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Abstract. Given a set of Wightman functions one would like to associate to it a
field on Euclidean space admitting a simultaneous diagonalization. We in-
vestigate when this can be done in such a way that the Schwinger functions are
the expectation values of this commutative field with a bounded metric
operator commuting with the field. This requires as a tool the characterization
of those linear functionals on the symmetric tensor algebra over a space of
test functions which can be represented by complex measures on the cor-
responding space of distributions.

1. Introduction

The representation of Schwinger functions as moments of a measure on a space
of distributions has, in the past few years, proved to be a useful tool in constructive
quantum field theory. It is therefore interesting to ask to what extent such a
representation can be derived from the Wightman axioms.

Starting from these axioms one can go by analytic continuation to the Schwin-
ger points (points with real space and imaginary time components and no two
arguments coinciding) and obtain the Wightman functions at Schwinger points.
These functions are totally symmetric in their arguments but not defined at
coinciding points. Therefore these Wightman functions at Schwinger points can
be viewed as a linear functional on the symmetric tensor algebra of test functions,
which is not everywhere defined but only on a subspace of this algebra. An ex-
tension of this functional to the whole algebra we will call a Schwinger functional.

By using the Hahn-Banach theorem one sees that such an extension is by no
means unique. On the other hand this freedom does not affect the physics in the
Minkowski world so that one can use it and try to enforce additional properties
for convenience. We will try to find an extension such that the Schwinger functional
is given by a (complex) measure. This property is automatically fulfilled by
functionals on an abelian C*-algebra, but not for general abelian algebras, due to
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pathologies associated with unbounded operators and which one should avoid
if possible.

Such a programme leads us to the following two questions: Which functionals
on the tensor algebra can be represented by measures? When can a functional on
a subspace be extended to a functional on the whole space having the property of
the first question? Since we are allowing complex measures we should explain the
reasons why we do not treat the same problem with positive measures. The
answer to the corresponding first question has previously been given by us [1] and
independently by Challifour and Slinker [2] and also by Hegerfeldt [3]. A neces-
sary and sufficient criterion is the so-called strong positivity of the functional. This
is a condition which can be characterized neither topologically nor algebraically
which makes it rather hopeless to find useful criteria for the corresponding second
question. But quite apart from these technical difficulties we do not see any
reason why every Wightman theory should have this positivity property. For
instance it is clear that a functional representable by a positive or even real measure
gives rise to a Wightman theory with invariance under time reversal (see e.g. [4]).
If one believes in the existence of theories which do not have this symmetry one
must therefore stick to complex measures.

In this paper we give a characterization of functionals on the symmetric tensor
algebra admitting a representation by a measure. It turns out that these functionals
are characterized purely by a continuity property (Theorem 3.7). Therefore given
a Wightman functional at Schwinger points we can find an extending Schwinger
functional representable by a measure if this continuity property is shared by the
given functional. This continuity property will then be translated into familiar
language and it means essentially: When k of the Schwinger points come together
in any n-point function then they produce a singularity which is independent of the
remaining n — k points, as long as they stay apart. This is a property which seems
to be closely related to the existence of a Wilson-Zimmermann expansion [5, 6].

The contents of this paper are organized as follows: In the next section the
tensor algebra is embedded in a larger algebra which carries a natural topology
and the complex measures of interest are shown to correspond uniquely to the
continuous linear functionals on this algebra. In Section 3 the restriction of this
topology to the tensor algebra is written in terms of conventional seminorms.
Section 4 contains some mathematical results which put this topology in a new
perspective and in Section 5 we apply the results of Section 3 to Wightman
functionals at Schwinger points.

For the sake of convenience, everything is carried through for the test function
space y , but the results hold also for other spaces such as 3) or the Jaffe spaces.
Important is essentially only the nuclearity of the space.

2. Measures on Sf'κ as Continuous Functionals on a Function Algebra

Throughout this paper £f resp. ίfn stands for complex Schwartz space over IRd

resp. JRd"Λ. The spaces of real test functions resp. tempered distributions over IRd

will be denoted by ^R resp. ^ .
The symmetric tensor algebra over ^ is the direct sum

n = 0
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where S0(6f) = <E and Sn(6f) is the (completed) n-th symmetric tensor power of £P
equipped with the usual topology inherited from Sfn. In the direct sum topology,
denoted by τ, S(&) is then a commutative, complete nuclear *-algebra, where the
^-operation is defined as complex conjugation.

The dual space S(£f) consists of all sequences T=(T0, Tl9...) with Toe<£ and
Tne6^ s u c n t n a t Tn is invariant under permutations of the arguments.

