Equation (4.5) i.e.,
(T, (x)y=7lim {V,,V.F+V,V . F—g,V,V*F}. 4.7)

Since U and V are the same for all (normalized) Hadamard solutions, the
singularities in G and S cancel and F is smooth. Hence, the coincidence limit
Equation (4.7) will yield a well-defined finite answer, free of direction-dependent
and other ambiguities. The expectation value (T, > for all states, of course, uniquely
determines all matrix elements of T,,, ie., it determines the operator T,,.

We construct S(x,x’) as follows: we examine $<0|p(x)p(x') + H(x)p(x)|0)> in
Minkowski spacetime and compute the function W,(x,x’) for this Hadamard
solution. (For the massless scalar field it is zero; for massive fields it is a nonzero
constant.) Returning to curved spacetime, we define S(x,x’) to be the unique
Hadamard solution (with the standard normalization of U) with W, chosen equal to
this Minkowski space value.

Now that we have given our prescription for T,,, we can ask if it satisfies the
axioms. It is not difficult to verify that axiom 1 is satisfied. We can express the
matrix elements between orthogonal states in terms of the difference of expectation
values. By Equation (4.7) we can express such a difference in terms of F; — F, where
F | is the quantity defined by Equation (4.6) for the first expectation value and F, is
the similar quantity for the second. But F, — F,=G, — G, and when we substitute
and take the coincidence limit we recover the formal expression, in accordance with
axiom 1.

To verify axiom 2 (normal ordering in Minkowski spacetime) it is only necessary
to show that {0|T,,|0)> =0. But this is obvious, since by construction of S, for the
vacuum state in Minkowski spacetime we have G=S so F=0 and thus
(0|, 0> =0.

F(x, x') is a well-behaved solution of Equation (4.1) in both x and x'. It follows
from the same arguments as given in Appendix B of Ref. [11] that expectation
values of T, are conserved, V*(T, > =0. Thus axiom 3 is also satisfied.

G(x,x') is constructed out of expectation values of the field operator ¢.
Consequently, it is causal, i.e., for a fixed “in” state G(x, x’) depends only on the
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spacetime geometry in the union of the past of x and x". On the other hand, S is
locally constructed, i.e., S(x, x") depends only on the spacetime geometry along the
geodesic connecting x and x'. Thus, in particular, for a fixed “in” state F(x,x')
depends only on the spacetime geometry in the causal past of the geodesic
connecting x and x’. Hence, when we take the coincidence limit, Equation (4.7), it
follows that (T, is causal in the manner required by axiom 4(a). Exactly similar
arguments show that T,, also satisfies axiom 4(b).

It seems clear from the nature of the above prescription that {7, > will, in some
sense, vary continuously under continuous changes of the metric. However, we have
no strong reason to believe that the rather stringent condition required by axiom 5
will be satisfied. In order to check whether this condition is satisfied, we would need
detailed information of how variations in the spacetime geometry affect the W,
term in the Hadamard solution G(x, x"). This does not appear to be an easy task.
Thus, unfortunately, it is not clear whether axiom 5 is satisfied.

However, the uniqueness proof of Section III shows that the first four axioms
uniquely determine a stress-energy operator up to the addition of a conserved local
curvature term which vanishes in flat spacetime. (By “local curvature term” we
mean precisely a quantity whose value at a point p depends only upon the spacetime
geometry at p.) Hence, we obtain the following criterion for the existence of a stress-
energy operator satisfying all five axioms: If our renormalized stress-energy tensor
defined above can be decomposed into the sum of a local curvature term and a term
satisfying axiom 5, then this second term will satisfy all the axioms. On the other
hand, if such a decomposition is not possible, then no stress-energy operator
satisfying all the axioms can exist (since if it did exist we could obtain the required
decomposition by taking the difference between it and our stress-energy operator).

Finally, we point out that since the difference of two stress-energy operators
satisfying the first four axioms is a local curvature term which vanishes in flat
spacetime, any two such stress-energy operators must agree in any flat region of a
(non-flat) spacetime. Thus, even though our prescription for T,, may not satisfy
axiom 35, it must agree with the true renormalized T, (assuming one exists!) in any
flat region. It is not difficult to check that in a flat region our prescription agrees
with the “point-splitting” prescription used by DeWitt [ 7] in his investigation of the
Casimir effect. Thus, the results of this paper may be viewed as justifying the
original rather ad hoc derivation of this effect given by DeWitt.

V. Conclusions

In this paper, we have listed five axioms for the renormalized quantum stress-energy
operator. As argued extensively in Section II, it appears that these axioms must be
satisfied in order to yield a reasonable semiclassical theory of quantum fields
interacting with gravity within the framework described in Section I. The main
result of the paper, proven in Section III, is that there can be at most one stress-
“energy operator satisfying all the axioms. Unfortunately, we were unable to fully
demonstrate the existence of such a stress-energy operator in Section IV. However,
making a few assumptions stated in Section IV, we were able to give an explicit
prescription for a renormalized T, which satisfies at least the first four axioms. In
particular, this demonstrates (modulo the assumptions) that these four axioms are
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self-consistent. Furthermore, in terms of our prescription for T,, we gave a
necessary and sufficient condition for the existence of a stress-energy operator
satisfying all five axioms. The stumbling block toward further progress along these
lines is axiom 5. In order to check whether a given prescription for T,, satisfies
axiom 5, we need to know detailed information on how quantities vary under a
general class of variations of the spacetime geometry. Even for classical fields this
information is not easy to come by.

What if no stress-energy operator satisfying our five axioms exists? Of course, if
a precise technical condition like axiom 5 is violated but another condition which
has the same essential content is satisfied, one would merely modify the axioms. But
if the five axioms are inconsistent in a nontrivial manner, then unless one can
somehow evade the arguments of Section II one would be forced to conclude that
“back reaction” effects cannot be treated within the context of the semiclassical
approximation.

What if one succeeds in obtaining the renormalized T,,? In the first place one
will be able to proceed with calculations of many interesting effects such as the
detailed nature of black hole evaporation. One would also be able to determine the
effect of particle creation in the early universe on the dynamics of the universe. Of
particular interest is the behavior of the semiclassical theory in situations where, in
the context of classical general relativity, spacetime singularities are produced. As
discussed in Section 11, the quantum stress-energy tensor is not expected to satisfy a
local energy condition. Hence the classical singularity theorems do not apply and it
is possible that in many cases singularities may be avoided or at least take on a
different character in the semiclassical theory than in general relativity. In the long
run, perhaps the insight we will get from a complete semiclassical theory will point
us in the right direction toward obtaining a quantum theory of gravitation.
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