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Abstract. A time independent scattering theory for a particle in a crystal with
impurity is given. It is shown that the scattered wave is the solution of a Lipp-
man Schwinger equation, and that the existence of bound states or narrow
resonances is related more to the band structure than to the form of the
impurity potential.

1. Introduction

This paper is concerned with the scattering of wavelike excitations in solids by
localized imperfections: Q(x)!. We extend the treatment of the two body quantum
mechanics by Kato and Kuroda [1, 2] and prove the existence of distorded Bloch
waves which have the form (Bloch wave) + (outgoing wave)/(incoming wave) and
are obtained as solutions of a Lippman-Schwinger integral equation.

We want to emphasize, here, the role played by the critical energies®. In
ordinary scattering the only critical energy is 0 and this point can be an accumula-
tion point for the eigenvalues for instance if the impurity potential is Q(x)=|x| .
In our case critical energies can be embedded in the bands which form the conti-
nuous spectrum of Hy=—4+V, and we prove that these points can be also
accumulation points for the eigenvalues but now this phenomena originates more
from the band structure than from the nature of the potential. As eigenvalues or
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! Scattering of electrons by foreign atoms, phonons by mass defects or spin waves by magnetic
defects can be studied simultaneously with slight modifications (see Callaway [18]).
2 Let V be the periodic potential: V(x+R)=V(x) if Re IL~Z> and suppose | [V(x)[*d>x<+o0. Call

R*/IL
L+ ={Ke IR3K -R=2nn, YRelL}, the reciprocical lattice and B=IR3/IL* the Brillouin zone; Hpy=A4+V
®
can be decomposed in a direct integral | Hy(k)d*k; Hy(k) acts on ¢2; it is proven in [14] that the

B
spectrum of H (k) is discrete and the set of eigenvalues is noted {E,(k), E,(k), ..., E,(k), ...} and the n®
eigenvector: {cX(k)}e /2. The critical points of E,(k) are the keBB such that VE,(k)=0, the values of E,
at these points are the critical energies.
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more generally narrow resonances near the critical energies enlarge the
differential cross section and accordingly the electrical resistivity, measurements
can give experimental evidence for their existence (Kosicki and Paul, 1966, [3]).
Optical transitions have also been observed (Onton, 1971, [4]) from the impurity
ground state to resonant states.

Other attempts try to give a theoretical basis to this phenomena in particular
the papers by Bassani, ladonisi and Preziosi [5-7] whose approach is based on
the effective mass approximation applied to the secondary minima.

In this paper we get complete results for the scattering theory of the operator:
H=—-4+V+Q=Hz+0.

Existence of time dependent wave operators has been studied previously by
Lenahan (Thesis, 1970, [11]) where V is a bounded periodic function, and the
impurity Qe LY(R*)~L*(IR%); by Thomas (1973, [10]) where V is square integrable
over a unit cell, J=IR*/L: | |V(x)]*d’x< + co and Q is as before. Kuroda [2]

0

and Troianiello (1974, [12]) gave an eigenfunction expansion when V is a bounded

continuous function and Qe L'(R*)AL*(R%). This paper improves the former

ones since it gives simultaneously the two results with: [|V(x)|*d>x< +0;
0

Qe L?**(R%* and Q(x)—1/|x|>"* as |x|— + 0.

In the first section we utilize the estimates given, in Appendix A, on the resolvent
kernel or Green’s function of Hy, for studying the operators Q,(Hz— /1)~ 'Q;
(where 9=0,Q,) and its limit when A goes to an energy belonging to the
continuous spectrum of Hy, and we prove the existence and completeness of the
wave operators under the hypothesis on V' and Q above mentioned. In Section 2,
with the same V and Q we construct a generalized eigenfunction expansion along
the lines of Ikebe [8], Simon [9], Kato and Kuroda [1, 2]. In Section 3, we prove
that only critical energies can be accumulation points for the eigenvalues if Q is
short range.