The algebra S(£f) may also be considered as the algebra of polynomial func-
tions on £fή' Every ωe^ή defines uniquely a continuous real character χω =
(1, ω, ω(χ)ω, ...)eS(£f)' and we may identify an element aeS(£f) with the function

In this way, the components an of a in Sn(&) correspond to the homogeneous
functions of order n:

an(λω) = λnan{ω) for all λeIR.

The object of our investigation is the question when a functional Te S(^) has

a representation of the form

T{ά) = \a{ω)dμω

where dμω is a complex measure on 5^. For the definition of a measure one must
specify a σ-algebra, but this does not pose any problems in the case of ^ : All the
natural σ-algebras at hand are identical, namely those defined by the Borel
cylinder sets, the weakly or strongly closed sets, and the weakly or strongly
compact sets (see e.g. [7]). The functions a(ω) defined above are at least strongly
continuous and therefore measurable with respect to this σ-algebra.

With a measure dμω it is possible to integrate a wider class of functions than
those in S(Sf). Moreover, a measure will not be uniquely determined by the
functional it defines on S(£f\ For this reason one would like to have a space <F of
functions on ^ containing S(^\ and a topology on !F such that the measures we
are interested in appear in a natural way as the dual space of SF. This suggests that
3F should be an algebra of functions over 5^ which is at the same time a vector
lattice, furnished with a kind of supremum topology. Since <F shall contain S(£f)
there is essentially a unique minimal choice satisfying these requirements:

2.1. Definition, (i) $F consists of all functions / : <9^->C of the form

f{ω) = g{a1{ω\ . . .,αn(ω))

where a xeS{Sf) and g is a polynomially bounded continuous function on (ST.
(ii) A topology τ on #" is defined by the collection of all seminorms of the form

where F is a function 5^-»[0, oo] of the following type:
There is a seminorm p on S(£f\ continuous in the usual topology τ, such that

F » = sup {\a{ω)\
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Remark The restriction of this new topology τ to S(£f) is coarser than the
usual topology τ. This follows from the bipolar theorem which says that for any
seminorm p we have

p(d)= sup —Q-—- with p°(T) = sup {\T(a)\\p(a)^\} .
TeS{9Ύ P ( /

Since Fp(ω) = p°(χω) by definition, this implies | |α | | F ^p(a). In the next section we
shall see that τ \S(£f) is strictly coarser than τ.

The minimal choice of #" has the following consequence:

2.2. Lemma. // dμ is a measure on ^ such that every aeS(6f) is integrable,
then also every / e J ^ is integrable w.r.t. dμ.

Proof. Integrability w.r.t. a complex measure means the same as integrability
w.r.t. the positive measure d\μ\, and every fe^ is obviously measurable and
dominated as a function on ̂  by some aeS(£f).

Our aim is now to prove

,2.3. Theorem. For a linear functional f on SF the following are equivalent:
(i) T is τ-contίnuous

(ii) there is a unique complex measure dμ on ̂  such that every fe^ is integrable
and

Άf) = Sf(ω)dμω.

By the Hahn-Banach theorem and Lemma 2.2 this result has the following
corollary:

2.4. Theorem. A linear functional T defined on a subspace of S(£f) has a
representation

T(a) = \ a(ω)dμω

with a complex measure dμ for which all aeS(^) are integrable if and only if T is
continuous in the restriction of τ to this subspace.

Proof of Theorem 2.3. We show first that (ii)=>(i). Recall that a linear func-
tional T on S{Sf) is called strongly positive if it is positive on all a with a(ω) ̂  0
for all ω. The cone of such positive α's contains (properly) the closed cone generated
by all squares α*α.

2.5. Lemma. Every strongly positive linear functional on S(£f) is τ-continuous.

Proof. The assertion follows from the fact that the closed cone generated by
all a*a is a complete strict fo-cone in the bornological space S(Sf\ cf. [8], Theorem
5.5, p. 228 and [9].

Remark We note that the completeness of S{£f) is crucial for this lemma, for
there certainly exist discontinuous characters on the incomplete tensor algebra.

From this we get immediately

2.6. Lemma. Let dμω be a complex measure on 5^ such that every aeS(6f) is
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integrable. Then the linear functional on S(6f)

T(a) = \a(ω)dμω

is τ-continuous.

Proof. By the Hahn-decomposition we may write dμω as a linear combination
of positive measures. But a positive measure defines a strongly positive functional,
so Lemma 2.5 applies.

