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and the Heisenberg Model
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Abstract. On the basis of general inequalities in quantum statistical mechanics
we derive a rigorous upper bound for the magnetization in the ferromagnetic
quantum Heisenberg model with arbitrary spin and dimension n ̂  3.

1. Introduction

Recently, Dyson et al. [1] proved the existence of a phase transition at non-zero
temperature for the Heisenberg model with nearest neighbor coupling. The proof
essentially relies on some new inequalities involving two-point functions. Some of
these inequalities are quite general and, therefore, apply to any quantum system in
thermal equilibrium. Others rest on the specific structure of the model (spin system,
simple cubic lattice, nearest neighbor coupling etc.) and have limited applicability.

Our concern here will be with general estimates of the type used in [1-4]. One of
these estimates will turn out to be an improved version of Bogoliubov's inequality
[5] which proved to be a powerful tool in many cases. Recall, for instance, that
Mermin and Wagner [6] used it to rule out a spontaneous ferromagnetic ordering
for the Heisenberg model in one or two dimensions. We shall rederive this result
using the stronger inequality and, applying the same argument to three and more
dimensions, we shall obtain an upper bound for the reduced magnetization m:

In the zero external field limit and for a spin 1/2 lattice the bound M(β) is implicitly
given by the equation

1 - M = 2M(2π)"M j dnp(eβE^IM -ί)'1, (1)

where β is the inverse temperature and Ep stands for the energy of a spin wave with
momentum p. The integration is carried over the first Brillouin zone. By inspection,
the result compares with that of the magnon approximation [7, 8] :
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Not only does it respect the upper bound but it also comes close to the upper bound
as m approaches 1 at low temperatures.

Since the spin waves describe the low lying excited states where a single spin has
deviated from the alignment of the completely ordered state, there are good reasons
to believe that at low temperatures the Heisenberg ferromagnet behaves like a
system of bosons, called magnons. Since Bloch's approximation (2) neglects the
interaction of magnons, over many years a great deal of effort has been focused on
calculating deviations predicted by the Heisenberg hamiltonian. The result (1)
simply limits the influence of magnon interactions. Notice, however, that the
estimate is not good enough to account for the vanishing spontaneous magneti-
zation beyond the critical temperature.

Since Ep is of the order p2 for small momenta and short range forces, the integral
in (1) is infrared divergent unless n ̂  3 or M = 0. In three or more dimensions, 1 — M
decreases with temperature at cT"12 with the coefficient given by the spin wave
theory.

2. Some General Inequalities

Let < > denote the Gibbs state of a finite system with respect to the hamiltonian H
and the inverse temperature β. Given some operator A9 we may consider various
two-point functions associated with A:

= (A*A-AA*>/2

(2)

In general, these four functions assume independent values. We call explicitly to the
reader's attention the fact that these values are real and, apart from b, even positive.
More restrictions follow from convexity [2] or from the following representation:

There exists a positive measure dm(x) on the real line such that

a= jdm(x) cosh x

b= jdm(x) sinhx

c = j dm{x)x~1 sinhx

d = J dm(x)x sinh x. (3)

This measure is discrete with bounded support if the system under study is finite. In
the thermodynamic limit, provided it exists, the measure may become continuous
with unbounded support. We have the symmetry relation dm( — x) = dm(x) iϊA = A*.

The representation (3) is an immediate consequence of Bochner's theorem [9]
applied to the function f{t) = (A*A} where At = eitHAe~itH:

(A* A} = f dm(x) exp(l - 2it/β)x.
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The theorem applies since / is positive definite which is easily verified:

The proof carries over to any β-KMS state since it is invariant under time
translations. Moreover, the KMS property implies that

j dm(x)e^ < oo .

For (3) to exist we must impose a stronger condition:

J<im(x)|x|e | x |<oo.

We are now prepared to state the main result of this section.