I. Conditions on Periodic and Impurity Potentials for Having the Existence
and Completness of the Wave Operators

The first fundamental theorem by Kato and Kuroda can be adapted as follows
(see Guillot [13]).
Denote Q,(x)=1/(1+x|**"%) and write Q(x)=Q(x)Q,(x). Put:

AT ={fI1+]xP27) fe LA(R?)}

Theorem Kato-Kurado 1.1. Let I' a Borel set of the real axis and suppose that
the following conditions hold :
Condition 1.1. For each EeT’

lim({(Hp—E—ie)” " —(Hp—E+ie)" "} /. g)
exists for each (f, g)e #* x H#T or equivalently:

lim(f, [Qi(Hp—E~ie) 'Q, — Q(Hz—E+ie)”'Q119)
exists for each (f, g)e L*(R?) x L*(IR3).
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Condition 1.2. For every >0
s-lim Q(Hy—(E+ i)™

belong to €(#*): set of compact operators in #* or equivalently:
A(E+)=s-lim Qy(Hy— (E+ig) 10,

belong to G(L*(R?)).
Condition 1.3.

(1+AEL) ™' exists VEel .

Then:

1. The absolute continuous part of H is unitarily equivalent to the a.c. part of Hyg
on I'; i.e. it exists U, unitary such that

E(MH=U.E, ,(IHyU.

E, ('), Eg ,(I') are the absolute continuous part of the spectral measure associated
res. with H=Hg+Q and Hpg.
2. The time dependent wave operators

VVI= S-I_l,iin eitHe—itHBEB,ac(r)

exist and are complete.

Now we have to put conditions on ¥ and Q such that Conditions 1.1-3 be
verified.

Theorem 1.2. If V satisfies [ |V(x)?d>x < +o0<Y |V(K)|>< + o0 and Q,(x)=
a) K

(14 |x]32*8)Q(x) is the sum of an L* function and an L° function (for instance Q
can be ~1/|)x|* ™" at the origin and ~1/|x|>*¢ at infinity).

Then Conditions 1.1-3 are verified for whatever I' contained in R — (&, %)
where & Cé, (critical energies), and & is a closed set with zero measure.

First recall some spectral properties of Hy (see Avron, Grossmann and Rodri-
guez [147); functions ke B—E,(k)eR! are differentiable and holomorphic in the
three variables ky, k,, ky in the regions of B where the bands do not intersect.

The improper eigenfunctions of Hp, called Bloch functions®, 2 (x)=
Y cX(k) exp(i(k+ K)x) have the following properties: they have the same holo-
K

morphic properties in k as the E,(k); it can be proven (see Appendix B) that
{cX(k)}e £*n¢?, then Y cX(k) exp(iKx) is a bounded periodic function.
K

Consider a Borel set A4 and denote by I the set of bands, n, such that E,(k)e A
for some keIB. If the diameter of A is finite, I is also a finite set (cf. Thomas [10],

3 Bloch functions are also the kernel of the unitary operator Uy from L*(R®) to L2(Nx IB) which

diagonalizes the Bloch hamiltonian: UzHzUz "' is the multiplication by E,(k);

(Upf)n k)= | (o) f(x)dx.
IR%
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I Fig. 1. Energy band of Ge estimated by Hermann in the
o B (1, 0, 0) direction. { valence band, 2 conduction band,
Ir { 3 gaps between the bands

®
Lemma A.2). Call P,=) [ P,(k)d*k where P,(k)is the one-dimensional projector

nel
in /* corresponding to the n™ eigenvector of Hy(k): {cX(k)}.
The proof of Theorem 1.2 will be separated in two parts: the first one is
concerned by Q,P,(Hy—E.)”'Q, (Lemma 1.3), the second one by Q,(1 — P,)(Hy—
E)"'Q, (Lemma 1.4).

Lemma 1.3. If Q,(x)=(1+|x[*?*9)Q(x)e L? with 2<p<6 and Ec A— &, .
a) Q,P(Hz—E.)"'Q, is an Hilbert-Schmidt operator.
b) It is continuous in E relative to the Hilbert-Schmidt norm.

Proof. a) Let Gi(x, y; E+ie) designates the kernel of P,(H,—EFig)~ !

1 . cN 37, W X)wi(y)
Gg(x, y; Eils)—n; IIB d kWEn(k)—Eiis .

Write x=x,+R, and y=y,+R, with x, and y, belonging to the first direct
cell, []. then:

, . PurlX0)¥i(¥o) .
Gy(x, y; E+ie)= n; j d*k exp (ik(R, — RZ))W =g, -r,(X0: Yo, E T ie).