For the remaining part of (ii)=>(i) we now use the nuclear spectral theorem
([10], p. 83 or [11], Chapter I § 4.4). As in the preceeding lemma we may restrict
ourselves to a positive measure dμω. Since leS(^) is integrable, dμω is a finite
measure. From Lemma 2.6 and the fact that every weakly continuous represen-
tation of S(Sf) is strongly continuous (cf. e.g. [1], Lemma 4.2) it follows that the
canonical mapping of S{Sf) into the Hubert space L 2 ( ^ , dμj is continuous. By
the nuclear spectral theorem there exists therefore a non-negative function
c(-)eL2(&?R,dμω)CLί(&?ή> ^μω) a n d a continuous seminorm p on S(£f) such that
\a(ω)\^c(ω)p(a) for all αeS(^), ωe£^. This estimate implies that for the function
Fp of Definition 2.1 we have Fp(ω)^c(ω) and therefore

lψ^- f c{ω')dμω,

Sk \\f\\Fp with k = \c{ω)dμω<co.

This completes the proof of (ii)=>(i).
To show the converse we note first that the real part J ^ of 3F is a vector lattice

in the natural order for functions, and the topology τ is obviously compatible with
the lattice structure in the sense that | / | ^ | # | implies H/HJΓ^II^IIF Hence, the
topological dual J ^ is also â  vector lattice ([8], Theorem 7.4, p. 237) so every
te^' can be written as f={f1 - T2) + i(f3 - f4) with positive (and τ-continuous)
functionals 7). The proof is therefore complete if we know that every positive
functional on #" is given by a measure. This may be shown in the same way as in
[2] Section 3, but we shall here give a different proof more along the line of
Theorem 4.3 in [1].

2.7. Theorem. The following are equivalent for a linear functional f on 3F:
(i) f is positive

(ii) There is a unique positive measure dμ on ίfR such that

Άf) = Sf(ω)dμω for all / e # \

Proof. Suppose Tis positive and let π be the cyclic representation of J^ defined
by T with cyclic vector Ω and domain <§ = π(^r)Ω. Let &C^ be the bounded
functions in # \ By positivity of t one has ||π(b)|| ^sup|b(ω)| for all foeJ*, so the
norm closure of π{β) is an abelian C*-algebra Jί of bounded operators com-
muting strongly with all π(/)'s. For any real function / e J^, f±ί has an inverse in
J1, so π(f) ± i has an inverse in M. The operators π(f) for / real are therefore
essentially self-adjoint. By uniqueness of the functional calculus for self-adjoint
operators, Jί contains all bounded continuous functions of the π(/)'s. Since π{ίF)
and therefore also Jί has a cyclic vector we have that Jί" is maximal abelian, so
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all the operators π(f) can be written as multiplication operators on L2(Λ, dvλ),
where dvλ is a measure on the spectrum A oίJi. From the nuclear spectral theorem
one concludes as in [1], Theorem 4.3, that there is a mapping A3λh+ωλe6fR, such
that for aeS{£f\ π(a) is represented by the function λ\->a(ωλ). Again by uniqueness
of the functional calculus for self-adjoint operators this holds for al l/e#", because
every π(f) is a continuous function of some π ί α j , . . . π(an); a^S^). Hence

f(f) = \f(ωλ)dvλ.
A

The measure on A is then transported into a measure on 5^ in the same way as in
[1]. The uniqueness of the measure follows from the uniqueness of the de-
composition of JΪ.

3. Restriction of the Topology τ to the Tensor Algebra

The seminorms || | |F which define the topology τ were tailored to fit the inter-
pretation of S(£f) as an algebra of functions on yR. However S(^) is also a graded
algebra and this grading is in no way manifest in the structure of the seminorms
|| | |F. For applications one would like to have the topology τ on S(^) given by a
class of τ-continuous seminorms of the conventional form. This requires more
detailed consideration than have been necessary so far, but once it has been
achieved it will also become possible to identify τ with other natural topologies
on S(^). This last aspect of the problem will be dealt with in the next section.

In the first step towards this goal we replace the infinite dimensional space £fR

by IR and consider the analogous problem for the symmetric tensor algebra over
one-dimensional space. This is the same as the algebra C[X~\ of complex poly-
nomials of one (real) variable. The analogue of the topology τ is here the finest
locally convex topology, which can be defined by the seminorms

N

\\p\\{cn)= Σ c > J
«=0

N

for P(x)= £ ocnx
n, where {cn} is an arbitrary sequence with 0 ^ c n < o o . The

n=0

analogue off is given by the seminorms

where F(x)= £ dn\x\n, with some constants 0<dn^oo. F(x) is then a function
w = 0

which grows faster than any polynomial, so | |P | | F <oo for all PeC\X~\.

