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Abstract. For short-range oscillating potentials V(r\ such that W(r) =
00

— J V(r')drf possesses some regularity properties we establish inequalities on the
r

number of bound states. In particular we show that by replacing V(r) by
— 4(W(r))2 in the classical inequalities we get bounds for this new class of
potentials. Optimal bounds are also obtained. The behaviour for large coupling
constants is studied.

1. Introduction and Outline

The purpose of this paper is to obtain upper bounds for the number of bound states
of a class of spherically symmetric potentials introduced recently by Baeteman and
one of us (K.C.) [1]. These potentials, although very singular and oscillating near
the origin, are perfectly regular from the point of view of quantum scattering theory.
In fact, it was even shown that the usual description of scattering via the Jost
function applies to this class as well, without any modification, and therefore that
this class generalizes the notion of regular potential. A further generalization has
been made to non-spherical potentials by Combescure and Ginibre [2].

In this paper, we are concerned with the spherically symmetric case, and assume
always that the potential has a short range, i.e., it decreases faster than r" 2 at large
distances. More precisely, we assume that V(r) is real, locally integrable away from
the origin, and that

oo

j r|7(r)|dr<oo, Vα>0. (1)
a

Traditionally, regular spherically symmetric potentials were those for which rVis
absolutely integrable at the origin, i.e.,

00

(2)

[a possible, slightly different version is lim r2|F(r)| =0].
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Then it follows that wz(r), the regular solution of the reduced radial Schrodinger
equation (φl = M/(r)/r) behaves like rl + ί at the origin, that the spaces of incoming and
outgoing states are complete, and that therefore the scattering matrix is well-
defined and is unitary [3]. Another case where all these nice properties hold is that
of singular repulsive potentials, i.e., those which are more singular than r~ 2 at the
origin. In this case, the regular and physically acceptable wave function vanishes
faster than any power of r at the origin.

The new extension of the notion of regular potentials at the origin is as follows :
instead of assuming (2), we assume only (1), but we require in addition that the
absolutely continuous function

00

W(r)=-$V(t)dt, r>0 (3)
r

is such that

limrW(r) = 0 (4)
r-»0

and

WεLl(Q,b), b>0. (5)

In short, if V is singular and oscillatory near the origin such that (2) is violated, we
assume that the oscillations are controlled in an appropriate way as to satisfy (4)
and (5). Notice that, because of (1), we also have

WeL\0, oo) (6)

and

ί Q9aϋ). (7)

Then the scattering matrix has all the nice properties one wants, and the
scattering problem as well as the inverse scattering problem can be formulated
exactly in the same way as for potentials satisfying (2). The reasons why potentials
satisfying (1), (4), and (5) should also be called regular are the following:

i) if V has a constant sign near the origin, (1), (4), and (5) are equivalent to (2)
ii) in contradistinction with the case of truly repulsive singular potentials, the

reduced radial wave function behaves like crz + 1, cΦO, at the origin;
iii) if we multiply 4he potential by a "coupling constant" g, and make g-+ — g, the

character of the potential does not change in our case; in fact the S matrix is an
analytic function of g around g — 0 this is again in contradistinction with the case of
truly singular repulsive potentials.

As an example, let us mention simply the following :

W(r} = r-ί/2sm(eίlr}e-μr. (8)

Differentiating this expression to get the potential, one sees that it is highly singular
and oscillatory at the origin, such that

JrF±(r)dr=oo, (9)
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where

V±(r) = \V(r)\θ(±V(r)). (10)

It is now clear that the classical bounds on the number of bound states for
regular potentials satisfying (2) are not valid in the present case. For instance, the
Bargmann bound on the number of bound states with angular momentum I [4]

oo

Vj^pί+lΓ 1 \rV^(r)dr (11)
0

no longer holds. One of us (K.C.) has already shown [4] that in the l = Q state the
number of bound states for the present case satisfies the bound

r(W(r})2dr. (12)
o

This is of course valid for higher /, too, but does not decrease with increasing ί, as it
should do for obvious reasons.

In the present paper, we would like to make a more systematic study of the
problem. First, we shall prove that in all standard bounds using the spherical
symmetry of the potential, we can make the substitution

V(r)->-4(W(r))2 (13)

and get a bound for the new family of potentials. Specifically, if vz(F) designates the
number of bound states with angular momentum / in the potential V, we prove in
Section 2 :

vl(V)<vl(-4W2). (14)

The inequality obtained in this way is not optimal. However, by using minimization
methods analogous to those of Glaser et al. [5] we find in Section 3 least upper
bounds for vl(V) in terms of W. Saturation of these bounds is explicitly established.
However, one gets the same qualitative behaviour of v/ as a function of / as in
Section 2. Finally, in Section 4 we discuss the coupling constant dependence of the
bound and show that by using a slightly strengthened version of condition (4) one
can establish that the number of bound states in the / = 0 state grows at most like g
for a potential gV.