In Appendix A we prove that| lingg"(xo, Yo, Exie)|<a+(E)/(1+R)if E¢E, .
Consider now the Hilbert-Schmidt norm of Q,P(Hz—E.)”*Q;:
= [ [ d>xd*y101(»)1*1Q,(x)1*|Gx(x, y, E)I?
= f f d*xod’y, 2 1Qa(x0 +Ry)? Z |Q1(YO+R2)‘2|9R1—R2(350: Yo E4)?. (1
oo Ry R>

The convolution of the two series {|Q;(yo+ R)|*}e/%* with 2<g<o0 and
{lgr(x0> o, E4)|*}e 43> 7% belongs to /7 with 1/p'=2/q+1/(3/2+¢)—1 if g<6. If
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Q,e L?, {|Q,(xo+ R)|*}e/P? for a.e, x, then the total is finite if:
1p+2/p=1<p=3q/(4q-3)
ie. if pe[2,6]. If p belongs to this interval the integrand can be majorized by

RZ IQ1()’0+R1)|2‘1~RZ IQz(xo+R2)I"~; o (E)[(1+[RJ)***

then (1)< an(E)/(1+RI)** [ dy1Q,(»)I** [ d°x|Q,(x)|”. Since by hypothesis

R
0,eL?; pe[2,6], (1) is finite.
b) The continuity in the Hilbert-Schmidt norm of Q,P,(Hz—E )™ *Q, follows
casily from the continuity of gg(x,, yo, E.) (see Appendix A) for all the E¢ 4, .

Lemma 1.4. If | |V(x)|*d*x < + o0 and if Q, is relatively compact* with respect

O
to —A, then Q,(1—P,)(Hg—E)~'Q, is compact and continuous in Ec A.
Proof. By the spectral theorem: Hy= ) [ d’kE,(k)P,(k) consequently:
n=1

(1—P)Hyz—E)=Hy—E~} [d*kE,(k)—E)P,(K).

nel B
Denote
Vps=V —(E+1)— Y [d’KE,(k)—E)P,k);
nel B
then

(1—P)Hg—E)=—A+Vpg+1=(1—P)Hz—E) ' =(—A4+Vps+1)" 1.
Utilize the resolvent equation:

(=A+Vps+ 1) t=(=A+ 1) — (= A+ Vpg+ 1) 1Wpg(—Aa+1)"1.
So

Qz(—A + VPS+1)_1Q1:Q2(—A +1)—1Q1
—Qx(— A+ Vps+ 1) Wps(—4+ 1710, .

a) Q,(—A4+1)"'Q, is compact as the product of a compact operator (hypoth-
esis) by a bounded one. '

b) From the resolvent equation: (— 4+ Vpg+ 1) 1 =(—=4+1)" (14 Vps(— 4+
1)~ 1, —1 cannot belong to the spectrum of Vps(— A4 +1)" 1, in fact, —1 does not
belong to the spectrum of — A+ Vpg, as

E¢o((1—P)Hpg), whence (1+Vp(—4+1)"H7!
is bounded, so, Q,(— 4+ Vps+1)~! is compact.
4 A sufficient condition to have Q, relatively compact is Q,(x)—0 for |x|— oo and can be expressed

as the sum of a L? function and a L*® one (cf. Kato [15], p. 304, Balslev [16]) improve this result: if
[ 102(»)*d®y—0for|x|—>o0 and if Ja>0 such that: sup [|Q,(y)I*lx—yl|'*d>y<+oo=>Q,(— A+1)!
xeR?

lx-yl=1
is compact. Potentials Q,(x)=|x| # with 0<f <3 are relatively compact.
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¢) Now it suffices to prove that Vpg(—4+1)"1Q, is bounded or more simply
that V(—A+1)7'Q, is, since (—4+1)"'Q, and Y [dk(E,(k)—E)P,k) are

nel B
bounded

1
V(—4+1)710,= V(y)—li/m(1+lyl3/2”)(—ﬁ +1)710, .

1+1y
Nofw consider (1+[y|***%)(—4+1)"*Q, and prove it is bounded from L? to L*;
n fact:

e~ lx=yl 1
le—yl T4|x[>2**
e~ lx—yl 1
lx—yl L+|x*27e

supl(1+[y[>?*9)| | o(x)d>x

lp(x)ld* .

