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Abstract. A general scheme of constructing a canonical structure (i.e. Poisson
bracket, canonical fields) in classical field theories is proposed. The theory is
manifestly independent of the particular choice of an initial space-like surface
in space-time. The connection between dynamics and canonical structure is
established. Applications to theories with a gauge and constraints are of
special interest. Several physical examples are given.

0. Introduction

Recent development in the theory of geometrical quantization (cf. [7, 11, 13]) has
caused a growth of interest in the canonical structure of classical theories. There
does not exist however up to now a general canonical formulation of classical
field theory. Excepting few simple cases (e.g. the scalar theory ([J+m?)¢ = G(¢),
cf. (1, 14]) it is not clear which physical quantities are to be taken as canonical
variables and how to define Poisson brackets. Especially difficult are theories
with a gauge. It seems that the best way to achieve good results in more com-
plicated cases is “to make a lucky hit” of Poisson brackets. For theories in flat
Minkowski space-time the Lorentz invariance is an important guide (cf. [3]).
We think, however, that the existence of such fundamental structure as Poisson
bracket in a given field theory can not depend on the question if 10 pc away the
space-time is curved or not.

In the present paper we are going to formulate a general scheme of the
canonical formalism which is consistent with all particular theories known to
us. The starting point of our considerations is the finite-dimensional canonical
formalism (theory of multisymplectic manifolds) given by one of us [9]*. It appears
that after a deep reformulation one can apply this approach to a large class of
observables (physical quantities, dynamical variables) which contains all physi-
cally interesting examples.

! Similar results concerning a finite-dimensional approach to canonical formalism was recently

presented by Goldschmidt and Sternberg [17].
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The scheme we present here is very general and can be used for very wide class
of (non-linear) theories. The price of this generality is that we have had to ignore
certain deep mathematical questions connected with non-linear theories (e.g.
the geometrical structure of the set of solutions for a given non-linear theory).
Most of these problems can only be dealt with in concrete examples. It appears,
however, that most of these difficult problems do not interfere with our con-
siderations. We need only some properties of finite-dimensional families of solu-
tions. These properties can be formulated as a set of axioms which are satisfied
in theories which have been studied deeply (cf. [8, 12]).

In this way we have been led to the very natural notion of an inductive dif-
ferential manifold (IDM) which is a generalization of a differential manifold. It
seems to us that this notion is much more adequate to study the structure of the
set of solutions of field equations than the notion of an infinite dimensional dif-
ferential manifold. The problem of constructing a differentiable structure in the
set of solutions of field equations seems to be extremely difficult in general.

One of the advantages of our theory is the connection established between
the canonical structure and the dynamics. Both are defined by the same multi-
symplectic structure. The Poisson bracket is not a supplement to the field equa-
tions but is one of its fundamental structures. The problems (very difficult in
general) of covariance of the canonical formalism are automatically solved in
our approach. Physical quantities are not functionals in the set of Cauchy data
over some space-like surface ¢ (and testing if the Poisson brackets do not depend
on ¢ is a rather difficult procedure) but are functionals on the set of complete
solutions of the field equations. Our approach gives a considerably simplified
treatment of theories with gauge. It appears that physical quantities (for which
the Poisson bracket is defined in a natural way) are gauge-invariant functionals.
Thus in electrodynamics we do not need to worry about the Poisson brackets
for potentials.

In Section 5 we give several examples, but many important observables (e.g.
generators of the Poincaré group) have been omitted since they have been
examined in [9].

The notation of the present paper is the same as in [9]. In particular, if Q is
a submanifold of 2 embedded by a mapping i:Q—2 and « is a differential form
on # we denote o|Q:=i*q.

Recently one of us W. Szczyrba, using the general theory elaborated in the present paper has
obtained a natural symplectic structure for a set on Einstein metrics in General Relativity. These
results will be submitted for publication in Commun. math. Phys.

The authors would like to thank Proffessors K. Maurin and I. Birula-Biatynicki for lively interest
in their work and fruitful discussions.

We thank also very much Professor D. Simms for his deep comments which were very valuable
for us during the preparation of the manuscript.

Our special thanks are due to Professor J. Ehlers for many profound remarks and improvements
of the final version of this paper.

1. Multisymplectic Structure

The canonical formalism in field theory is usually defined by analogy with me-
chanics. It appears, that the natural tool is the notion of multi-phase space.
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Definition. By an n-phase space we mean a pair (2, y) where 2 is a r-dimen-
sional (r>n) differentiable manifold and y is a closed differential (n+ 1)-form on
P:.dy=0.

The whole dynamics is contained, in this approach, in the form y because of
the following:

Definition. A submanifold Q embedded in £ is called y-singular if for every
vector field X tangent to 2, defined on Q the following is true:

(X _y[Q=0. (1.1)

Definition. By a state in multi-phase space (2, y) we mean any maximal (i.e.
which is not contained in any other) y-singular submanifold of 2.

In further considerations we shall always assume the regularity condition of
(2,v) (cf. [9]) which assures that each two states are submanifolds of the same
dimension.

In mechanics n=1, 2 is the (t, ', p;)-phase space, of Cartan’s homogeneous
formalism, y=d () p;dq’— Hdt), and states are the usual Hamiltonian trajectories
(cf. [9]).

In a field theory Eq. (1.1) are simply field equations and every state is a graph
in multi-phase space £ of a solution of the field equations.

As an example take the scalar field theory. We start from the bundle of

4
4-covectors /\ T*(W) in the space W =R x M where M is space-time. Take in W
4

a coordinate chart (¢, x*). There is the canonical 4-form in the bundle A\ T*(W)

3
w=ndx’ Adx* Ndx* AdXxP+ Y ntdxO A o nde Ao AdX (1.2)
p=0 i
4
where (¢, x*,1,#") is a coordinate chart in /\ T*(W) given uniquely by the chart
(@, x") in W.

4
As the 4-phase space we take the 9 dimensional submanifold of /\ T*(W)
given by equation
’7+H((P, x*, VIV)=0' (13)
The form v is given by: y=dw|? =d(w|?).

