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Abstract. A time independent scattering theory for a particle in a crystal with
impurity is given. It is shown that the scattered wave is the solution of a Lipp-
man Schwinger equation, and that the existence of bound states or narrow
resonances is related more to the band structure than to the form of the
impurity potential.

1. Introduction

This paper is concerned with the scattering of wavelike excitations in solids by
localized imperfections: Q(x)1. We extend the treatment of the two body quantum
mechanics by Kato and Kuroda [1, 2] and prove the existence of distorded Bloch
waves which have the form (Bloch wave) H- (outgoing wave)/(incoming wave) and
are obtained as solutions of a Lippman-Schwinger integral equation.

We want to emphasize, here, the role played by the critical energies2. In
ordinary scattering the only critical energy is 0 and this point can be an accumula-
tion point for the eigenvalues for instance if the impurity potential is Q(x) = \x\~1.
In our case critical energies can be embedded in the bands which form the conti-
nuous spectrum of HB = — A 4- V, and we prove that these points can be also
accumulation points for the eigenvalues but now this phenomena originates more
from the band structure than from the nature of the potential. As eigenvalues or

* Postal address: Centre de Physique Theorique, C.N.R.S., 31, chemin Joseph Aiguier, F-13274
Marseille Cedex 2, France.
1 Scattering of electrons by foreign atoms, phonons by mass defects or spin waves by magnetic
defects can be studied simultaneously with slight modifications (see Callaway [18]).
2 Let Fbe the periodic potential: V(x+R)=V(x) if /?eL~Z3 and suppose J |F(jt)|2d3x< + oo. Call

R3/L
Il/ = {KεlR*\K R = 2πn, VflelL}, the reciprocical lattice and B = 1R3/1L1 theBrillouinzone; HB = A + V

®
can be decomposed in a direct integral j HB(k)d*k; HB(k) acts on zf 2 ; it is proven in [14] that the

B
spectrum of HB(k) is discrete and the set of eigenvalues is noted (E^k), E2(k),..., En(k),...} and the πth

eigenvector: {e*(/c)}ez?2. The critical points of En(k) are the /ceB such that P£,,(/c) = 0, the values of En

at these points are the critical energies.
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more generally narrow resonances near the critical energies enlarge the
differential cross section and accordingly the electrical resistivity, measurements
can give experimental evidence for their existence (Kosicki and Paul, 1966, [3]).
Optical transitions have also been observed (Onton, 1971, [4]) from the impurity
ground state to resonant states.

Other attempts try to give a theoretical basis to this phenomena in particular
the papers by Bassani, ladonisi and Preziosi [5-7] whose approach is based on
the effective mass approximation applied to the secondary minima.

In this paper we get complete results for the scattering theory of the operator:

Existence of time dependent wave operators has been studied previously by
Lenahan (Thesis, 1970, [11]) where F is a bounded periodic function, and the
impurity βeZ^flR^nZ^flR3); by Thomas (1973, [10]) where V is square integrable
over a unit cell, Π ̂ R3/IL: j \V(x)\2d3x< + oo and Q is as before. Kuroda [2]

D

and Troianiello (1974, [12]) gave an eigenfunction expansion when F is a bounded
continuous function and QeL1(IR3)nL2(IR3). This paper improves the former
ones since it gives simultaneously the two results with: J \V(x)\2d3x< + 00;

βeL2'loc(]R3) and β(x)-»l/|x|2 + ε as |x|-> + oo.
In the first section we utilize the estimates given, in Appendix A, on the resolvent

kernel or Green's function of HB, for studying the operators Q2(HB — λ)~1Q1

(where Q = QιQ2)
 anc^ its limit when λ goes to an energy belonging to the

continuous spectrum of H& and we prove the existence and completeness of the
wave operators under the hypothesis on V and Q above mentioned. In Section 2,
with the same V and Q we construct a generalized eigenfunction expansion along
the lines of Ikebe [8], Simon [9], Kato and Kuroda [1, 2]. In Section 3, we prove
that only critical energies can be accumulation points for the eigenvalues if Q is
short range.

I. Conditions on Periodic and Impurity Potentials for Having the Existence
and Completness of the Wave Operators

The first fundamental theorem by Kato and Kuroda can be adapted as follows
(see Guillot [13]).