<sup [ (1+[y*279)

As
L+ |y <1+ (ly — x[+]x)>2 T S 1+ [2 max(|y — x|, [x))]*>*
<14+2%32%¢ max |y — x|/, [x[32 ) <1 4232+ |y — |2 g x[32 )
Then, denoting 2%%"¢=q

e~ Ix—yl

1
lx—y| 14[x|>?**

- x|
| x|

lo(x)ldz <ol 1x[V2* e~ =], ol

lp(x)|d*x=A+B+C

sup... éj [1 +O((ly—xi3/2+5+|x|3/2+s)]
¥y
e_lx_yl

1
A:
.f !x_YI 1_|__|x[3/2+e

p(dPx < ||e

ol
2

— —lx—yl 1/2+
B—ocje M x—y| 81+|x[3/2+*’

e—lx—y| |x|3/2+5

~ Ix|
C= s <l
*! [x—yl 1+|x|3/2+a|(p(x)|d 250

Then [[(L+[y*? ") =4+ )70 I, <M.

1 _
W(1+|y|3/2”)(—41+1) 0,

Il
2

Now return to the operator: V(y)

e 1x— vl

1 32+ 1 3
I‘V()’)1+|y|3/z+g(1+’.)’|) j x—y| L+xP2* p(x)d”x

2
2

1
=[d%) V(Y)Izmi/ﬁg)i 10(y)|?

2012 [ 33 2 1 /
=M ”Ql’Hzéd YolV(yoll ;(1+|yO+R|3/2+5)2'(1)-

1
Tm=1+
m=1+) TF IR =

of the unit cell, [].)

d|3/2+e)z$(1/)§mM2(g‘ d3)’o|V(.Vo)|2> lll3. (dis the diameter
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Then V(—A4+1)"1Q, is bounded from, L? to L?.

The continuity of Q,(1—P;)(Hz—E) 'Q, results of the analyticity of
(1—P)(Hz—E)~! on the interval A.

Now return to the proof of Theorem 1.2.

1) First of all we have to prove that we can define an operator, H=Hy+Q,
self-adjoint. 0 =Q,Q, is relatively compact with respect to Hy in fact:

QHp+1) " '=Q(—A4+ 1) ' =Q(—A4+1)""V(Hp+1)".

As Q,(—A+1)"!is compact and Q, is bounded, Q(— 4+ 1) ! is also compact;
V(Hg+1)"!is bounded since it is closed and defined everywhere because 2(V)>
D(— A)=D(Hp) (cf. Avron, Grossmann, and Rodriguez [14]) and Z(Hz+1)"'=
PD(Hp). Then Q(Hz+1)"! is compact. So we can define a self-adjoint operator
H=Hg+Q the domain of which is 2(— 4).

2) How to choose I'?

A(A)=Q,(Hg—A)~'Q, is a compact operator valued function analytic in the
upper half-plane and it has an extension to a function continuous on the interval A
except at the points belonging to &, As (1+ A(E.))~ ' exists when E is real and
sufficiently negative (||A(E)|—0 as E— —o0) by Fredholm theorem the set %,
where (1+A(E.))” ! does not exist is closed and has measure zero in A—&,,
(cf. Simon [9], p. 127).

Then if we choose Ec A —(&;ué, ), Conditions 1.2 and 1.3 are satisfied. All
has been done for Q,(Hz—4)"'Q, in Lemmas 1.3 and 1.4 can be repeat in an
easier manner for Q,(Hz—4)~'Q, hence Condition 1.1 is also satisfied if Ee 41—
(ylugc_.l)'

As A is in some sense arbitrary, I' can be chosen in R!'—(£Ué&,) where
&=\, and & is a subset of all the critical energies. Q.E.D.

I

Remark. Since the Lebesgue measure of &, U is zero: E, | AN nQ (LUET)| =

E, (A). Furthermore, E ,(A)=Eg(A) since the spectrum of Hp is absolutely
continuous (cf. Thomas [10]), then:
E,(A)H is unitarily equivalent to EgA)Hg, VACR.

II. Eigenfunction Expansion

Suppose in addition to the Conditions 1.1-3 the following ones hold for a Borel
set I of R.