It can be easily shown (cf. [9]) that if we parametrize a state by space-time
coordinates:

Q={(x")>((x"), x*, 1" (x*))}
then Eq. (1.1) are equivaleht to the field equations:
O/ 0x* = OH | on*

3
Y. ont/oxt=—dH/dp . (14)
n=0
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Taking e.g. H=%(n"n,+m*@*) — F(p) we obtain equations:

op/oxt=n,,
(O+m*)e=G(e)

(where G(p)=F'(¢p).

The above approach can be called the multiphase formulation of a field
theory. It follows from the geometrical theory of the calculus of variations (see
[5,16]) that for a given Lagrangian theory there always exists a multiphase
formulation of it. A very interesting question is whether this formulation is more
general than a Lagrangian one. It is a problem of constructing a multi-phase
space for a given system of (partial) differential equations. This problem has
already been partially solved and the results will be published soon. In the present
paper our starting point is a multisymplectic manifold (2, y) and we do not need
any assumption about its origin.

The set of all states of our theory will be denoted by #(Z, y) or simply .
We shall assume in the sequel the “hyperbolic” character of (£, y). This means
that there exists in & a sufficiently large family ¢ of (n—1)-dimensional sub-
manifolds of £ playing the role of “initial data” for the field Eq. (1.2). This has
to be understood in the following way: for any ¢C% there exists a state Qe H#
(not necessarily unique) containing ¢ (i.e. ¢ is a submanifold of Q). For the further
development of the theory we assume that @ satisfies the set of natural axioms
formulated in [9]. In relativistic field theories over space-time M (where £ is
a tensor bundle over space-time) the set of all Cauchy data over all space-like
surfaces of M satisfies those axioms and can be taken as .

Elements of the family 4 will be called admissible initial surfaces (a.i.s.). Our
goal is to define a canonical structure (Poisson brackets) for functionals (of a
certain class) defined on the space of states #. Such functionals will be called
physical quantities (observables, dynamical variables).

Previously one of us has given a theory of local observables [9]. It appears,
however, that there are only very few such quantities (cf. also [17]). A more
general approach will be presented in Section 3.

2. “Pseudo-Differentiable” Structure of the Space of States

Our main goal in this paper is to find a natural symplectic structure in the space
A . 1t is known that such a structure defines Poisson brackets and the connection
between canonical vector fields and physical quantities.

If the set # was an infinite-dimensional manifold the symplectic structure
would be represented by a differential 2-form I', closed and non-degenerate (in
some sense). But a construction of a differentiable structure in # is in general
very difficult. For our purposes it is more natural to use the notion of an
“inductive differential manifold” (I.D.M.) which will be defined below.

An inductive differentiable manifold is, roughly speaking, a space in which
the notion of finite-dimensional submanifold is defined, and which is “exhausted”
by its finite-dimensional submanifolds, in the sense given below. None of these
submanifolds, however, may be “thick” enough to fill a neighbourhood of Q.
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Definition. By an inductive differential manifold of class C° we mean a pair
(#, o) where:

1. S is a set.

2. o/ is a family of injective mappings (x, P,) of open k-dimensional cubes P,
(where k=0, 1,2,...) in R*:

Po={(t', 1%, <1 j=1,2,...,k}

into # i.e. x: P - .

3. The following axioms are satisfied:

a) For every point Qe # there exists at least one mapping (%, P;)e.«/ such
that Qe »(P)).

b) For each two maps (x4, P,,), (x,, P,,) with intersecting images [i.e. »;(P; )N
%,(Py,) is non-empty] there exists (x, P;) such that s;(P, ) Cx(Py); 3%,(Py,) C#(P)).

¢) If (%4, Py)s (%5, Pp)eoZ and (P, ) Cxy(P,) then x; 'ox,: P, —P,, isa C°
diffeomorphism onto a submanifold embedded in P,,.

d) If (%, P)e.o/ and ¢:P,, —P, is a C*-diffeomorphism onto a submanifold
embedded in P, then (x°@, P, )e o/.

The family .7 will be called an atlas of 2. Its elements will be called finite
dimensional (parametrized) surfaces in J#.

The axiom d) plays the role of a completness axiom for the atlas ./. The
family .o defines in # the inductive topology (cf. [4]).

We shall now define the tangent space at the point Qe 5. Consider the family

e9~Q= U (Pk7 X, e) )
(Pr,#)esd
Qex(Py)

where “e” is a vector in IR*. We introduce in 7, the following equivalence rela-
tion: (Py,, %, €1)~(Py, %, €;) if and only if for every surface (x5, P;,) containing
(%5, Py)) and (x5, P,,) [in the sense of axiom b)] the following equality holds:

(5 Moy (7 {(@Q))ey = (3 Fop) (3¢5 H(Q))es 2.1

where F'(x)-e denotes the derivative of the mapping F taken at the point x and
acting on the vector e.

The quotient space T,=7 ,/~ will be called the tangent space to J# at Q.
It inherits a natural vector space structure from that of the set of representatives:

APy, %, e)+ﬁ(Pk3%7f)=(Pk7 n, ae+Bf),

where «, f are real numbers. The self-consistency of this definition can be easily
proved.

For a given inductive differential manifold # we can define in a natural way
such geometrical objects as C°-mappings, tangent mapping, vector fields, dif-
ferential forms, exterior derivative, submanifolds (of finite dimension), Lie deriv-
ative etc. (cf. [10]). All these definitions use the possibility of pulling back the
corresponding object to IR* using our mappings (%, Py).
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For example:

The mapping #3Q— Y(Q)e To(5#) is said to be a C*-vector field in # if for
every Q there exists a surface (%, Py) passing through Q [ie. Qex(Py)] such that
Y is a C*-vector field tangent to »(P,) in a neighbourhood of Q on x(P,).

The last statement is to be understood in the following sense: there exists
a vector field (of C*-class) e(x) in some neighbourhood of »~}(Q) in P, such that
(P, %, e~ 1())) represents Y(Q).

As a second example we can take the commutator of two vector fields. We
use the fact that “locally” both fields are contained in a common finite-dimen-
sional surface (%, P,). The commutator is thus defined with the use of the com-
mutator of finite-dimensional fields.