Theorem. If four quantities a, b, c and d admit a representation of the form (3) where
dm(x) is a positive measure on the real line, then the following inequalities hold:

112 coth(d/c)1/2. (4)

Proof Upon setting dμ(x) = dm(x) (ex)"1 sinhx we have that

a/c = J dμ(x)x cothx

b/c = j dμ(x)x

d/c=\dμ{x)x2.

Now, the function $(x) = x cothx is convex on the reals and, by construction, the
measure dμ(x) has total mass 1. From Jensen's inequality [10] we deduce at once
that

or (b/c)coth(b/c)^a/c. Next, we consider the concave function G(x)= j/x coth j/x
on the positive reals and have

\dμ{x)G{x2)^G{\dμ{x)x2)

or a/c^(d/c)112coth(d/c)112 which completes the proof.
The inequalities (4) already exhaust the information contained in (3) in the sense

that they imply any further inequality F(a,b,c,d)^O which we may deduce on the
basis of the representation (3) alone. Indeed, many derived inequalities have special
virtues. We therefore list some of them employing the function F(x) = xtanhx:

2 (5)
ιb, (6)

(7)

(8)

Note that (5) follows from (4) since G~ ι(x) is an increasing function. We obtain (6)
unwinding (4), and (8) unwinding (7). In turn, (7) is implied by (4) and (5).
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The lower bound for the Duhamel two-point function c appeared in [1] the
upper bound in [2]. Observe that (5) is nothing but Cauchy's inequality applied to
the Bogoliubov scalar product (A, [H, A~\). Bogoliubov's inequality states that b2

^ ad which was previously derived on the basis of (5) and c^a.A stronger version is
provided by (7).

It is natural to ask when equality holds in (4)-(8). For this to occur it suffices to
assume that b2 = cd or, equivalently, that the operators [ # , A~\ and A are linearly
dependent. Then A is an eigenvector of the derivation induced by the hamiltonian,
i.e. there is some real E (we shall ignore the case E = 0) such that [ # , A~\ = EA and b/c
= γdjc = d/b = βE/2. It gives us a measure dm(x) which is concentrated at a point.
From (4) it may be inferred that

(AA*} = a-b = 2b(eβE-i)-1=2a(eβE + l)-\ (9)

where we used the relations tanhx = 1 — 2(e2x + 1 ) " 1 and cothx = 1 + 2(e2x — 1)~1.
To see what is involved we shall assume that either b = 1/2 or a = 1/2 (which can be
enforced by letting A*A — AA* = \ or A*A + AA* = \). In this case, the thermal
average of AA* equals that of a number operator belonging to a Bose or Fermi
particle with energy E. Think of A as the creation operator for that particle. Then
the physical information contained in the equation [//, A~] = EA is simply that the
particle is free. In essence, the equality sign holds in (4)-(8) if A is a creation or
annihilation operator of a free particle.

In other words, the inequalities tell us to what extent the behavior of AA*
deviates from that of a number operator if \H,A]—EA is allowed to deviate from
zero by a small amount and if A is almost a creation operator.

There are many instances where some operator A obeys "almost" the Bose or
Fermi commutation rule in the sense that b —1/2 o r α = 1/2 in some temperature
range. A prominent example is the operator S~/s1/2 in the context of the Heisen-
berg model creating a spin wave of momentum p when applied to the ground
state. Here we have ft-> 1/2 as the temperature tends to zero and, therefore, magnons
exhibit Bose statistics.