Condition 11.1. There exists a o-finite measure space (2, 2, ), a partial isometry
U, of # onto L*(g) with initial set s#, ,, and a measurable function w:Q—TI"
such that:

(UoE o0 DI NE) = 2al(ONUo f)E) e ae.; (e Q

for each fe # and for every Borel set 4 CIR. y, is the characteristic function of 4.
Condition I1.2. There exists a mapping ¥,:Q—#~ =(#")* such that

(Uof)E)=(Po(E),fdo-ae. teQ andforall fen.
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In our case Q=7Z" xIB; g is the product measure of the pure point measure of Z*
and the natural measure on B. U, is the unitary operator U (see Footnote *)
and o is precisely the energy band function (n, k)e Q—E, (k). The mapping vy,
can be defined from the equality

(U ), k)= [ phi(x) f (x)d*x
then y,=v%:(n, k)>yh (Bloch function) wZ(x)=Y ck(k)exp(i(k+K)x), as
K
> e (k)| < + o then yhe L CHA ™.
K

Now Kato and Kuroda proved the following theorem (written here with our
notations).

Theorem IL.1. Suppose that Conditions (1.1—1.3) hold for some Borel set I' CRR.
Assume further that the operator Hy satisfies Conditions (I1.1 and 11.2) for the
same I'.

Then the operator H=H g+ Q satisfies these Conditions (11.1 and I1.2) with
the same space measure and the same measurable function o.

More precisely we have

(1) The operators U, =UzW¥* are partial isometries of L*(R®) onto L*(Z"* x B)
with initial set # ,(I'). Furthermore we have:

(ULEAN)f)n, k)= E()NU s f)n, k) for ae. (nkeZ” xB.

(2) The following equation in # ™+ = {f|(1+|x|>*"%) fe L*(R?)}

[1+Q(H = E, () £10) ™ T*pis =k (IL1)
has a unique solution e #~ for every (n, k)/E,(k)e " such that

UL N ky={p5.f> ae (nkeZ"xB
and for every fe #.

Remark. The Eq. (IL.1) can be written

Wai%)=p(x) = | Gy(x, y, E, (k) £ i0)Q(y)wuily)d>y

and is called the Lippmann-Schwinger equation.

II1. Spectral Properties of H when Q has an Exponential Decay

If we add to the precedent conditions on Q the hypothesis Q has an exponential
decay, we can say more about the set of points in R—%, such that (1 + A(E))™!
do not exist, i.e. about the eigenvalues imbedded in the continuum and the singular
continuous spectrum.

Theorem. Let Q and Ve L*'(R? and | |Q(x)*e"™ld*x< +c0 for some
|x[>M
o>0and M >0, then in a finite interval [E, E,] without critical energies in which
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there is no band intersection®, the singular continuous spectrum is empty and the
number of eigenvalues is finite.

Proof. Let Q(y)=e~**P!/(1+[y|***) and 010,=0.
We want to define an extension of operator Q,P'(Hy —E)_ 10, for E going

through the real axis to the non physical sheet, P'= ) j P (k)d*k. I' is the set
nel’

of all the n such that E, (k)e [E,, E,] for some keIB. To simplify the text we shall,
in the following, only consider a band. As we discuss in Appendix A, introducing
new variables (E, 0, @) in place of (k,, k,, k3) we can rewrite

GY(x, y, de fdfpf A0y, i, J NE, 6, 9) .

E-15

We define now an extension of G3(x, y, 1) by distording the contour of integration
over E; more precisely the new contours are ¢,=[Ac C|)=E —ia®(E)] where O
is a continuous positive function such that @(E,)=O(E,)=0, a is a parameter
varying from 0 to 1.

O is chosen so that % is the frontier of & (see Footnote °); as y,.(4; 0, ) and
Ju(4, 0, @) are analytlc with respect to 4, if Im A>0 the extension GB . 1s equal to
Gy=G} o, so G3 , is the analytic continuation of G§ to some Ae % with Im A<O.

We prove now that the operator the kernel of which is:

05(x)G3 1(x, ¥, HQ} ()
is Hilbert-Schmidt.

2n

1
G (%, ¥, ) =G} ox, y, )+ f Er— I do f A6(p .y NE, 0, @)

as | dE...=cg dE...+(£IdE....