3.1. Lemma. Both classes of seminorms, \\ \\{Cn) resp. \\ \\F define the same
topology on C [ X ] .

Proof. The statement is essentially a consequence of a result of Boas [12]
which asserts that every linear functional on C[X] is a linear combination of
positive functional and therefore given by a complex measure on IR. In fact we
need a slightly stronger version of this, which can easily be extracted from the
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proof in [12] (see also [13] statement 3): For any sequence {cn} there is a sequence
{c'n} such that any Te C[X]' with | T\ g || || {Cn} can be written as {Tx - T2) + i(T3 - T4)
with positive functionals 7] satisfying | 7 ] | ^ | | \\{cίι]. (This means that the positive
cone in C[X] is normal.) It follows that for any T with \T\<^ || ||{Cn} there is a
measure dμx on IR such that

= £ djxf we get

T(P)=$P(x)dμx

and $\x\nd\μ\^4c'n. With dn\ = 2 " ( π + 1 ) (4c; + l ) " 1 and
« = o

\T(P)\^\P(x)\d\μ\^\\P\\F^F(x)d\μx\^\\P\\F.

This shows that || || {Cn} ^ || | |F. Conversely it is obvious that the seminorms || || {Cn}

define a finer topology than the seminorms || | |F.
For the algebra S{Sf) the situation is not as simple but the lemma can now be

used to prove the following result.

3.2. Lemma. Let an denote the components of aeS(£f) in Sn(£f). For any τ-
continuous semίnorm || ||F on S(S^) and any sequence {cn} with 0 ^ c n < o o the
seminorm

is also τ-continuous.
00

Proof. By the previous lemma there exists a function G(x)= £ dn\x\n with

dn>0 such that

Σv"

for all finite sequences {αj. Hence,

" + 1 cJαJ=supsup2" + 1

ω n

k(ω)|

\an(ω)\
^ sup sup Σ

an{ω)xn

n%F(ω)-G(x)

From the Definition 2.1 we have F(ω) = Fp(ω) = sup (|α(ω)| |p(α) ̂  1} with some
τ-continuous norm p, which we may take of the form p(a) = sup pn(an). Here pn is a

n

continuous norm on Sn(£f) and it follows that

ΣFn(ω) with Fn(ω) = sup {\an(ω)\\pn(aj£l}.

Since απ(ω x) = an(ω) xn we have also Fn(ω'X) = Fn{ω) \x\n and
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ΣdnFn(ω x). It follows that £ c J a J F is dominated by the τ-norm ||α||F with
n

q(a) = sup d^pja).
n

In order to carry the investigation further it is now necessary to specify the
form of the functions F which define the topology τ. Of course it is enough to
describe a basis of functions, i.e. such that the corresponding seminorm form a
basis for the topology τ. From the remark following Definition 2.1 we recall the
notation p° for the dual Minkowski functional of a seminorm p. p° is a norm on
the linear space {T\p°(T)< oo}, which is dense in the dual space iff p is a norm.

3.3. Lemma. The functions of either one of the following two types form a basis:

(i) F(ω)= f P»v

v = 0

(ii) F(ω)=f[(ί + p°Λω))
v = 1

where {pv} is any sequence of continuous seminorms on £f.

Proof. For the topology τ the seminorms of the form p(a) = sup pn®ε... ®εpn(an)
n

with continuous seminorm pn on 5^ form a basis. (For the definition of the tensor
products see e.g. [14], Section 7.1. Our notation is possibly not quite standard, the
ε-product is in [14] denoted by ε(U, V) and the π-product by π(U9 V)) The dual

00

form of this is p°(T) = £ p ° ® π . . . ®π/>°(Γv). With T=χω we get (i).
v = 0

It is obvious that the second form of F dominates the first one. In showing the
converse, we may without restriction assume that pv^pv+l9 which implies

oo oo 1 2 ^ oo I 2 ^ o o - j

Σ Pv» v^ Σ Λ? Σ p>r^ Σ γμ Σ pUωγ* Σ ^

where εΠ>0 is sufficiently small. By an elementary convexity inequality this is
larger than

2 μrfμ(ω))= Γ K 1 + «>>)) w i t h % = ^Vi^'
μ=l μ = 0

As next we show that when we restrict || | |F to Sn(£f) only the first n factors in
the product in Lemma 3.3. (ii) are relevant.

3.4. Lemma. For every sequence {pv} of continuous seminorms on £f there is a
τ-norm || ||G such that for all aneSn(<Sf)
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Proof. We may assume that p° ^p®+1 and we shall define G(ω)= \\ (1 + q®(ω))

with <2v(ω) = εvp° where ε v>0 and ε v^ε v + 1. In order to determine how small εv

must be we compute

sup
K(ω)\

v = 1 \

ω

\an(ω)\

~ S U p "

i s u p

The last factor is ^ 1 e.g. for εv = 2" ( v + 2).
In order to relate the left hand side in Lemma 3.4 to more conventional semi-

norms we must first say a few words about how seminorms on the usual tensor
00

power ^?

n = ̂ (]Rd'n) resp. the usual tensor algebra ^ = © Sfn induce seminorms
w = 0

on Sn(£f) resp. S(£f). Since we are interested in symmetric functionals T=(T0,
T1; ...)eS(^)' we may also look at Γas an element of Sf' annihilating the closed
two-sided ideal J ^ C ^ generated by the commutators. From this point of view it
is natural to look at S(&) as the quotient algebra £f jj and correspondingly
identify Sn(^) with S?JJn where Jn = Jr\^n. In accordance with this inter-
pretation of Sn(Sf) and S(£f) we make the following definition:

5.5. Definition. If p is a seminorm on
quotient seminorm

(p)s(x)=Inϊp(x

^ we define its symmetrization as the

and analogously for seminorms on ίf.