2. The Substitution F(r)->-4 (W(r))2

We shall take advantage of the fact that the potential is spherically symmetric in the
usual way, namely by using the property that the number of bound states in angular
momentum / is given by the number of nodes of the radial solution of the
Schrodinger equation, regular at r = 0, at zero energy. This fact is so well known that
it is very difficult to trace back its first demonstration. It is therefore necessary to
give aproof which holds for the new class of potentials we are considering, satisfying
conditions (1) and (3)-(5). The explicit proof given by one of us (K.C.) and Montes
[6], which uses the continuous motion of the zeros of the regular wave function
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when the momentum k varies, can be easily extended to this new situation. So we
leave it as an exercise to the reader to make the necessary modifications in [6].

Consider the situation where we have vl bound states with angular momentum /.
The reduced zero energy wave function satisfies

u = ΰ. (15)

If we integrate (15) between two successive zeros of u, rp, rp+ 1 we get

0- Pj\u'2 + r-2l(l+l)u2 + Vu2)dr. (16)
rP

On the other hand, we can integrate the last term in (16) by parts and get, using
definition (3):

Now we have

Hence

or, minorizing also the centrifugal energy term:

0 ̂  "7' (u'2 + r~2l(l+ l)t/2 - 4W2u2)dr. (17)

Inequality (17) shows that if we solve the following Schrodinger equation

in the interval rp<r<rp + 1, with the boundary conditions w(rp) = w(rp+1) —0, the
ground state wave function wp + 1 has a negative energy Ep + 1, since there exists a
trial function u which makes the energy negative.

Let us now call w0 the solution of (18) at zero energy with the boundary
condition w0(0) = 0. We shall prove that w0 has at least one zero in ]rp, rp +1 [. Indeed
by combining the wave equations for wp + 1 and w0 we get

r p + ι r p + 1

rP

or

rp+ι
/ \ / / \ f \ r f \ 17 f A (Λ C\\

Since wp+1 is the ground state wave function for the interval rprp+ί it has no node
and can be taken to be positive. Then wp + ί (rp +1) < 0 and wp + t(rp) > 0.11 is clear that
Equation (19) is not consistent with a constant sign of w0. Therefore w0 has at least
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one zero in each interval ]rp, rp+ x[ including the interval ]0, rx[. Therefore the zero
energy wave function for the potential — 4 W2 has at least vt nodes. The potential
— 4W2 has at least as many bound states as the potential F:

vl(V)^vl(-4W2). (20)

00

Let us repeat that from (4) and (5) it follows that J r(W(r))2dr converges and hence
o

"classical" bounds can be used for the potential — 4(Wr))2. One can of course take
the long list of existing bounds and make the substitution (20). Let us restrict
ourselves to a few examples :

i) from the Bargmann bound we derive

vl<4(2\+ΐΓί ? r(W(r))2dr (21)
o

here we see that for ί = 0 we loose a factor 2 if we compare with inequality (12);
ii) more generally we can use the family of bounds proposed in [5] :

f (22>

with p^ 1 this includes (21) as a limiting case;
iii) global bounds on the total number of bound states for all angular momenta,

counted with the appropriate multiplicity factors, can be extended to this case :

N^ 16 [J W2r2dr j W*r2dr^12 (23)

from the bound obtained by one of us (A.M.) [7],

(24)

from the bound obtained by Rosenblum [8], Cwikel [9], and Lieb [10]. From
Lieb's result one has C^32πx 0.116.

It has been pointed out to us by Moulin-Combescure that the theorems stated
by Rosenblum in [8], which apply to more general differential operators than the
Schrόdinger operator, allow one to get directly an inequality of the type (24). The
advantage of our method, however, is that proofs are explicit.

3, Optimal Inequalities for Oscillating Potentials

In the previous section no attempt was made to obtain the best possible inequalities.
In fact in inequality (17) we have minorized (21(14- l)/r2)u2 by (I(l+l)/r2}u2. This
could be avoided and would lead to reducing for instance the right-hand side of (21)

by a factor l/j/2. This, however, would not yet correspond to the best possible
inequality.