Denote Q1(x) = l/(l + M3/2 + ε) and write Q(x) = Qi(x)Q2(x). Put:

Theorem Kato-Kurado 1.1. Let Γ a Borel set of the real axis and suppose that
the following conditions hold:

Condition LI. For each EeΓ

ε->0

? +exists for each (f,g)e34?+ x Jf+ or equivalently:

ε->0

exists for each (/, #)eL2(IR3) x L2(IR3).
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Condition 1.2. For every ε>0

s-limQ(HB-(E±iε)Γ1

ε-+0

belong to %>(^+): set of compact operators in 2tf + or equivalently :

±) = s-limQ2(HB-(E±iε)Γ1Qι
-

belong to
Condition 13.

(1+A(E±)Γ1 exists V£eΓ.

Then:
1. The absolute continuous part of H is unitarily equivalent to the a.c. part ofHB

on Γ; i.e. it exists U+ unitary such that

Eac(Γ)H=U±EBίΆC(Γ)HBU±

Eac(Γ\ EB ac(Γ) are the absolute continuous part of the spectral measure associated
res. with H = HB + Qand HB.

2. The time dependent wave operators

Wj = s- lim eitHe~itHBEB ac(Γ)
ί-»± oo

exist and are complete.

Now we have to put conditions on V and Q such that Conditions 1.1-3 be
verified.

Theorem 1.2. // V satisfies J \V(x)\2d3x< + oo<^£|F(K)|2< +00 and Q2(x) =
G K

(l + |x|3/2 + £)g(x) is the sum of an L2 function and an L6 function (for instance Q
can be ~l/\x\3~η at the origin and ~l/\x\2 + ε at infinity).

Then Conditions 1.1-3 are verified for whatever Γ contained in R1 — (βϊ\j£f)
where $c~ C$c (critical energies), and £f is a closed set with zero measure.

First recall some spectral properties of HB (see Avron, Grossmann and Rodri-
guez [14]); functions feeIB->En(fc)eIR1 are differentiable and holomorphic in the
three variables fcl5 fc2, /c3 in the regions of IB where the bands do not intersect.

The improper eigenfunctions of H& called Bloch functions3, ψnk(x) =
^c^(fc)exp(i'(fc + K)x) have the following properties: they have the same holo-
K
morphic properties in k as the En(k)\ it can be proven (see Appendix B) that
{c*(k)}ε j^rV2, then Σcn(ty expO'Kx) is a bounded periodic function.

K
Consider a Borel set A and denote by / the set of bands, n, such that En(k)eΛ

for some fcelB. If the diameter of A is finite, / is also a finite set (cf. Thomas [10],

3 Bloch functions are also the kernel of the unitary operator UB from L2(IR3) to L2(NxB) which
diagonalizes the Bloch hamiltonian: UβHβUβ1 is the multiplication by En(k)\

(UBf)(n,k)=^ψ rk(X)f(X)d3

X.
R1
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Fig. 1. Energy band of Ge estimated by Hermann in the

(1, 0, 0) direction. 1 valence band, 2 conduction band,

3 gaps between the bands

Lemma A.2). Call P,= ]Γ J Pn(k)d3k, where Pn(/c) is the one-dimensional projector
ne/

in /2 corresponding to the nih eigenvector of HB(k) : {c*(/c)}.
The proof of Theorem 1.2 will be separated in two parts: the first one is

concerned by Q2Pι(HB — E±)~1Qί (Lemma 1.3), the second one by Q2(ί — Pj)(HB —
E)'1Q1 (Lemma 1.4).

Lemma 1.3. // Q2(x) = (l + \x\*/2 + ε)Q(x)eLp with 2^p^6 and EeΛ-δ^.
a) Q2PI(HB — E+)~1Qi is an Hίlbert- Schmidt operator.
b) It is continuous in E relative to the Hilbert- Schmidt norm.