Now we shall construct the structure of .D.M. in the space J# of states of
a given multi-phase space (#2,y) by means of families of transformations in 2.
As we have already noticed (Section 1) there are in general few transformations
of 2 which carry all states onto states. But for defining local C*-surfaces “in a
neighbourhood” of 2 we need only such transformations which carry Q onto
states:

Definition. The L.D.M. structure in # is given by the family ./ of all mappings
of the following form:

Poa(ty,....t)—=ulty,....t)eH,

where

wtys.. o t)={w(ty,....tx; P)EP:peQ, Qe A} 2.2)

and p is a smooth mapping P, x Z—2 such that

1. For every (ty,...,t)€ P, w(tys...,t,; ) is a diffeomorphism of £ such that
image of Q is a state i.e. Y(ty,...,t,; Qe H.

2. (04,...,0; - )=id,.

3. 1y satisfies the non-degeneracy condition which will be formulated in two
stages:

a) If k=1 then for every te P, there exists peQ such that the following
mapping: P;3t—y(t; p)e? is transversal to Q at (t;p) [ie. 0/dty(t; p)¢ T(2)].

b) If t—(t(7),...,t,(t))e P, is a curve in P, with non-vanishing tangent vector
then the map ¢(t; - )=y(t,(7),...,t(1); -) fulfils the condition a).

The fundamental problem of our theory is to prove that such mappings
satisfy Axioms 3a) and 3b) of the definition of I.D.M. (the other axioms are
satisfied). It is a question about the global geometry of the set of solutions of a
given system of field Eq. (1.2). We know, however, that our axiomatics is not
empty. It is satisfied by the large class of relativistic, globally hyperbolic field
theories. In this case £ is a tensor bundle over space-time M, and states are global
sections of this bundle. By hyperbolicity we mean a possibility of parametrization
of the space ## by the space of Cauchy data over a fixed space-like surface 0 C M.
Cauchy data are here sections of the bundle (2, n|o, 6) which is the reduction
of (#, n, M) to ¢ C M. Now we can limit ourselves to transformations |2, of the
space 2, (and not the whole space 2). If constraints imposed by the theory on
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the space of initial data are not too complicated (as is the case in all reasonable
theories) we can easily prove that the set ./, of mappings generated in J# by
families |2, we of satisfies our axioms. Now it remains to prove that different
atlases &7, obtained by choosing different space-like surfaces ¢ in M are com-
patible (i.e. are the same). This is a consequence of global hyperbolicity of our
theory.

The I.D.M. approach is even in this case less complicated than a construction
of a differentiable structure in 5 by using e.g. Cauchy data as local coordinates.
In the last case we should have to worry about a topology in the space of Cauchy
data, a notion of Fréchet derivative etc. which are very hard problems in the
general case. We would like however to mention that our approach can be useful
even for theories in which there are no global solutions (because states may have
singularities at some points at space-time).

If p is such as in 2a) then

t—>Q,={y(t; p)e Z:pe Q}=x(1) (23)

is a smooth curve in J such that Q,=Q. Let us take the vector field generated
on Q by y:

Qop-Y)= 4| yte; e Ty2). 04

Such vector fields which are defined on Q and may be not tangent to Q will be
called “vector fields on Q. Vector fields on Q which are also tangent to Q will
be called “vector fields in Q” (cf. [6]).

Theorem 1.1If Y is any prolongation of Y onto a neighbourhood U of Q in P then
Zy(X _y)e=0 2.5)
for every vector field X in U.

Proof in Section 6.

We would like in the sequel to represent vectors tangent to  at the point
Q by vector fields generated by families of difftfomorphisms {i(t;-)} by the for-
mula (2.4). We see however that this correspondence can not be univalent. The
same curve t—, can be obtained by different diffeomorphisms i.e. the same
vector tangent to a given curve can be represented by different vector fields on
Q. Let p, and v, give the same curve in S i.e. for every |t| <1 the corresponding
images are equal:

Yi(t; Q=p,(t; Q).

It means that:
Ai=py(ts-) " Lopy(ts ) (2.6)

transforms Q onto 2 and the vector field Q3p—dA(p)/dt is tangent to Q. If we
differentiate the formula (2.6) we obtain

d2(p)/dt],= o= — dp,/d0; p) + dy,/d1(0; p) , 2.7
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i.e. the difference between vector fields defined on Q by v, and v, is a vector
field in Q (tangent to ). Such vector fields satisfy automatically the condition
(2.5) since

LHX _pIR=2L7{(X y|Q}=0

by virtue of (1.1).

Vector fields in Q are generated e.g. by transformations w(t;-) leaving Q
invariant which correspond to constant curves in #(Q,=Q;|t|<1), i.e. vector
fields in @ (and only they) represent the zero vector in Ty ().

Condition (2.7) is not only necessary but is also sufficient for ¥; and Y, to be
tangent to the same curve t—Q,: Take Y,=7Y, + X where X is tangent to Q and
Y, =dy,/dt(0;-). Take any family ¢,:2—-2 of diffeomorphisms of £ trans-
forming Q onto @ “tangently” to X ie.:

dfdt] oL (p)=X(p) for peQ.

Then put ,(t; p):=y,(t; £(p)). Both curves generated by v, and vy, in 5 are of
course the same and:

dp,/dt(0;p)=Y +X =Y,

which was to be proved.

The above considerations show that vectors tangent to 3 can be represented
by classes of vector fields on Q satisfying condition (2.5) modulo vector fields in
Q. Denote the space of such classes by Tp,. In general we do not know if the tangent
space To(H) (which can be identified with a subspace of TQ: T,C TQ) is equal the
whole space T,

A very important role is played in the sequel by the subspace T C T, composed
of vectors corresponding to “spatially compact” deformations of Q. More pre-
cisely: vectors of Ty are represented by such vector fields Y on Q that for every
a.is. cCQ there is a compact set K Cc such that Y is tangent to Q in {c—K}.

3. Symplectic Structure and Poisson Brackets

We approach now the main point of our considerations: defining in 2 a smooth
2-form I'. Such a 2-form is a bilinear, antisymmetric functional on the tangent
space:

Tox Tya(Y, V)= To(Y;, Vy)eR.