With this notation1 we get

3.6. Theorem. The topology τ on is given by the collection of the following

seminorms
GO

(a)= Σ

where {pv} is a sequence of continuous seminorms on

1 The notation is perhaps a little ambiguous. As defined above, (p)s is a seminorm on Sfn. However,
since it is constant on every equivalence class x + Jn it corresponds uniquely to a seminorm on Sn(£f).
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Proof. To begin with, nuclearity of if allows us to replace the π-products
Pi ® π . ®πPn by the (strictly smaller) ε-products (pί ® ε . . . ®εpn) without changing
the topology. According to Lemma 3.4 it is therefore enough to show that

with some constant cn independent of α e ^ , .
For this task we shall make use of the Hermite expansion of elements in if.

00

Every aeif can be written as a= Σ (xvev where {αv} is a sequence of rapid decrease
v = l

and the ev's are the Hermite functions which form as basis for if. Similarly, every
aeίfn has the expansion

a= Σ ^v1...vneVl®.. ®eVn (2)
V i . . . V n

where {αVl Vn} decreases strongly in all indices. It is enough to prove (1) for pv's
taken from a basis of seminorms on if and a convenient basis for our purpose is
provided by the seminorms

p{k\a) = sup \vkocv\ = sup |<vk<?*, d)\
V V

where k is an integer and e*sif' denotes the dual basis of ev, defined by <<?*, eμ} =
δμv. If p 1 ? ...,P« are seminorms of this form, corresponding to the exponents
fcl5..., fen5 their ε-product is given by

Pi® e...® ep I I(α)= sup | v ^ . . . v ^ < ® . . . ® < , α > | . (3)
v i . . . v n

We must as next take the symmetrization of P!® ε . . . ®εpn into account. Without
restriction one may suppose that kx ^ ... ̂ kn. For ae£fn as in (2), we define

where α V l . . . V n is the sum over all ocμiμn such that (μ l 5 . . . , μ j is a permutation of
(v l 5 . . . , vn). Since obviously aea + J>n it follows by Definition 3.5 and by (3) that

for some v 1 ^. . .^v n . We write this last expression more compactly as
Kω x ® ... ® ωn,α>|with ω—vf^*.

By a general polarization identity we may for any constants λl9..., λn write
the symmetric expression

Σ ω.
Perm, π

as a linear combination of terms of the form (λiίωil+ ...+λiιωi)®n. Since
ω π l ® ... ® ωπn applied to a is either the same as <ωx ® ... ® ωn9 a} or zero (in the
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definition of a the sum is taken over vί ^ ... ^ vj, this means that for some i1... it

(depending on λu ..., λn) we have

with ω = λiιωiι+ ... +λίιωiι and c'n a constant depending only on n. Moreover, for
any ί1?...,/, and λj^.0 we have pf(ω)Sn maxλjP?(ωj). It follows that if we can
choose λ( such that λjp^(ωJ)^λi for all ij then we have

1/ ^ ^ - \ ι ^ / J <\<ω1®...®ωn,ay\ίcn.n'< p ω)...p°n(ω)

which implies (1) and the proof will be complete. So let us show that such a choice

of λι is possible. We have p?(ω^ = vki~kχ so we must show that vkj~ki^ -γ for all

i,j which means the same as

for i^j. We now define λi by induction such that this holds for all i and j=i+l.
This can be done because vi+1Svt and ki + 1^kt. For arbitrary j^i we then write

and obtain

fei . . . Vk L~1

kj~ί<Vki + ί~

and in the same way the other inequality.

Remark. In the proof of this theorem we have for technical reasons used the
fact that £f has a basis. Although there are other test function spaces, e.g. Q),
which do not have this property it is easily seen that the proof goes through for
spaces which are the inductive limit of spaces with basis. This is the case for all
the usual nuclear test function spaces. At present, however, it is not clear whether
the theorem holds for all nuclear spaces.