3. The Heisenberg Model

The model we are going to consider now constitutes one of the simplest quantum
lattice systems with ferromagnetic behavior. The main objective of this section is to
introduce our notation and terminology. To start with, we consider a periodic
lattice which, abstractly speaking, is a finite (discrete) abelian group G of order N.
The composition of elements xe G is written additively and the unit is denoted by 0.
The algebra of observables is identified with the tensor product

xeG

where each 91^ is isomorphic to the full matrix algebra M2s+1 of complex matrices
in 2s+ 1 dimensions. The canonical injection 7X :M2 s + 1—»9ϊ identifies observables
of a spin s with those of the particular spin at the lattice site x. If S= {S2, S2, S3} are
the conventional spin operators in M 2 s + 1 , we put Si{x)=jx(Si).
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Let J(x) be a real-valued function on G with the properties J(x) ^ 0, J( — x) = J(x),
and J(0) = 0. If we think of this function as a measure of the interaction of spins
separated by the distance x, we are led to the following hamiltonian (with zero
energy ground state):

H= Σ J(x-y)(s2-S(x)-S(y)) (10)
χ,yeG

or, in the presence of an external field /z>0,

H(h) = H + hΣ(s-S\x)). (11)
xeG

In either case the translational invariance of the hamiltonian makes it desirable to
reorient the theory with respect to the dual group G. The duality between G and G
then supplies the kernel function G x G-^T of the Fourier transform, T being the
unit circle of the complex plane [11]. To be more explicit we recall that any finite
abelian group G may be decomposed as Z(m t)x ... xΈ(mn\ mk>l, where Έ(m)
= (0,1,..., m— 1) is the cyclic group of order m. In geometrical terms, mk represents
the period of the lattice along the fcth axis, while n is the dimension and N = [~[ mk is
the number of sites. Though G is isomorphic with G, these two groups cannot be
naturally identified. Whereas we let xe G represent the sequence {xk} with xkeZ(mk\
it proves very convenient to let peG represent the sequence {pk} with
mkpk/2πeZ(mk). With this convention, the Fourier kernel is expίpx where px
= £ pkxk. In the thermodynamic limit, all periods mk simultaneously tend to infinity
yielding G = Έn and G = Tn. What will be important for us is that the group mean

Σ
peG

tends to the normalized Haar measure of the n-dimensional torus:

(2π)- J d"pf(p).

0^pk^2π

In terms of the Fourier transform

Sp = N-U2ΣeipxS{x) (12)
xeG

and the definitions

xeG xeG

peG xeG

we find two relations using ParsevaPs identity:

ς Sp^N'1 Σ S(x)2 = s(s +1), (14)
xeG

peG

For later purposes we mention the result of another simple calculation,

S ' ] ] = s 2 £ p - Λ Γ " 1 l ί p ϊ (16)
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where

HP= Σ Jp(x-y)(s2-S(x) S(y)).
x,yeG

Since the coupling is purely ferromagnetic, i.e. J(x)^0, we see that J p (x)^0, hence

p . (17)

We conclude this discussion with the remark that Ep remains bounded as N tends to
infinity, provided that E<co which we shall tacitly assume in the sequel. In the
limit, p varies continuously and Ep-*0 if p->0.

4. The Magnetization in Thermal Equilibrium

Let the state vector Ω describe the ground state of the hamiltonian H(h) which is
characterized by the equation S3(x)Ω = sΩ and let us introduce the operators

Then SpΩ = 0 and, as is well known, the closed subspaces J^n spanned by the vectors

reduce the hamiltonian. Sp is viewed to create a magnon with momentum p and j ^ n

is called the n-magnon sector. In particular, H{h)Φ p = (2sEp-\-h)Φ p, so that 2sEp is
the kinetic energy and — 1 is the magnetic moment of the magnon while (Φp, Φq)
= sδpq. It is helpful to rewrite this as

(Φp,H(h)Φp) = (Ω, [Sί
p,H(h)Φp

A related result was first proved by Mermin and Wagner [6] : In thermal
equilibrium with purely ferromagnetic coupling, the following inequality holds,

J ; J (18)

if m is the reduced magnetization given by

= s"1<S3(0)>. (19)
xeG

Here and in the following, <•> stands for the Gibbs state with respect to the
hamiltonian H(h) and the inverse temperature β. A particular consequence of (18)
for p = 0 is that m^O since h>Q by assumption. Moreover, the log convexity of
trexp( — βH{h)) with respect to h tells us that the magnetization is an increasing
function of the external magnetic field as would be expected intuitively.