According to the general procedure in I.D.M. the smoothness of I' means that
»*I" is a smooth 2-form in P, for every local surface (x, P)e /. Our 2-form I
will be finite-valued only on a subspace of T, x Tp,. For the sake of simplicity we
shall define it only for such pairs of arguments that at least one of them belongs
to Ty,

oY, V)= [ (Y, A7)y, (3.1)

cC
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where Y,, Y, are arbitrary vector fields on Q which represent vectors Y, ¥, (at
least one of which belongs to 7)) and ¢CQ is an arbitrary a.i.s. contained in Q.

Remark 1. If Y, or Y, is tangent to Q then (Y; A Y;)_|y|Q2=0 by virtue of the
field Eq. (1.1). It follows from the definition of T7 that the integration in the
formula (3.1) is extended over a compact set in c.

Remark 2. The value of the integral in (3.1) does not depend on the particular
choice of field Y representing a vector Y by virtue of the same arguments as in
Remark 1.

Lemma 1. If the fields Y, Y, on Q satisfy Eq. (2.5) then
dl(Y, A Y5)_17]=0

where (Y, A Y,)_ly is understood as a (n—1)-form on the manifold Q.

For the proof see Section 6.

Remark 3. Lemma 1 and the properties of admissible initial surfaces imply
that the integral in (3.1) does not depend on the particular choice of ce € con-
tained in Q.

Remark 4. The definition of I' could be extended to a larger class of tangent
vectors. Instead of the condition of “spatially bounded” support for fields Y we
could impose some weaker condition of “sufficiently rapid vanishing at infinity”.
Such a condition is necessary if the value of (3.1) has to be finite. For theories
with positive energy (as Ap* theory with A<0 and all physically meaningfull
theories) we could reduce the space of states to the space #%;, which corresponds
to finite energy. It seems that the tangent space to #;, would belong automati-
cally to the domain of I'.

Theorem 2. The form I is closed, i.e. dI'=0.

For proof see the Section 6.
The form I' defines a linear mapping from the tangent to the co-tangent space:

sV -V =Ty, )e TF, (3.2)

where T is the space of linear functionals on Ty, The image of Ty in T will
be denoted T".

Definition. By an observable (physical quantity) we mean any smooth func-
tional F on the space of states 2# for which there exists a smooth Tg-valued
vector field Q— Y(Q)e T satisfying

dF=—Y". (3.3)

Remark 5. 1t suffices to assume that the field ¥ exists “locally” in the sense
of LD.M. This means that for every point Qe # there exists a local surface (%, Py)
passing through Q (Qex(P,)) and the field Y tangent to »(P,) in the neighbour-
hood of €, such that (3.3) is satisfied.
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Definition. For two observables F; and F, we put:

H3Q-{F,, F,}(Q):=TyY, ,)eR, (3.4)
where f’l and f’z are as in (3.3):

dF = - Y/

dF,=—Y;. (39

The functional {F,, F,} is called the Poisson bracket of F, and F,.

Remark 6. The definition above is consistent because the right-hand side of
(3.4) does not degend on the particular choice of vectors ¥,, Y, satisfying (3.5).
To see this take Z?=Y,; Z =¥y Then

TolZy, 25)=2(Z1)= Y (Z)) =T oY, Z5)= —T o2y, ¥)= = Z3(1))

= - (V)= —Tos, V)=To(}. ).
Theorem 3. The Poisson bracket of two observables is also an observable and
diF,, Fy}=—[¥, 11",

where Yy, Y, are as in (3.5).

For the proof see Section 6.

Proposition 1. The set of all observables F with its natural linear structure and
with the form {-,-} is a Lie algebra. In particular the Jacobi identity is satisfied:

{F o Fob Fad+ ({Fy, F3b F3+{{F3, Fy ), Fp}=0.

4. Gauge and Degeneracy

The mapping ¥ —Y” is not in general injective, i.c. the form I is degenerated.
The degeneration is connected with:

1. Existence of constraints imposed on the space of Cauchy data (which means
that the tangent space T, is small).

2. The fact that an a.i.s. ¢ does not determine uniquely the state QDc.

In electrodynamics,

1. The initial data {4,(x), EX(x)} must satisfy the following constraint

divEF=o, (4.1)

where g is a charge density.

2. The values of potentials and fields at the time ¢, do not determine uniquely
the values of potentials in the whole space-time.

We deal in this case with the gauge: many states in the geometrical sense
correspond to the same physical state (two states which differ only by a gauge
transformation are equivalent from the physical point of view).
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However, for hyperbolic theories without constraints the form I' is non-
degenerate: the space Ty, is large enough and the equality

Io(Y,2)=0 forevery ZeT,

implies ¥'=0. We shall see in the next section that this is the case in the scalar
field theory.
In the general case we define the degeneracy distribution:

Wo={YeTQ: ¥°=0}.
The distribution W, is involutive:

Proposition 2. If f’l and f’z are smooth W-valued vector fields in A then the
values of [Y;, Y,] lie also in W. (For the proof see Section 6.)

Especially interesting are theories for which W is integrable. Then we can
divide the space # into classes composed of integral surfaces of W. Two states
belong to the same class if they can be joined by a curve the tangent vectors of
which belong to W. We meet such a situation in electrodynamics: two states which
differ by a gradient are put into the same class.

The quotient space # (space of classes) has the tangent space equal to the
quotient

To(H) = Tol H) W

Using the fact that I is singular on J¥ we can project I onto the quotient, ob-
taining I". The form I" on J# is closed (dI'=0) as I is closed on #.

Because¢ W contains the whole degeneracy of I' the quotient form I is non-
degenerate. We thus see that (I, #) is something like a symplectic I.D.M. which
means that the space of physical states has a symplectic structure.

If there is no gauge in our theory then J# = and (A, I) is already symplectic.

Let us notice now that the forms ¥’ (where Ye T3) vanish on vectors belonging
to W:

(X, V" =T(Y, X)=—ToX, V)= —(¥, X">=0

for Xe W,

We thus see that the condition (3.3) means that dF vanishes on vectors tan-
gent_to the gauge-congruence (in the case where W is integrable), i.e. observables
are gauge-invariant functionals, so they can be treated as functionals on 7. The
whole canonical structure is thus reduced to the symplectic geometry in (5, I'),
and our definition of Poisson bracket coincides with the usual definition in the
symplectic case. .