Combining this result with Theorem 2.4 we get

Theorem 3.7. Let T=(T 0 , T1 ;...) be a sequence of tempered distribution
dn)' with

τn(f1®...®fn)=τn(fπl®...®fj

for all permutations π and ftG^(JR?). Then the following conditions are equivalent.
(i) There are continuous seminorms pv on ^ ( R d ) such that

\Tn(fί®-®fn)\Sp1(fί)--Pn(L)

for al
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(ii) There is a complex measure dμ on 5^ such that

^-factors

as a weak integral in £?„•

Proof. The estimate (i) and the symmetry of Tn implies \Tn\^(p1®π... ®πpn)s.

4. Other Interpretations of the Topology τ

The main objective of this section is to show that the topology τ on S{£f) can be
characterized by a property which at the first glance is independent of the require-
ments which motivated the introduction of τ, but has to do with the continuity
of the product on the algebra S(£f). At the same time we state some slight refine-
ments of the results in Section 2. The essential property of τ is that the dual space
of S(50[τ] is generated by the strongly positive functionals, i.e. those which are
positive on S(^)+ : = {a\a(ω)^0 for all ω}. A strengthened form of this is the
normality of the cone S(£f)+ which implies that a τ-equicontinuous set is a linear
combination of τ-equicontinuous sets of strongly positive functionals. In S(Sf) we
may also consider the algebraic cone S+(&?) = cl\Ϋjafai\aieS(<9?)\. The dual cone

I i J
of S+(£f) consists of the positive functionals. It is well known that there are positive
functionals which are not strongly positive, but surprisingly enough, the
equivalence of (iii) and (iv) in the theorem below means in particular that every
positive functional is a difference of two strongly positive ones.

4.1. Theorem. On S(6f) the following topologies coincide:
(i) The topology τ.

(ii) The strongest locally convex topology τm, coarser than τ, such that the
multiplication S(y)[τm] x S ^ f τ J - ^ S f ^ f τ J is jointly continuous.

(iii) The strongest topology such that S(<9P)+ is normal.
(iv) The strongest topology such that S + (^) is normal.

Proof. Let τ 3 and τ 4 denote the topologies defined in (iii) and (iv). We show
first the equivalence of τ, τ 3 , and τ 4 . To begin with, S{Sf)+ is normal for τ because
the norms || ||F have the property that Orgα^fr implies | | α | | F ^ | |h| |F. This means
that τ 3 > τ and it is obvious that τ 4 > τ 3 because S+((9

9)CS(^?) +. The dual space
of S(^)[τ 4 ] is precisely the linear hull of the positive functionals and from the
proof of Lemma 2.5 we know that positive functionals are τ-continuous. Since
τ is a Mackey topology it follows that τ > τ 4 . Now S+(^) is normal for τ 4 so it
remains to show that a τ-equicontinuous set of positive functionals is τ-equi-
continuous. This follows from Theorem 3.6 and the Cauchy-Schwarz inequality:

If T=(T0, Γ1? . . .)eS(y)[τ] ' is a positive functional, we get by repeated ap-
plication of the Cauchy-Schwarz inequality and the symmetry under permutations
the estimate
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If T belongs to an equicontinuous set defined by a τ-seminorm

00

v=0

where {pv} is a sequence of seminorms on ίf with pv(/) = p v(/*), we have therefore
also

with qv = p2v- By Theorem 3.6 this shows that T belongs to the τ-equicontinuous
set defined by the seminorm

00

Φ)= Σ
n = 0

This completes the proof of τ = τ 3 = τ 4 . For the equivalence of (i) and (ii) we show
first that the multiplication is in fact continuous if S(&*) is equipped with the
topology τ. That this is not true for the topology τ is e.g. shown in Lemma 5 of

00

[15]. The continuity of the product is easily seen if we take F(ω)= Y\ (1 +p%ω))
v = l

00

as in Lemma 3.3 with p ° ^ p ° + 1 . Defining G(ω)= f ] (1 +p°+i(ω)) w e n a v e F(ω) =

l|Λ fe|lF^II«llG ||fe|lG for all

In order to verify that τ is also the finest topology with a jointly continuous
product we must have a more explicit description of this latter topology. Since
this can be done for quite arbitrary algebras we formulate it as a separate result:

4.2. Proposition. Let 21 be on algebra (not necessarily commutative), let (Sc2I
be a linear space of algebraic generators for 21 and let t be any locally convex
topology on ©. Among all locally convex topologies on 21 having the properties

(a) the multiplication on 21 is jointly continuous;
(b) the restriction to (δ is weaker than t;

there exists a finest one tm and a basis of neighbourhoods of 0 for tm is given by sets
of the forms

U = absolutely convex hull \J Uπί ... Uπn (4)
n,n

where the union is over all n= 1,2 ... and permutation π and the sequence {C/J is

taken from some basis of ^-neighbourhoods for t.