%1

Fig. 2

Then utilizing the Cauchy theorem:

2n n

Gg, 1(x7 y> }")= Gg,o(xs Y, ;{)+ j‘ d@ f de(wnxw:y‘]n)(/la 9: (P) .
0 0
Now using the continuity of v,y J, with respect to 6 and ¢
Gg(x’ Y, i)= G%,O(x’ ys /1) + 2n2(wnxlp:‘y‘jn)()“’ 907 (pO) .

5 $k such that E,(k)=E,.(k)s[E,, E,] and n=n'". As a consequence the eigenvalues of H% belonging
to [E, E,] and the corresponding eigenvectors are real holomorphic in B and this holomorphy can be
extended on some domain & of the complex space C>.
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Let k(4, 0, @) be denoted ky; (4, 0g, 9o) =) cX(ko)e'*or Bx
K

Then
'anx(/la 90: (P0)| g e—lm(ko,x) Z Icrll((ko)l .
K

So
[ @xd®y1Q5(x)P1Q(»)1*G] 1 (x, y, A
<2 ExdyIQ(x)P1Q: (WIPIGS, ofx, ¥, )P
+4n2|Jn(ko>|2(; |cz‘(ko)|)2 [1105(0P1Q1 (y)Pe™ ™ o= Py .

The first term is finite (the proof exactly follows as in Lemma 1.3). The second term
is also finite since ) |cX(k,)|< + oo (see Appendix B), and:
K

J1QipPe™ Py < [101(y))Pel™kel P dPy < + 00 if  [Imko|<o/2
14026 ko g = Q3 )bl g5
— s" lQ(x)|2(1+lx|3+Ze)ea/2|x|ellmko|‘|xld3x

|x| <M

+ [ IQE)PL A+ x> 2 e eltmiol 1 g

|x|>M

The first term is finite since Qe L*'**(IR?), the second also by hypothesis if
|Imk,| <a/2. So in the two cases it is sufficient to choose A sufficiently near the real
axis so that [Imk,|<a/2. So the extended operator A,(E) is compact and the
conclusion follows immediately.

Acknowledgements. 1 wish to thank Prof. J. C. Guillot to call my attention to the work of Kato-
Kuroda and Prof. A. Grossmann and E. Mourre for many valuable discussions.

Appendix A

In Avron, Grossmann, and Rodriguez [14], it is shown that the spectrum of the
reduced Bloch hamiltonian H% consists of real isolated points of finite multiplicity
E (k); the E, can be chosen holomorphic in any one of the variables k; (but they
will not in general be single valued as a function of all three variables k;).

Thomas proved, as a consequence, that the measure of the set of points ke B
such that E, (k) equals a fixed energy E is zero. In the same manner it can be proven
that the measure of the set &, (critical points) is zero. We can also deduce that
critical points can be isolated or distributed along a curve or a surface of equal
energy.

If we diagonalize the matrix of the second partial derivatives at the critical
point we distinguish two principal sorts of critical points, extremal point if all
the signs of the %E, /0k? are the same, saddle point if the signs are different.
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Now state the theorem

Theorem A.1. Let E' belong to the bands the index of which is in the set I and

*
E +i0)=li 3, WX o)Yi(¥o)
gulxo vo ELO=lm 3 {1 5o "o e

then |gr(xg, Yo, E' +10)| < a(E')/|R| when |R| is sufficiently large, when E is not a
saddle critical point.

Proof. For each nel divide the Brillouin zone in domains &, whose frontiers
are the curves of constant energy: E5' (ES! denote the critical value taken by E,
at the saddle point k).

Except possibly at the extremal points and at the “fluted points” [19] we
define a difffomorphism by associating to each ke 2. the corresponding energy
E=E,(k) and the angular coordinates 0, ¢ in fact the matrix derivative of such a
transform &%, has a determinant equal to VE,(k—k.)/|k—k:|? sin where k. is the
“center” of the new coordinates (the R direction is taken as the z-axis).