Every observable defines the unique vector field [Y;] on # (which is a class
of vector fields in # modulo fields tangent to the gauge congruence) by the
formula (3.3). The uniqueness follows from the fact that Y; is determined in #
up to vector fields belonging to W (tangent to the gauge). Such fields in # will
be called canonical.
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Theorem 4.1. Canonical fields with Lie bracket [ -,-], form a Lie algebra and
the mapping # s F —-[ Y] is a homomorphism of Lie algebras.

2. The kernel of this mapping is composed of constant functionals.

1. Is an immediate consequence of Theorem 3. 2. Is a consequence of the non-
degeneracy of T.

5. Examples

As a first example we shall consider a non-linear electrodynamics (cf. [9, 16])
and compute equal-time Poisson brackets for components B and D* of magnetic
and electric fields.

By M we denote now Minkowski’s space-time with metric tensor (+, —, —, —).
Take the space W=T%*M) as a configuration space. We have in W local co-
ordinates (x*, 4,) induced by local coordinates (x*) in M. The phase space

4
P2C /\T*(W) is composed of 4-covectors in W which have the form:
hdx® A ... AdXP+ Y BVAXO A o AAALA LA dX3 (5.1)

and W= —h; h=H(x", A,, h*").
For the sake of simplicity of notation consider the case when currents vanish,
i.e. H=H(h"). In this situation the canonical (4 + 1)-form in 2 is

y=(1/2)0H/0h** AW ndX° A ... NdXP+dW* AdXO A o ANAALA oA dXP

(the summation convention is used). The equations of motion (1.2) are (cf. [9, 16])

:=0H/h**=0,A,— 0,A
fuv / uty vl (52)

8 =0.

The space 2 has bundle structure over M(n:2— M). Solutions of field Eq. (5.2)

are sections of this bundle, given in local coordinates (x*, 4,, h**) by functions
A,=A,(x")
L (5.3)
B = h*(x")

satisfying (5.2). The set € of a.i.s. consists of all 3-dimensional submanifolds which
are sections of bundles 2, (where 2, is a reduction of 2 to an arbitrary space-
like surface ¢) and which satisfy constraints analogous to (4.1). For the sake of
simplicity take ¢ = {xe M; x°=const}. In this case the constraints are

akhOk = O
sz= akAl— 31Ak

(5.4)

where we suppose that f,; are functions of 4*".
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Let ¥ be a vector tangent to # at Q. It can be represented by a n-vertical
vector field Y defined on Q. In local coordinates:

Y=0,0/04,+ Y P*o/oh*. (5.5)

p<v
It is easy to check that Y satisfies Eq. (2.5) only if
a;LQV(X}L) - 6qu(xl) = 1/2 afuv/ahaﬂpaﬁ
8,P*(x)=0 (5.6)
P = — P,
! & . wy wy .
If Y; and Y, are given by (lef )and (?wf ) according to (5.5) then

TV, V)= (Y n Yy) _Iy=] (P"OQk—P"OQk)dxl Adx? ndx?. (5.7)

1 2 2 1

Vectors from the subspace T,y are represented by vector fields such that cor-
responding functions Q, and P have spatially compact supports. Let us define
the following observable-valued distributions:

C3(a)ayp—Dyle F
Ci(0)ay—Byle 7,
where
DXp)= [ h**-ypdx® Adx® ndx?, (5.8)
BXyp)=—1/2" | fi;-pdx" ndx® ndx?. (5.9)

The value of D¥y) and B¥p) is thus the value of k-th component of electric
(magnetic) field smeaged with the test function .
Take any vector Z tangent to J# and its representative

Z=U,0/0A,+ V" d/oh,

where U, and V*" satisfy Eq. (5.6).

The infinitesimal change of the value of D¥y) and BXy) caused by the change
of a state connected with the displacement of initial data (5.4) along the field Z
is given by the formula:

dDNy)Z = [ V¥ pdxt Adx* ndx?, (5.10)
dBX(p)Z = —1/26" [ (8,U ,— 0,U Jydx' A dx* ndx®. (5.11)

If Yy is such that
Qjlo=5% and P°lo=0 (5.12)
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then comparing (5.10) with (5.7) we see that
dDX)Z = — TV 2)=<Z, — Y5 (5.13)

ie. dDYyp)= — Y.
Integrating (5.11) by parts we obtain

dBYp)Z = — [ U 0ppdx* Adx? ndx®. (5.14)
J

Take Yg. such that

Q;lo=0, PPo=¢"*0p. (5.15)
Comparing (5.14) with (5.7) we obtain

ABX W) Z = —T'o(Yg 2)=<(Z, — Y5> . (5.16)

Hence dB¥(yp)= — Y.
The Poisson brackets are:

{BXw,), BY(p2)}=T(Yplypy), Ypp1)) =0, (5.17)
{DHapy), D(p2)} =T (Vo) Youlp2)) =0, (5.18)
(B ), D(w2)} =T (Vpdpy), Ypulp,))

=asf"j(6jw1)zp2dx1 Adx? ndx3. (5.19)

If we strip the above formulae of test functions v, and y, we obtain the Poisson
brackets in the distribution form:

{B"(x), B(y)} =0={D"(x), D(y)}
{B(x), D*(y)} = —¢"/ 0;8(x—y).

(5.20)

As a second example we shall compute the commutation relations for the
components of the energy-momentum tensor in the non-linear Klein-Gordon
theory. Let M be space-time and W =M x R. Let (x*) denote local coordinates

4

on M and (x*, ¢) local coordinates on W. The phase space 2C /\ T*(W) is com-
posed of 4-forms given by formula (1.4) which satisfy the condition (1.5). We take

H(p,n")=1/2n"n,+ G(p) where GeC*(R). (5.21)
There is on & the canonical 5-form y=dw|# where

w(xu> Q, r]v)= - H((P, nu)dxo A dxl AN dx2 A dx3
PO A L AdQ AL AdXD . (5.22)
i
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Because H does not depend on (x*))_, space-time translations in 2, i.e. fields
X =a"d/0x" (where a* are constant) preserve y:

Leo=0=dX_lo)+X_ly. (5.23)

Such fields X are thus local canonical fields and 3-forms J/0x*_|w determine the
energy-momentum tensor (cf. [9]).