Proof. The existence of a finest topology tm with (a) and (b) follows immediately
from Zorn's lemma. Let tm be the topology defined by the U's as in (4). Because
© generates 21, the U's are absorbing and thus qualify as neighbourhoods of 0.
We show first that tm satisfies (a) and (b). The second condition is clear, because
U contains l ^ which is by assumption a ί-neighbourhood in ©. It is no restriction
to assume that the sequence Ui defining U satisfies Ui + 1cUi. Define Vi = U2i
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and 33 = a.c.h. [jVπl... Vπn. We claim that 93 33cll. To see this, consider any

two permutations and nePn and π'ePm and assume for sake of definiteness that
n^m. We then define a permutation π"ePn+m in the following way:

π"(i)= 2π(i)-l for i = l , . . . , n

f2π'(i) for π

\π { )"\n + π'(ι)-2π'(i)-(π'(Q-n) for n\ΐ)>n .

This permutation satisfies 2π(ί)g:π"(Q for i = l , ...,n and 2π/(i)^π//(n + i) for
i = l, ...,m.

Hence,

π"{n+m)

Taking the absolutely convex hull of the union over π, π', n, and m yields
33 33cU, so ίm is finer than tm. For the converse, suppose U = U0 is any absolutely
convex ^-neighbourhood of 0. Because of (a) there are ̂ -neighbourhoods ltf for
ι = l , 2 . . . such that Ui + 1'Ui+1cVLi for ί = 0,1,2... and we may furthermore
choose Uf such that Ui+1cUi. Because of (b), 11^11^(5 is a ί-neighbourhood
of 0. Now define U—^ and C/^l/^. We claim that Uπl... (7π ncU for all n
and πePn. To see this, we prove by induction the following statement:

If i1?...,fm are numbers with ίr^2 and min |z,-js |^>2, then Uh... UinCUa_2,

where α = min{/ l 5..., im}. For m = 2 the statement is trivial, so suppose it has been
proven for m^n-1. If min{il9... ίn} = ir we have then

^ • . . ^ . C M , and C7ir + 1 . . .C7 ί n CU i r .

(If r = 1 or n put Uio = Uin + 1 = φ.) Therefore,

so the assertion holds for m = n. Since Uπi=U2πi this shows that for all π and n
Uπl... Uπn C U, so U is a ̂ -neighbourhood of 0.

With this result we can now complete the proof of Theorem 4.1: For a com-
OO

mutative algebra the expression for lί simplifies to U= (J U1... Un. Taking
» = i

and © = ( C © ^ the seminorm corresponding to U is

00

P= Σ (Pl®π ®πPn)S
n = 0

where pv is the seminorm defined by ί/v. This is exactly the same expression as
in Theorem 3.6.

Remarks. (1) The topologies τm and τ are in a similar relation to one another
as the original norm and the enveloping C*-norm for a Banach algebra. The
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equivalence of these two topologies is therefore not to be expected in general.
The essential property is nuclearity of 9* which entered crucially in Theorem 3.6.

(2) The analogue of Theorem 4.1 for the usual (non commutative) tensor
algebra £f does not hold. In this case τ is replaced by a stronger topology, cf. [15]
Theorem 4. It can be shown by an example that there exist symmetric functionals
on £f which can be written as a difference of two positive functionals but not as a
difference of two positive and symmetric ones.

For completeness sake we conclude this section by mentioning some additional
properties of τ which may be proved in the same way as Theorem 6 in [15].

4.3. Proposition. S{9) equipped with the topology τ is nuclear and complete, but
neither bornological nor barrelled.

5. Consequences for the Wightman Functions

The Wightman functions at Schwinger Points S π are defined by analytic continu-
ation from the usual Wightman functions U^n as ®(x l 9 . . . , xn) = H^n(ix\, JC15 ..., zx°,
xn\ where x°, Λ: denote the time- resp. space coordinates of xeR d . S π is defined
and real analytic at all points (xί9 ...,xn) with xt + Xj for all ij. Moreover, the
growth properties of ©„ in a neighbourhood of the singularities and at infinity
are such [16] that SM(x! ... xn) may be integrated with test functions in Sfn having
a zero of infinite order on the hyperplanes xt=x7-. In this way the sequence {©„}
defines a linear functional on a subspace of the tensor algebra. The continuity
requirement of Theorem 3.6 can now be translated into a condition on the be-
haviour of ©„ as a function and the result is :

Theorem 5.1. Let (Zn(xί ... xn)n = 0,1,2 ... be the Wightman functions at
Schwinger points for a field theory. A necessary and sufficient condition for the
existence of a complex measure dμ on Sf^ such that

J <5n(xl9...,xn)f(xl9...,xjdx = f ω®...®ω{f)dμω (5)

for all n and all test functions f which have a zero of infinite order at coinciding
points is the following:

There are constants cn,kn, and ln with

!©„(*!,....xjl^c,. t Σ {d(xh-xir
kv + r(xil...xjv} (6)

v = 2 i i < . . . <iv

where

The right-hand side of (5) then defines an extension of S = ( l , © l 5 S 2 > •••) t°

whole of

Proof. The existence of the representation (5) is by Theorem 2.4 equivalent
to the τ-continuity of the functional S = (l, S 1 ? S 2 , ...)• The necessity of (6), i.e.
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the proof that the distribution estimate in Theorem 3.7 leads to the estimate (6)

for the function 6 n can be shown in the same way as in [17], Theorem 4.1.