Proof, a) Let GI

B(x9y;E±is) designates the kernel of PJ(HQ — E + iε)'1

Write x =
cell, Π then:

EJ(k)-

1 and y = y0 + R2 with x0 and y0 belonging to the first direct

G'B(X,y;E±is)=
w e /

In Appendix A we prove that limgR(xΌ9yQ,E±ίε)^<x,±(E)/(l
ε->0

Consider now the Hubert-Schmidt norm of Q2Pι(HB — E±)~ί

=f f d3χd33Ίβιωi2IQ2(χ)l2|G£(*, y> £±)l2

D D R2

The convolution of the two series {|βι(j0 + ̂ )l2}e^/2 with 2:gg:goo and
+E belongs to ^'with l/p'=2/q+l/(3/2 + ε)-l if 9^6. If
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{162(^0 + #)|2}e/jp/2 for a.e., x0 then the total is finite if:

i.e. if pe [2, 6]. If p belongs to this interval the integrand can be majorized by

R! R2 R

then (1)^£ α+(E)/(l + |jR|)3 + ε j d3.y|βι(}0|2^ J d3x|(22Mlp Since by hypothesis
R

β2el/;pe[2,6], (1) is finite.
b) The continuity in the Hubert-Schmidt norm of Q2PI(HB — E±)~ 1β1 follows

easily from the continuity of gR(x0, y>o,E±) (see Appendix A) for all the Eφ^^.

Lemma 1.4. // j |F(jc)|2d3x< + oo and if Q2 is relatively compact4 with respect
D

to —A, then Q2(1 — PI)(HB — E)~1Q1 is compact and continuous in EeΛ.
00

Proof. By the spectral theorem: HB= ]Γ j d3kEn(k)Pn(k) consequently:
w = 1

»e/ IB

Denote

VPS = V - (E +1) - X J d3k(En(k) - E)Pn(k)
n e / B

then

Utilize the resolvent equation :

So

a) β2(~~^ +1)~ 1Qι is compact as the product of a compact operator (hypoth-
esis) by a bounded one.

b) From the resolvent equation: (-A + VPS

Jτϊ)~ί=( — A + 1)~1(1 + VPS( — A +
1)" 1)~1. — 1 cannot belong to the spectrum of VPS( — A +1)~1, in fact, — 1 does not
belong to the spectrum of — A + FPS, as

Eφσ((l-Pj)HB), whence (1 + 7PS(-J + l)"1)"1

is bounded, so, Q2( — A + VPS+ I)"1 is compact.

4 A sufficient condition to have Q2 relatively compact is β2M^O f°r |x|->oo and can be expressed
as the sum of a L2 function and a L°° one (cf. Kato [15], p. 304, Balslev [16]) improve this result: if

ί |<22(>OI2d3.y-»Ofor|x|-»oo and if 3α>0 such that: sup $\Q2(y)\2\x-y\1~ad3y< + oo=>Q2(-A + lT1

is compact. Potentials Q2(x) = \x\~β with 0</?<f are relatively compact.
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c) Now it suffices to prove that VPS( — A +1) 1Qi is bounded or more simply
that v(-A + ίΓlQι is, since (-A + lΓ^Qi and Σ $dk(En(k)-E)Pn(k) WQ

nellB

bounded

1 ,. ,

+ Lμ|
3/2 + ε '

Now consider (14- b|3/2 + ε)(- A + 1)" 1Q1 and prove it is bounded from L2 to L°°;
in fact:

sup|(l+|y|3/2 + 6

y

i
φ(x)d3x

\x-y\ l + |x|3/2+β

As

Then, denoting 23/2 + ε-α

\x-y\ l + |x|3/2 + ε l

,-M
\\φ\\:

+ |x|3/2+ ε I

Now return to the operator: K(y)

D R

1
/Jl 3/2 + ε^2-

of the unit cell, Π )
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Then V(-A + l)~1Q1 is bounded from, L2 to ZA
The continuity of Q2(l~PI)(HB — E)~lQ^ results of the analyticity of

(l-P^Hβ-EΓ1 on the interval Λ.
Now return to the proof of Theorem 1.2.
1) First of all we have to prove that we can define an operator, H =

self-adjoint. Q = QιQ2 is relatively compact with respect to HB in fact:

As Q2( — A + 1)"1 is compact and Qί is bounded, Q( — Δ + 1)"1 is also compact;
V(HB+l)~ * is bounded since it is closed and defined everywhere because S>(V)D
@(-Δ) = @(HB) (cf. Avron, Grossmann, and Rodriguez [14]) and @(HB+\Γl =
&(HB). Then Q(HB+l)~l is compact. So we can define a self-adjoint operator
H = HB + Q the domain of which is 3t( — A).