States of this theory are sections of the bundle 7:2— M. In local coordinates
* they are given by functions:

e=0(x"), n'=n"(x") (5.24)
where
Oe+G'(p)=0
(5.25)

n=g"" op/ox”

where g*¥ is the metric tensor.

The set € of all a.is. is equal to sections of all reductions Z|o of £ to space-
like surfaces o C M satisfying some compatibility conditions implied by (5.25). For
o= {x°= const} this condition is following

—1”":11,(: an/axk k=1,2,3

For any state Q given by (5.24), (5.25) a n-vertical vector field on Q Y=07/0p +
P*d/on* can represent a tangent vector to # at Q only if

HQ+G"(@)Q=0
Prioghag. (5.26)

Let ¢ be an a.is. generated by the space-like surface o= {(x*):x°= const}. If the
fields Y}, ¥, on Q fulfil (5.26) and at least one of them has a compact support
on ¢ then using formulae (3.1) and (5.21) we obtain:

To(Yy, V)= [ (PYQ, — P3Q,)dx" Adx* ndx®. (5.27)

We see from (5.27) that I is here non-degenerate. Values of Q and P° on ¢ can

be taken completely arbitrarily. If thus (5.27) vanishes for every Q; and PZ then

,=0 and PY=0 on ¢. But Eq. (5.26) imply that Q, =0, P,=0 on Q ie. Y,=0.
The energy-momentum tensor is

T =n"n"—g**(1/2n"n,— G(9)) (5.28)

according to the following formula:

3
(0/ox* _w)|Q= Y (=1 'n,—o(1/2n"n, — G(@))dx° A ... ... Adx3. (5.29)

v=0 %
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We define observable-valued distributions

C*(0)ayp—>T" ()= | T"(0, x)p(x)dx* Adx* Adx>. (5.30)

If Z=U?d/0p+V"3d/on* is any m-vertical vector field on Q fulfilling (5.26) then
according to (5.28) we have:

dTW)Z = [ (noV° —mV*+ G (9)Uypdxt ndx? ndx>. (5.31)

Using (5.25), (5.26) and integrating by parts we obtain

dTYO(p)Z = [ oV —Ulpdon® —n*ap)dx* Adx> adx?. (5.32)
If Y°° is given by (Q, P*) such that

Qlo=nop and P°la=1ydn°—n*oup (5.33)
then comparing (5.32) with (5.27) we have:

dTWZ=(Z, —(Y*°)). (534)

In the similiar way we compute:

ATNP)Z = [ (VO Vinoywdx! Adx? ndx®. (5.35)
Using (5.25) and (5.26) we obtain

AT Z = [ (= Vo +U-8now)dx' Adx? ndx>. (5.36)

If Y°*is given by (Q, P*) such that

Qlo=—nyp and P°lo=—dney) (5.37)
then we have

AT ) Z={Z, —(Y°H) . (538)
Now

AT Z = [ (= V¥ = Vg = g"no VO +1,V° = G (@) U)ypdx' Adx? Adx> (5.39)

Using again (5.25), (5.26) and integrating by parts we obtain
dT*(p)Z = I U(= 0" — 0" —n'- dap —n* dp + g*(8on°® vp — 1 0p)
+ g Vonop)dx! Adx? Adx?. (5.40)
If Y¥ is given by (Q, P*) such that
Qlo=g"now
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and
Plo = d{n"y)+ an'y) + ¢"(n° S — Gon°y)
we have
AT Z=<Z, —(Y¥)").
Now we can compute the Poisson brackets
(Tpo). T(w2)} =T (Y o). Y)
= £ (Mol 001 —NoliW1 G2 )dx* Adx? Adx?
= [ (T, 0, — Ty, O, )dx* Adx? ndx?.
In distribution notation we write
{T%(x), T*(yp)}=T°(x) 0,0(x — y) + TX(») 6:0(x — y) ,
{T1), T*w2)}=T(Yp,). Y%y,)
=j; (M*10w 1 8P 2 — WMo W, O )dx! A dx? A dx?
= [(T*, 0ap, — TFy, O, )dx" Adx* Adx? .
In distribution notation:
{T%x), T°(p)} = T*(x) 3,0(x — y) + T*(y) 6,0(x - y) .
In a similiar way:
{T%°x), Ty)} = T*(x) 0,0(x — y) + T°%y) 6:9(x —y),
{T¥(x), T*(y)}

= 0o T(x)3(x — y) + T"%(x) §,3(x — y) + T*(x) §,0(x — y) .

199

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

The same formulae can be obtained for a non-linear electrodynamics with

vanishing currents (cf. [2]).

6. Proofs

In this section we shall use the following notation. If Q is a submanifold embedded
in?and X, Y, Z~are~ vector fields on Q (tangent to £ and defined on Q) then we
shall denote by X, Y, Z any extensions of X, Y, Z onto some neighbourhood of

Qin 2.1 & is any p-form on £ and X,, X,,....X X, are vector fields in 2

}) p—p
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then we shall use the following formulae (cf. [15]):
p-éZ)(XO,Xl,...,X,,_l)=(Xo_lc%)(xl,...,xp_l)
=1p— DI XA X A AX, |0 (6.1)

o+ DAB(X g X )= 3 (— DX, (&(XO,..R.,X,,))
k=0

Ly (_‘1)k+55)<[Xk,Xs],XO,...A ...... ,X,,), (6.2)

0sk<s<p [
zxk(i:d(xk _|éZ>)+Xk _Jdo, (6.3)
LxX)=[X, X;]. (6.4)

Proof of Theorem 1. If v was the local group of diffeomorphisms generated
by Y (at least in a neighbourhood [ —¢,&] x U of the set {0} x QCR x ) then
(2.5) would be obvious:

Ly(X _Iy|Q=1lim{X_Jy-y* (X _p}e
=lim (X _Jy|Q—p* (X _17)1Q}
= lim (X _1y|Q—y* (X _1y/Q_)}=0 (6.5)

the last equality being fulfiled because both Q and Q_, are states i.e. satisfy
Eq. (1.2). In general case v, has to be replaced by the group of diffeomorphisms
G, generated by Y. We must also replace Q_,=vy_,(2) by G_ Q). But it follows
from (2.4) that in a neighbourhood of t=0 both surfaces p_,(Q) and G_,(Q)
“are equal up to terms of second order in the variable ¢”. It means that (6.5) is
satisfied.