Here we shall concentrate on inequalities involving j rW2(r)dr, i.e., the analogue
of the Bargmann inequalities. However, exactly the same method can be applied to
other cases.
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In the / = 0 case the inequality previously obtained [4] is the best possible one for
the case of one bound state. Indeed take V(r) = — cδ(r — r0), with cr0 = l. This
produces a bound state at zero energy :

u(r) = r

and

u'(r>r0}-uf(r<r0)=-Cr0=-l.

Hence

w'(r) = 0 r>r 0 .

Then the Bargmann bound is saturated, jV|K(r)|dr=cr0 = l, and the bound
»Ό

2\r(W(r))2dr<zl is also saturated for 2 $ r(W(r))2 dr = 2 J rc2dr = (r0c)2 = 1. In the
o

case of v bound states the inequality can also be shown to approach as close as one
wishes to saturation. This has been done explicitly for instance by Elizalde [11] for
the Bargmann bound. Let us, first for illustration, treat the case of two bound states.
Take

The corresponding reduced wave function has a zero at r = 1 + L and is constant for
r>l+L + L2. Then

as L-^ oo we make the integral as close as we want to 2.
Similarly

Γ l + L + L2 1 1

2\rW2(r)dr = 2\ J r[ZΓ2]2dr + J r[l + ZΓ1 +L~2]2Jr
1 1 0 J

as close as we want to 2 for L big enough. Clearly that kind of example can be
generalized.

Let us turn now to the case /Φθ. In terms of W the energy of the ground state
reads :

E = J (u2 + 1(1 + l)r- 2u2 - 2W(r)uύ)dr

^ jV + /(/+ l)r-2u2)dr-2tfrW2dr$ίι2u2r-ίdr']ίl2. (25)

Following the method of [5], we try to find

r-2M2)dr/[fM2M2r"1dr]1 / 2] (26)

for all M'S vanishing at r = 0 and r=co. If μΦO (which is already implicitly
established in the previous section) we will be certain that there is no negative energy
bound state if

lrW2(r)dr<(μ/2)2. (27)
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To find μ we shall follow again [5]. Define

φ(z) = M(r)r-1/2, z=ln(r/r0). (28)

The scale r0 is arbitrary. Then

(
i—. (29)

Here we shall admit that the infimum is the solution of the variation equation for the
right-hand side of (29). In [5], an explicit proof of that fact has been given for a
similar minimization problem.

With

)dz, (30)

(31)

the variation equation is

~2φφ2-2φ2φ + φ3

J

By multiplication by φ and integration of both sides, we get, using φ(oo) =

-φ2 + φ2(l+1/2)2

 ί - φ2φ2

(32)

' J - (33)

We can fix the scale of φ by fixing the ratio

J/2J = 1. (34)

Then (23) becomes

φ2=4-lφ2((2l+l)2-φ2)/(l-φ2). (35)

Since φ(oo) = 0 this equation indicates that |0|^1. If |</>|< 1, Equation (32)
indicates with normalization (34) that φ is finite. Therefore φ cannot have a
discontinuity and therefore cannot change its sign, φ must, however, change sign
once because φ(+oo) = φ(— oo) = 0. We can now break the translation invariance
with respect to z by deciding that φ(0) = 1, φ< 0 for z > 0, φ > 0 for z < 0. For z > 0

the differential Equation (36) can be integrated giving z as a function of φ. This is
not really necessary. Notice, however, that near z = 0, for />0,

φ~l- const. |z|2 / 3. (37)

It is sufficient to use (36) to compute directly

(38)
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and

(39)
-oo o -

One finds in this way

/-(2/ + l)[2/2 + 2/ + l]-4(/(/+1))2 In ((/+!)//). (40)

With 7/2J+1 we get

ju-l/2[(2/+l)(2/2 + 2ί+l)-4(/(/+l))2ln((/+l)//)]1/2 (41)

and hence the condition for the absence of a bound state of angular momentum / is:

J rW2(r)dr < \ [(2/ +1) (2/2 + 21 +1) - 4(1(1 +1))2 In((/ +1)//). (42)

One can apply, of course, the same type of argument to the case of vz bound
states, use the fact that the zero energy wave function has vl nodes, and that the
infimum of the functional appearing in (17) for a function vanishing outside a finite
interval is larger or equal to μ. Then one gets

00

v z< J KMO)2dr/K(2I+l)(2/2 + 2/+l)-4(/(/+l))2ln((/+l)/0] - (43)
o

For large / the denominator of (43) behaves like 41/3. This means that we have
gained a factor 8/3 if we compare with (12).