We shall now prove (18) on the basis of (17). From the Jacobi identity
we know that [Sΐp, \_H{h\ 5 ; ] ] = [S; , ψ(h\ StpJ] since [#(/*), [Sΐp, 5 ; ] ]
= N ll2[H(h\S%~\ =0. Now, the automorphism χ κ - χ of the group G induces an
automorphism of the observable algebra A which changes Sp into S_p but leaves
H(h) invariant. Thus, the Gibbs state is also invariant and we have
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= Σ <CS-P> tH(h)> S)H> = MlsEp + hm) where we used (17) and the positivity of

<[Sip,[H(fc),S£]]>. This completes the proof.
In order to study the implications of (18) we shall now turn our attention to the

following two-point functions,

knowing that they are restricted by Bogoliubov's inequality (7):

bpcoth{dp/bp)^ap.

In fact, bp is independent of the momentum p and related to the magnetization m by
the equation bp = sm/2. As (18) provides an upper bound for dp we have

(sm/2) coth β(sEpm~x + ft/2) = ap. (20)

If p = 0 but ft > 0, equality holds in (20) for we know that [iί(ft), SQ ] = ̂ 5 o Looking
at our result in the thermodynamic limit, we observe an infrared singularity of the
two-point function ap at the point p = ft = 0 provided ra>0 in some vicinity of this
point. This has to be contrasted with the relation (14). We therefore write

p ; p p ; p P p p p p
i= 1,2

where we used in variance of the Gibbs state under momentum reversal. If we know
take the mean over the group G, then

l)-N-1 £ <S\x)2>
xeG

l)-<S 3(0) 2> (21)

To find a useful lower bound for <53(0)2> we have to exercise some care, for the
obvious bound <53(0)>2 gives too little information. Typical best estimates for low s
values are

5 = 1 : < S 3 ( 0 ) 2 > ^ | < ( ) > |

which hold for any state with prescribed value for <53(0)>. To establish a similar
result for any spin 5, we observe first that there is a unique real j such that j + s
-0(mod 1) and j^ |<S 3 (0)>| < / + 1 . Then for any state

<53(0)2> ^(2j+1) |<S3(0)>| -;(/ +1) (22)

which is a simple consequence of the fact that .S3(0) possesses the discrete spectrum
{ — s, — s + 1, ...,s}. Reminding us of the defining equation sra = <S3(0)>>0 we
quickly learn from (20)-(22) that

Σ co
peG
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considering; a function of m. While the expression to the right is seen to increase
with m, the expression to the left turns out to be decreasing. We thus obtain an upper
bouiid M for the magnetization,

where, in the thermodynamic limit, M(β,h) is implicitly defined as the unique
solution of the equation

πyn J dnp{eβ{2sE*M~1+h)-\)~l (23)

with j(M) given by j + s = 0(mod 1) and j ^ sM <j + 1 .
Suppose now that; = s — 1, i.e. 1 — ί/s ^ M < 1. This always holds if either s = 1/2

or 5 = 1. As for higher spins, it holds at least for sufficiently low temperatures. Our
assumption makes the result more intelligible:

1 - M = M/s(2π)"Π J dnp(eβi2sE^M'1 +h) - 1 ) " 1 . (24)
IPkl^π

Observe that the traditional spin wave result is obtained if we replace M by 1 on the
right hand side of the Equation (24). As we lower the temperature, M indeed
approaches 1 and thus ί—M approaches the spin wave result.
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Note Added in Proof

Prof. F. Dyson kindly informed me that in 1968 H. Falk and L. W. Bruch already obtained the "best
possible" lower bound (6) for the Duhamel two-point function which they published in Phys. Rev. 180,
442 (1969).