We shall now rewrite the Eq. (2.5) in the form which will be useful in later
calculations. R _

We denote Z,=Y. Let Z,,...,Z, be vector fields on a neighbourhood of Q
tangent to Q at points belonging to Q.

Using formulae (6.1), (6.2), and (6.3) we have

L3 X N Zy,....Z,)
=(Zo 1dX _1W)WZ1,.sZ)+dZo X N2, 2,)

- Z (—1)Z, (()Z' ) @ Z))
k=0

+ ¥ (——1)"”()2'_”))([Z~k,Z~S],ZO,,..A ...... Z)
0<k<ssn o
+Z(—1)"+IZ~,(((Z~OJ)~(_Jy)(Z~1,...A...,Z~,,))

k=1 k

+ ¥ (—1)k+S(ZO_|X_ay)([Zk,Zs],Zl,...A ...... Z)
1<k<s<n Pos

=Zo(X _INZy,....2,)
+Y (= DX _1y) ([ZO, 2., zlz) . (6.6)
=1 k
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Now Eq. (2.5) are equivalent the following condition:
For every vector field X given in a neighbourhood of Q in & and arbitrary
vector fields Z,...,Z, given in this neighbourhood and tangent to € on 2 we have

Q=0. (67

{?<(Xm>(21,...,2,.))+ > (-0 ) IF Zk]ZkZ)}

k=1

Remark. The condition (6.7) does not depend on the choise of extension Y of
Y onto a neighbourhood of Q in #. This fact can be easily seen if we use field
Eq. (1.2) written in the form

X _N(Zs,...Z,)12=0 (6.8)
and compute (6.7) in local coordinates on Q. The formula (6.7) represents a system
of linear differential equations for Y which involves only differentiations of Y in
directions tangent to . Therefore (6.7) is a differential equation on the sub-

manifold €. It follows from (6.8) that if Y is tangent to Q then Eq. (6.7) are auto-
matically fulfilled.

Proof of Lemma 1. Let Y,, Y, be vector fields on Q and f’l, Y, be any extensions
of ¥}, Y, onto some neighbourhood of Q. Fields Y; and Y, fulfil Eq. (6.7).
Using formulae (6.1) and (6.2) we have

AV, A Yy (2, Z)=d(Y, 1Y, _)(Z,,....Z,)
=(n+1) Y (—1)k+12k(y R z)
k=1

o1 Y (ks ([Zk, AR T AN z) . (6.9)

1<k<ssgn k&
But dy=0 and we have from (6.2)
0=(n+2dy¥,, Y5, Z,,....Z,)

2171('))(}72,21,...,2”))—172('})(171,21,...,2”))
+y (_1)k+1Z~k<y (1?1, Yzzlz» A AN A
k=1 . k
+y (—1)k+1y([?1,z~k], YAV Z)
k=1
+ Z (‘Dk?’ ([)72: ZNk], Yl,ZNI, ...... ,Zn)
k=1

+ ¥ (—1)k+5y([2k,z”s],?1,1?2,21,...A ...... Z) (6.10)

1<k<s=n k 3
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If we restrict both sides of (6.10) to the submanifold @, use (6.7), (6.8), and (6.9)
we obtain at last:

d(Y, A V) (24, Z2,)12=0.

Our Theorem 2 follows from the following lemma:
Lemma 2. If Y,, Y,, Y, are vector fields on a manifold # and y is a closed
(n+1)-form on # (n=2) then:

Ly (Vs IV, )= Ly (Vs 1Y, 1)+ Ly (Y, 1Y, 1)
S EINA A NI AN A ANIES 4RI A A M
=d(Y, Y, 1Y, _Iy). (6.11)
Proof of Lemma 2. It follows from (6.3) and (6.4) that
Z5,(Ys 1Y, _1y)=[Y,, V] 1Y, _Jy+ Y, [V, T,] Jy
+Y, 1Y, 1d(Y, _1y). (6.12)
Applying (6.12) we obtain that the left hand side of (6.11) is equal to:
L=Y, [V, ;] _Ip+ Y, (¥, V] _Iy+Y, 1[YV,, ¥3] Iy
+ Y, 1Y, Jd(Y, 1y + Y, Y Jd(Y, Jn)+ Y, 1Y, Jd(Y; 1y, (6.13)
But we have:
(n(n+1)" (Y5 Y, _1d(Y, _1yWZy,.... 2, 1)
=d(Y, 1Yy Y3, Z1,. s 20 V=Y (0(Yy, Yo, Z 1 2y~ 1))

- )’3(y(),17 )72’217"'5Zn—1))+ Z(— 1)k+1zk (’}) (Yla YYZ’ Y3vzl’ ~~~~~ aZn—l))
k=1
—’y(ffla [};29 )73]> ZNl?"wZn—l)

n—1
+ Y (=1t (Yl, DAV A ,z,,_l)
k=1

n—1

— ¥ (=1 (Yl, DAV A ,z,,_l)
k=1

+ Y (= (ﬁ, (2020 Yy Yoy Zysreon ,Z,,_I) . (6.19)
1<k<s=n—1 k

Using equality dy =0 we obtain
(n(n+1))‘1()~’3_] 1?2__561(171J)’))(meazn—1)
= Yl(’y(?b }’}3» Zb .. wzn—l))_y([?l» Y2]9 Y3s Z~1’ '~~’Zn—1)

+'Y([}71, YE&], )729 Z~19~"9Zn—1)

n—1

+ Y (=D ([ﬁ,zkj, Y, 1?3,21,.._...,2"_1) : (6.15)

k=1
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On the other hand we have:

(n(n+1)"1d(Y, 1Y, 1Y, _)(Z,,...2, )

1
=Y (—1)F1Z, («, (YI, Y,, Y3,Zl,...A...,Z,,_l))
k

+ Y (—1)k+3y(?1,Y2,?3,[2k,zs],21, ...... z_l) (6.16)