The converse statement follows from Theorem 3.7 because

implies

Σ Σ
v ii< ... <i

n

<v y
= L L l ι v _ v J

v = 1 v^i<j \\Λi A j

This last expression evidently satisfies the condition of Theorem 3.7.
Remarks 1) The estimate (6) says in particular that when any v points xh... xiv

come together, the singularity is controlled by the exponent fcv which is independ-
ent of the other variables and also of n. As remarked earlier, this property seems
to be rather closely connected with the existence of a Wilson-Zimmermann
expansion, in any case the existence of such an expansion is a sufficient condition.

2) As to the possibility of proving the estimates (6) from the Wightman axioms
we note that if all the points of the group xtl... xiv have larger (or smaller) time
coordinates than the remaining points one can by permutation bring this group
to one end in the argument of the Schwinger function and apply Schwarz inequality
to show that the singularity produced by these points is dominated by the 2v-
point function. This is however only a first step and it is unclear whether the
estimates hold in general.

3) In order to connect the representation (6) with a commutative field theory
one can pass from the complex measure dμ to the positive measure dv = d|μ|(J d\μ\) ~1

and construct a Hubert space L2(5^,dv) and a cyclic representation /-•<£(/) of
S(£f) with the cyclic unit vector Ω0 = l. The Schwinger functions can then be
written as an expectation value

where M is a metric operator defined as multiplication with the function f(ω) =

-—-. M obviously commutes with all φ(x\ and | |M|| = |/ | = ( J φ | ) .
CO

4) Nothing has been said about additional conditions which one might like
to impose on the measure, e.g. invariance under the Euclidian group. At this
place we would only like to make a few comments. Given a measure one can
always obtain a rotation invariant one by integrating over the compact rotation
group. However, it is clear that if the Schwinger functions shall have a represen-
tation by a translation invariant measure they must be bounded as distributions,
i.e. the estimate (6) must hold with /v = 0. This is so because every invariant
measure is a linear combination of positive invariant measures, and every strongly
positive invariant functional on S{Sf) satisfies the estimate of Theorem 3.7 with
invariant seminorms pv as follows from repeated application of Schwarzf inequality.



Integral Representations of Wightman Functionals 213

References

1. Borchers,H. J., YngvasonJ.: Commun. math. Phys. 43, 255 (1975)
2. Challifour,!, Slinker,S.: Commun. math. Phys. 43, 41 (1975)
3. Hegerfeldt,G.C: Extremal Decompositions of Wightman Functions and States on Nuclear

*-algebras by Choquet Theory. Commun. math. Phys. 45, 133—135 (1975)
4. Simon, B.: Helv. Phys. Acta 46, 686 (1973)
5. Schlieder,S., Seiler,E.: Commun. math. Phys. 31, 137 (1973)
6. Baumann,K.: Commun. math. Phys. 43, 73 (1975)
7. Collella, P., Lanford, O. E., I l l : Sample Field Behaviour for the free Markov Field, in: Constructive

Quantum Field Theory (ed. G. Velo, A. Wightman). Berlin-Heidelberg-New York: Springer 1973
8. Schaefer,H.H.: Topological Vector Spaces. New York-Heidelberg-Berlin: Springer 1971
9. Wyss, W.: Commun. math. Phys. 27, 223 (1972)

10. Maurin,K.: General Eigenfunction Expansion and Unitary Representation of Topological
Groups. Warszawa: Polish Scientific Publishers 1968

11. Gel'fandJ.M., Vilenkin,N. Ya.: Generalized Functions, Vol. 4. New York: Academic Press 1964
12. Boas,R.P.: Bull. Am. Math. Soc. 45, 399 (1939)
13. Lassner,G.: Rep. Math. Phys. 3, 279 (1972)
14. Pietsch,A.: Nuclear Locally Convex Spaces. Berlin-Heidelberg-New York: Springer 1972
15. YngvasonJ.: Commun. math. Phys. 34, 315 (1973)
16. Osterwalder,K., Schrader,R.: Commun. math. Phys. 31, 83 (1973)
17. Osterwalder,K., Schrader,R.: Commun. math. Phys. 42, 281 (1975)

Communicated by K. Hepp

Received October 17, 1975