2) How to choose Γ?
A(λ) = Q2(HB~ λ)~lQί is a compact operator valued function analytic in the

upper half-plane and it has an extension to a function continuous on the interval A
except at the points belonging to S^. As (l+A(E±}}~1 exists when E is real and
sufficiently negative (||,4(E)||->Ό as £-> — oo) by Fredholm theorem the set ί f l

where (l+^E-j.))"1 does not exist is closed and has measure zero in Λ — S~ι
(cf. Simon [9], p. 127).

Then if we choose EeΛ — ̂ jU^j), Conditions 1.2 and 1.3 are satisfied. All
has been done for Q2(HB — λ)~1Q^ in Lemmas 1.3 and 1.4 can be repeat in an
easier manner for Qι(HB — λ)~lQi hence Condition 1.1 is also satisfied if EeA —

As A is in some sense arbitrary, Γ can be chosen in R1— (5^U(fc ) where
= (J 5^j and $c~ is a subset of all the critical energies. Q.E.D.

Remark. Since the Lebesgue measure of $cv£f is zero: £ac

Eac(Λ). Furthermore, EB ac(A) = EB(A) since the spectrum of HB is absolutely
continuous (cf. Thomas [10]), then:

Eac(A)H is unitarily equivalent to EB(A)HB,'

II. Eigenfunction Expansion

Suppose in addition to the Conditions 1.1-3 the following ones hold for a Borel
set Γ of R

Condition ILL There exists a σ-finite measure space (Ω, Σ, ρ), a partial isometry
l/o of ffl onto L2(o) with initial set f̂ 0,ac

 and a measurable function ω:Ω-*Γ
such that:

(l/0£0iac( J)/)(ξ) = χΛω(ξ))(l70/Xξ) ρ - a.e. ξe Ω

for each fe^ and for every Borel set A ClR. χA is the characteristic function of A.
Condition 112. There exists a mapping ΨQ\Ω^^e ~ =(J^+)* such that

(U0f)(ξ)=<Ψ0(ξ),f>Q a.e.ξεΩ and for all
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In our case Ω=^Z+ x IB; ρ is the product measure of the pure point measure of TL +

and the natural measure on IB. [70 is the unitary operator UB (see Footnote 3)
and ω is precisely the energy band function (n,k)eQ-^En(k). The mapping ψ0

can be defined from the equality

then ιp0 = ψB:(n,k)-+ψ%k (Bloch function) ψ%k(x) = Σc*(k)exp(i(k + K)x), as

Now Kato and Kuroda proved the following theorem (written here with our
notations).

Theorem II. 1. Suppose that Conditions (1. 1-1.3) hold for some Borel set ΓClR.
Assume further that the operator HB satisfies Conditions (I Li and 112) for the
same Γ.

Then the operator H = HB + Q satisfies these Conditions (I LI and 112) with
the same space measure and the same measurable function ω.

More precisely we have
(1) The operators U± = UBWf are partial isometries o/L2(IR3) onto L2(Z+ x IB)

with initial set Jfac(Γ). Furthermore we have :

n(n,k) for a.e.

(2) The following equation in ^f+

has a unique solution tp^eJf ~ for every (n,k)/En(k)eΓ such that

(E/±/)(n,fc) = <t^,/> a.e. (n,k)eTL+ xB

and for every /G Jf + .

Remark. The Eq. (II. 1) can be written

Ψnu(x) = ΨnM ~ J GB(x, y,En(k) ± ityQ(y)ψϊk(y)d3y

and is called the Lippmann-Schwinger equation.

III. Spectral Properties off/ when Q has an Exponential Decay

If we add to the precedent conditions on Q the hypothesis Q has an exponential
decay, we can say more about the set of points in IR—Ή~ such that (1 +A(E))~l

do not exist, i.e. about the eigenvalues imbedded in the continuum and the singular
continuous spectrum.

Theorem. Let Q and FeL2'loc(IR3) and $ \Q(x)\2e^xld3x< +00 for some
\x\>M

α>0 and M>0, then in a finite interval [El5 £2] without critical energies in which
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there is no band intersection5, the singular continuous spectrum is empty and the
number of eigenvalues is finite.