Let us now discuss the question of the saturation of the bound, at least for one
bound state. To get saturation the Schwarz inequality appearing in (16) must be
saturated. This means

W(r) = const ύu/r. (44)

Precisely the variation equation expressed in terms of u, with the variable r reads

- ύ + /(/ + l)r~ 2u = const ((d/dr)ύu/r)u . (45)

The only trouble is that the potential

V(r) = (d/dr)ύur-\ with u = r1/2φ(lnr),

φ being the solution of Equation (35), is not acceptable because it is not integrable: u
— 1 —(r —r0 |

2/3, u~\r — r0 |~
1 / 3

5 ϋ~|r —r0 |"
4/3. However, one can perform a smear-

ing procedure on φ:

φE(z)=l j φ(z + εx)(l-x2}dx (46)
~ι

the smeared φ has bounded first and second derivatives. φε(z) — φ(z)^Q uniformly
for ε->0 and

lim f dz(φ*-φ2) = Q (47)
ε-*0 -oo

because (φ)2 is integrable.
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One can define

Vε = (uε/uε)-l(l+l)/r2

and

Wε=- ]vε(r')drf.
r

For r > r0 it is clear that lim Wε = PFfor ε-»0. This is less clear but, however, true
for r < r0. Indeed

Wε = (ύA) - ϊ (ύjuε}
2dr' +1(1 + l)/r

and since

J(u ju t f dr-* I ( u / u ) 2 d r , W^W

except at r = rQ.
In short,

is as close as one wishes from the expression for ε = 0
ii) (J Wεuεήε)

2 is as close as one wishes from

The potential Vε has of course a completely different aspect from V, because it
has an attractive well around r = r0 which is physically essential to produce bound
states. However, inequality (42) for the absence of bound states cannot be improved.

4. The Question of the Dependence on the Coupling Constant

Here, from now on we shall use a potential gV(r). In the case of ordinary
potentials there is the superficially paradoxical situation that the Bargmann bound
vo <9 ί r\V(r)dr can be saturated though the asymptotic behaviour of v0 for 0-> oo is
[12, 13]

v0^g1/2π-^V-(r)il2dr9 (48)

where V~ designates the attractive part of the potential. To get (48) one has to
assume either that V(r) is piece wise monotonous which is what is done in [12] or

R
that J \V(r)\dr is integrable (we assume fast decrease at infinity) as stated in [13].

o
For oscillating potentials the bound stated in Section 1 with the weakest

coupling constant behaviour is the analogue of the Bargmann bound:

v0<2g2]r(W(r))2dr.
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We may wonder if there is an analogue of (48). Since it is out of the question to
impose integrability of (W(r))2 at the origin which is too restrictive, we shall try to
use monotony.

We work with the potential — 4 W2(r). This potential is not monotonous,
00

otherwise V(r) would be purely attractive and the convergence of g J W(r)dr would
o

00

imply the convergence of g J r\V(r)\dr. However, we have limr\W(r) = 0. Hence
o

g\W(r)\<gC/r (49)

because W is continuous and decreases anyway faster than 1/r at infinity. The
bound is monotonous and we could try to use Calogero's inequality [14] valid for
monotonous potentials

(50)

The trouble is that (49) leads to a divergent result.
Let us impose the slightly stronger condition

g\W(r)\<gCr-i(\og(R/r)Γy, ?>!, r^R/2. (51)

We also assume that

g\V(r)\<gcr-2~'

and, hence

1-* (52)

(this can be taken as our short-range condition). Since (51) and (52) are both
monotonous, we get

R/2 oo I

: j r~1(\og(R/r})~γdr + c' j r~ί~εdr\+l, (53)
0 R/2 \

where+ 1 accounts for the splitting of the interval Ooo into two subintervals.
So by slightly strengthening condition (49), we manage to get a bound with the

asymptoric behaviour v~g.

5. Concluding Remarks

In this paper we have tried to give an answer to the only question where oscillating
potentials differ from classical regular potentials: that of the inequalities on bound
state energies, for which the classical bounds diverge. If one is only interested in
qualitative information, the inequality vl(V)<vl( — 4W2) is amply sufficient. One
may of course question the physical relevance of such potentials, but the fact is that
this class of potentials appears in a very natural way in the inverse problem of
reconstruction of potentials from phase shifts [1]. Also these results may be useful
for other fields of mathematical physics where Sturm-Liouville equations with
oscillating coefficients appear.
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