Let JI(E, 0, ¢)=|k—Kk\|* sin 0/VE,-(k— ki) denote the Jacobian of (%)~ ! at the
point E, 0, ¢; Ei, Ei resp. the inf (s@up) E, (k) and k=k—k.

ke
Then:

Ei

n 1

E' +i0)=1i E e

9gr(Xo Yo, E' £10) 1?;:4;1[2;&‘1 E—E'Fie
2n n

’ -f dqo J'de(wnxwryJ;)(E, 0, (p)eilKHRlcos() .
0 0

We can separate the summation in two parts considering in one side the n and i

such that E'e 1E., Ei[ and on the other side m and j such that E'¢ 1EZ, Ei[. In

the following we shall write only one term of each type to simplify the text.
Denote

2n T

SAE, R)= | do [ A0, %, J,)E, 0, )e! I Ilees?,
0 0

it is differentiable with respect to E in the interval ]E, Ei[; then by the mean
value theorem the term (1) in:
% f{(E, R)— f{(E', R)

, Vo, E'+10)=11 -
gr(xo, Yo E' £10) 81_{13 A‘:‘i'. E—E+ic

dE (1)

. B dE Bo
1' i ’ J — F
+£§2f”(E’R)gE1E4—E’Tris+E£n dE fi(E, R/E—E’)
(2 3)

becomes:
j OfYE +0p(E), R)

2 oE

0y is a continuous function the values of which are in the interval |E., — E/, E. — E'[.

dE= fi(E'+0p(E,), R)— fi(E'+0p(E,), R);
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i ,

E,—
The term (2) equals f(E', R) log E_F

and term (3)

E),
HEL+oE) | dEVE—E) with «E)>0.
E,

So we have to study fi(E, R) as a function of R whenever Ec]Ei, EI[ is.
If |[R|+0 we can rewrite f}(E, R) in the form:

) 2n n a ) )
fUE.R)= [ do | dQ% ellelIRleost(y X JIXE, 6, 9)
o 0 le] IKI cosf

and integrate by parts

eilKHRlcosB 2n n

% 7i|60=n
Yy Jn —1/(1|Rl) j’ dq)j‘deeilx]lRlcosG
0 0

FUE.R)=1/GR)) | do
0 5 |xc| cos @

0

0

0 (wy*,)(E, 0, 9)

00
T x| cos @

It is now sufficient to prove that the two integrals exist and are majorized by a
function of E only. As

. 0 E 1
JI(E, 8, (p)/%hd cost = —|k| s1n0/(a| |81 0+ 20 T |c050)

If 6—0 or n we have to consider two cases:

J(E. 0, ¢)

oF
2) -5 (E,0)+0= =0.

— |k| cosf
60 6=0,n

E i -1
b) ° (,0)= 025 9) (S 0
00 0 1l cos 0 Olk|
0 K| COS

0=0,n

In the first case the first integral in fX(E, R) disappears, in the second it is equal to

m e <Rl *(E, )g’g(ﬂ e~ ikl IRl (E, )%UE_’”)_ _
i =Y g &7
Functions 1y, are bounded. |x|(E, O)/ A ](E 0)— + o0 only when E goes to the
E! or E! which is the critical saddle point. Furthermore as |x|(E, O)/ (E 0) is

dlx|
continuous it is bounded on a closed interval contained in ]E., Ei[.
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By some tricky calculation we obtain the same result from the second integral,
then the conclusion follows immediately.

Theorem A.2. gg(x, yo, E' +10) are continuous functions in E'.

Proof. If f(E, R) is an Holder continuous function with respect to E
Ey

lim | f(E, R/E—E Fic)dE

e~ 0 E}

is also Holder continuous with the same order. Since f(E, R) is differentiable in
the interval ]E., EL[, the result follows immediately.

Appendix B. Properties of the Bloch Functions

The improper eigenfunction of Hg: y,,(x) can be written in the form

Wal¥) =2 ey (k)e" T Ox,
K

where the sequence {cX(k)}el* is the n'™ eigenfunction of the reduced Bloch
hamiltonian H.

(k+K)*cX(k)+ Y Ve xcr () =E,(k)cy(k) .
-

Lemma 3.1. For k real
a) ) leX(k)| < + oo.
K

b) v,.(x) is a bounded function in x.
Proof. cX(k) is an eigenfunction of HY then it belongs to Z(H)=Z(— A¥); then:

Y 1+ (k4 K)*Plek(k)> < + oo (B.1)
K

; lex (k)] =; (1+(k+K)*) "' [+ (k+K)*]le) (o)l
<Y (A+k+K) 2 Y [1+(k+K)*Plckk)P < +00 by (B.1).
K’ K

As [P, () <Y leX(k)|, b) follows immediately.
K
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