Proof. Let Qt

1(y) = e'Λl4^/(ί + \y\3/2 + e) and Q,Q2 = Q.
We want to define an extension of operator Q'2P

f(HB — E) 1Q1 for E going
®

through the real axis to the non physical sheet, P'= £ J Pn(k)d3k. Γ is the set
w e / '

of all the n such that En(k)e [£15 E2] f°
r some fee IB. To simplify the text we shall,

in the following, only consider a band. As we discuss in Appendix A, introducing
new variables (£, θ, φ) in place of ( k ί 9 k2, k3) we can rewrite

G°(x, y, λ) = dE

We define now an extension of Gβ(jc, y, A) by distording the contour of integration
over £; more precisely the new contours are #α = [λ'e(C|λ'=E — ΐαΘ(E)] where 0
is a continuous positive function such that Θ(E1) = Θ(E2) = 09 α is a parameter
varying from 0 to 1.

Θ is chosen so that ̂  is the frontier of 3) (see Footnote 5); as v?wx(A; θ> ψ) an^
JΠ(A, θ, φ) are analytic with respect to λ, if Im/l>0 the extension G# α is equal to
Gβ = Gβ)0, so Gβ >α is the analytic continuation of G£ to some λ<a@ with Im/l<0.

We prove now that the operator the kernel of which is :

is Hubert-Schmidt.

Gβtί(x9 y, λ) = GBiΌ(.

as j dE... — j dE... +

, A) + J dE '
Ί J2ι A

ME, θ, φ)
0 0

Fig. 2

Then utilizing the Cauchy theorem:

2π π

0 0

Now using the continuity of ψnxψ*yJn

 w^h respect to Θ and φ

G°B(X, y, λ) = G°Bι0(x, y, λ) + 2π2(ψnxψ*yJn)(λ, Θ0, φ0).

5 J/c such that En(k) = En,(k)e [£15 £2]
 an<^ w Φn'. As a consequence the eigenvalues of H\ belonging

to [£15 £2]
 an<^ tne corresponding eigenvectors are real holomorphic in IB and this holomorphy can be

extended on some domain 2 of the complex space C3.
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Let k(λ, Θ0, Ψo) be denoted k0 Ψnx(λ, Θ0, φ0) = £ cf(k0]tP*°
K

Then

\ιn\Ψnx

So

The first term is finite (the proof exactly follows as in Lemma 1.3). The second term
is also finite since £ \c*(kQ)\< + oo (see Appendix B), and:

K

2ellmkol'lyld3y<+oo if |Imfe0 |<α/2

= J |β(jc
\x\<M

+ j |Q
|x |>M

The first term is finite since QeL2'loc(IR3), the second also by hypothesis if
|ImΛ0 | < α/2. So in the two cases it is sufficient to choose λ sufficiently near the real
axis so that |Imfc0|<α/2. So the extended operator A^(E) is compact and the
conclusion follows immediately.

Acknowledgements. I wish to thank Prof. J. C. Guillot to call my attention to the work of Kato-
Kuroda and Prof. A. Grossmann and E. Mourre for many valuable discussions.

Appendix A

In Avron, Grossmann, and Rodriguez [14], it is shown that the spectrum of the
reduced Bloch hamiltonian Hk

B consists of real isolated points of finite multiplicity
En(k); the En can be chosen holomorphic in any one of the variables k{ (but they
will not in general be single valued as a function of all three variables kt).

Thomas proved, as a consequence, that the measure of the set of points fee B
such that En(k) equals a fixed energy E is zero. In the same manner it can be proven
that the measure of the set Sc (critical points) is zero. We can also deduce that
critical points can be isolated or distributed along a curve or a surface of equal
energy.

If we diagonalize the matrix of the second partial derivatives at the critical
point we distinguish two principal sorts of critical points, extremal point if all
the signs of the d2EJdk2 are the same, saddle point if the signs are different.



Scattering from Impurities in a Crystal 163

Now state the theorem

Theorem A.I. Let E! belong to the bands the index of which is in the set I and

then \gR(x0, yQ, £' ± zΌ)| ̂  α(£')/|R| when \R\ is sufficiently large, when E is not a
saddle critical point.