1sk<ssn—1

Using again the condition dy=0 and (6.16) we obtain
(n(n+ 1)~ d(Ys 1Y, 1Y, AN(Zy,... Z,)
=Y,(y(Y,, Y, 21,...,Zn_1))— Y, (9(Y,, fg,Zl,...,Z,,_l))
+ Y00 Vo Zy o 2 )= (Y 11 Vs, 20,02, 0)

+V([?1: ?3]’ ?25 Zla“~aZ y([Yla Y3] Yls Zla Zn 1)
n—1 -~ - e . -

+ X (N 20 b P Zene 2
k=1 k

n—1
- Z (—_ 1)k’)} ([YZv Zk]> Y1> Y33217~--A"'szn—1>
k=1

n—1

+ Y (=D ([fg, Z1 Y, V02, . ,Z,,_l) . 6.17)

k=1

If we put (6.15) and its cyclic permutations to (6.13) we obtain (6.17).

Proof of Theorem 2. For n=1 y is a 2-form and the space s is finite dimen-
sional (a.is. are points in &). # is equal to the quotient space 2/L where L is
a congruence given by the distribution of singular vectors of y. The form I’ is the
projection of y onto Z/L so it is closed.

Let now n=2 so we can use Lemma 2. Let YL, Y; Y3 be vectors tangent to
A at Q. In order to calculate the value of dI’ Q(Yl, Y,, Y;) we must take any vector
fields in a neighbourhood of Q equal Y,, Y,, ¥; at the point Q and use the formula
(6.2) which reads for p=2:

3dI(Y,, Y, Vo)=Y, I(Y,, Y;) = V,I(Y,, ¥y) + Y, I(Y,, 1)
—I([Y, 1) )+ IV, ¥, o) =TV, Y1, Y. (6.18)
Now we can use the possibility of choosing a surface »(P), (%, P)e o/ passing
through ©Q and such that fields Y; i=1,2,3 are tangent to %(P,). The mapping »
is given by a smooth mapping

Py x23(t; p)—y(t;pe?,

where y(t; - ) are difftomorphisms of 2 and (0; - )=1id,. In the manifold P, x 2
we take a submanifold 2" = {(¢t; w(¢t; p))e P, x ?:te P, pe Q}.
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We have the sequence of smooth mappings
HHP x PHDP, (6.19)

where 7 is the natural projection and i is the natural embedding.
Take in & the (n+1)-form § which is the pull-back of y from 2 onto X :

J=i*n*y. (6.20)

Given any diffeomorphism ¢:P,— P, there is the canonical lift of ¢ to J":

(e, w(t; p) = (1), w((t); p)) .

It is easy to see that § is a difffomorphism: # — A",
Our lift preserves group properties:

(@120 =010, ; (‘Pa1)~:¢~1 . (6.21)

This allows us do define the lift of a vector field in P, to 4.

The generator of a local 1-parameter group of diffeomorphisms ¢, is namely
lifted to the generator of .. It follows from (6.21) that this lift preserves Lie
bracket:

R AEIR A AR (6.22)
It is easy to check that
LoX, V)= [(XAY) Iy=[(X A V)17, 6:23)

where ¢,={(t, q):qe ¢,}: ¢,e € and ¢, Cx(t).
Because ¢, is arbitrary we can take ¢,= {w(t; p): pe c}, where c is any a.i.s. con-
tained in Q= »(0).
Now if Z is a vector field tangent to »(P)) and ¢ is a local 1-parameter group
of difftomorphisms generated in P, by pull-back of Z then:
[ZIX, DGy =lim | | (X ¥) 1= [XAT) 17}
=0 (&) &
=lim [[@¥X A T) 15— (X A D)1= [ LHX A T) 7] (6:24)
=0 & [+
We can change the order of integrating and passing to the limit because everything
is smooth and supports of forms are compact.
Using (6.22), (6.23), and (6.24) we can rewrite the left hand side of (6.18) in the
following way:

3dr(Y,, Yy, Y3)= [ du,

where do_is equal to left hand side of (6.11). Using formula (6.11) we see that
a=Y; 1Y, 1Y, _15. The form « has a compact support therefore

[dou=0.
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Proof of Theorem 3. Let F,, F, be physical quantities 7, 7,, Z,-vector fields
on J# and

dF-Z=(Z,-Y>=T(Z,Y) k=1,2 (6.25)
We have:

0=2d°F(Z,,7,)

=Z(dF-Z,)—Z,(dF,Z,)—dF ([ Z,,2Z,]) . (6.26)

From (6.25) and (6.26) we have for k=1 Z, =2, Z,=Y,

Z(N(Yy, V) =Y(I(Z, ) +T([Z, Y,], Yy) (6.27)
and for k=2 27,=2,7,=Y,

2V, H)=L(I(Z, V) +T(Z, V1. Yy) . (6.28)

On the other hand we have dI"'=0:
0=3dI(Z, Y, V,)=2((Y,, ,) - ,(I(Z, V) + Yo(I(Z, Y1)

—I[([Z, Y], )+ T(Z, Y,], ) - T([Y,, ;1. 2). (6.29)
From (6.27), (6.28), and (6.29) we obtain
d{F, F,}2=2(I(Y,, V)=I'(Z,[V;, ¥,]), (6.30)
so we have
d{F,, F,}=—[Y,Y,]". (6.31)

Proof of Proposition 1. From Theorem 3 we have:

J:{{Fl,Fz}aF3}+{{F2>F3}3F1}+{{F3’F1},F2}

=I([Y,, Y, V) + ([ Yy, 31, V) +I([ Vs, ¥,1, ) . (6.32)
Using the formula (6.30) we have
J=—Y,I'(Y,, Y)Y, (Y,, V) Y, (Y,, ¥y) . (6.33)

If we add (6.32) and (6.33) we obtain minus right hand side of (6.29) where Z is
replaced by Y;. Thus 2J =0.
The proof of Proposition 2 follows immediately from the formula (6.18) and
Theorem 2. If ¥;, Y, W then (6.18) reads: i L
0=3dI'(Y,, Y;, Y3)= —TI'(LY;, Y, ], Y3) for any field Y;. It means that [ Y, Y, e W.
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