Proof. For each ne I divide the Brillouin zone in domains &n, whose frontiers
are the curves of constant energy: E^ (E^ denote the critical value taken by En

at the saddle point ks).
Except possibly at the extremal points and at the "fluted points" [19] we

define a diffeomorphism by associating to each fee 2{

n the corresponding energy
E = En(k) and the angular coordinates θ, φ in fact the matrix derivative of such a
transform Sl

n, has a determinant equal to VEn(k — kl

n)/\k — kl

n\
3 sinθ where kl

n is the
"center" of the new coordinates (the R direction is taken as the z-axis).

Let j;(£, θ, φ) = |fe-fe^|3 sin θ/VEn - (k - /4) denote the Jacobian of «)' 1 at the
point E,θ,φ; El

n, E
l

n resp. the inf (sup) En(k) and κ = k — kl

n.
ke@l

n

Then:

dφ dθ(ψnxψ*yJ
ί

n)(E, θ,
0 0

We can separate the summation in two parts considering in one side the n and i
such that E'ejEj,, £j,[ and on the other side ra and j such that E'φ~\EJ

m, Ej

m\_. In
the following we shall write only one term of each type to simplify the text.

Denote

fί(E, R) = j dφ dθiψ^ψtJXE, θ, φ)e> ̂ ^ °°sβ ,
0 0

it is differentiable with respect to E in the interval ~]El

n,E
l

n[; then by the mean
value theorem the term (1) in:

gR(*0, y0,E'± t 0) = lim | f"(Ef "/f E ' R) dE (1)
ε->0 Ein £ — & =Fiε

^ dE ^+ \imfί(E'9R) $ + f
—

(2) (3)

becomes:

|J, R) _ n(

4 dE

ΘE> is a continuous function the values of which are in the interval ]£^ — £', El

n — £'[.
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pi _ rv

The term (2) equals fl

n(E', R) log-? — — and term (3)
E-E

dE\/(E-E'} with α(E')>0.

So we have to study fl

n(E, R) as a function of jR whenever Ee~\El

n, E^[ is.
If \R\ φO we can rewrite ft(E, R) in the form:

fi

n(E,R)= J dφ$dθ — elw
o o vv

and integrate by parts

f ΐ ( E , R ) = l / ( i \ R \ ) ξ d φ

1

i\R\-\K\cosθ

dθ] /c cosθ

TθMcosθ

It is now sufficient to prove that the two integrals exist and are majorized by a
function of E only. As

If θ-»0 or π we have to consider two cases:

a) -0.

> = 0 , π

— |κ|cosθ

In the first case the first integral in /ή(-E, R) disappears, in the second it is equal to

*(£, 0) *(£, π)

rtE,0)

dE
Functions ιpn are bounded. \κ\(E, O)/-—— (£, 0)-> -f oo only when E goes to the

δ|κ|
dE

El or jEί. which is the critical saddle point. Furthermore as \κ\(E,0)/-τ--(E,0) is
d\κ\

continuous it is bounded on a closed interval contained in]E^,E^[.
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By some tricky calculation we obtain the same result from the second integral,
then the conclusion follows immediately.

Theorem A.2. #R(Λ;O, y0, Ef ±z'0) are continuous functions in Ef.

Proof. If /(£, jR) is an Holder continuous function with respect to E

E>n

lim j /(£, R)/(E - E' + ίε)dE
ε^O El

n

is also Holder continuous with the same order. Since f ( E , R) is differentiable in
the interval ]E^,£^[, the result follows immediately.

Appendix B. Properties of the Bloch Functions

The improper eigenfunction of HB: ιpnk(x) can be written in the form

where the sequence {c*(fc)}e/2 is the nih eigenfunction of the reduced Bloch
hamiltonian Hk

B.

K

Lemma 3.1. For k real
a) £|cn

K(fc)|<+o>.
K

b) ψnk(x) is a bounded function in x.

Proof. c*(k) is an eigenfunction of Hk

B then it belongs to @(Hk

B) = Q}(- Δk}\ then:
2kκ(/c)|2<+α) (B.I)

K K

^(\+(k + K')2Γ2Σ^+(k + K)Ύ\c^(k)\2<+^ by (B.I).
K K

As hpπicMI^X kif(fc)l? b) follows immediately.
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