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A Class of Inhomogeneous Cosmological Models
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Abstract. All solutions of Einstein's field equations representing irrotational dust and possessing a
metric of the form ds2 = dt2 — e2a dr2 — e2β {dy2 + dz2) are found. The new metrics generalize the
earlier Bondi-Tolman, Eardley-Liang-Sachs, and Kantowski-Sachs cosmological models.

t. Introduction

Cosmological solutions to Einstein's field equations are generally found [1]
by imposing a large group symmetries on the metric, amounting to an assumption
of spatial homogeneity. While this assumption is probably quite reasonable in an
averaged sense, it is obviously false on galactic and smaller scales. It is therefore
of considerable interest to have at hand a large variety of inhomogeneous models
as a basis of comparison with the homogeneous ones. All questions of detail
such as galaxy formation or the detailed structure of the black-body radiation,
to be treated properly, should ultimately be referred to such inhomogeneous models.
In particular the study of the singularity structure of more general models is still
only in its initial stages [2], and promises to lead to radical departures from the
highly idealized Friedmann-type singularities which are usually considered.
However the only generally known inhomogeneous solutions are the spherically
symmetric Bondi-Tolman metrics [3] and the plane-symmetric models of Eardley-
Liang and Sachs [2] (referred to as ELS in this paper), and both of these examples
still impose strong symmetry groups.

In this paper we abandon all a priori symmetry assumptions, but concentrate
our attention on metrics having the simple form

ds2 = dt2 - e2adr2 - e2β(dy2 + dz2). (1)

All solutions of this type will be found which represent irrotational dust,

v (2)

where uμ = (ί9 0, 0, 0), κ = %πG(c= 1). Our solutions will be found to generalize
both the Bondi-Tolman an<2 ELS solutions, by essentially displacing the "centres
of symmetry" in a well-determined manner, leading to what might be termed
quasi-spherical and quasi-planar metrics (as well as a new class of quasi-pseudo-
spherical metrics which generalize a previously unexplored class of pseudo-
spherically symmetric metrics). A second class of solutions is also found which
generalizes the homogeneous cylindrical solutions of Kantowski-Sachs [4]
in an analogous fashion. Wheter this displacement process is part of a more
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general procedure for obtaining new solutions from old ones is not at present
clear, but the solutions presented here are strongly suggestive of the existence
of a more general result of this type.

2. Friedmann Functions

Consider a metric of the form

ds2 = dt2 - gabdxadxb (α, fc = 1,2, 3).

The Einstein field equations (2) for irrotational dust read

% 2 (3)

(4)

d

c) = 0, (5)

where

Kab = htah, K\ = r Kac, K = K'a,-=d/dt,
I refers to covariant derivative taken with respect to the 3rmetric "gab, Gb is the
Einstein tensor of the 3-metric, and G = Ga

a.
As an alternative to Eq. (3) we obtain from (3) and (5)

k + Ka

hK
b

a + %KQ = Q, (6)

Raychaudhuri's Eq. [5], which may be used to show that along each streamline
the density becomes infinite at some finite time ί0.

Now if gah = e2ψgab, where the gab are functions only of x1, x2, x3, then we may
show that the metric is a Friedmann model, for in this case

and substitution in (4) gives

whence ψ = f(t) + h(xί, x2, x3). It is clearly possible to absorb the function h into
the definition of gab, so without loss of generality we may assume ψ = ψ(t). Sub-
stituting into Eq. (5) results in

b ( \ , ) b

Thus
e2ψ(2ip + 3xp2)= -fc, fc = const, (7)

and

Ga

b=-kδa

b.

Hence the 3-space defined by gab is a space of constant curvature and the metric
may be brought to the Robertson-Walker form, giving rise to the Friedmann models.

Let us write ψ = logφ, so that (7) reads

and has a first integral

0 2 = - f c + 4 ~ > / = const (8)
Φ
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The general solution of this equation is

φ = F{k,l;t-t0), to = const,

where the Friedmann functions F(k, I; t) are defined as follows:

(i) k>0J>0;F(kJ;ή = lk-ίcos2η,t = lk~3/2(η + ^sin2η),

(iia) l

(iib)

(iic) / < 0 ; 0 F ( f c 0 ί ) ( f c ) 1 / 2 ί

(iiia) fc =

(iiib) fc = O,Z = O;F(O,O;ί) = const.

These functions are defined as solutions of (8) which vanish at ί = 0 [except in
the trivial case (iiib)], and which are positive for some interval ί > 0 . This clearly
eliminates from consideration the cases k > 0, / ^ 0 and k = 0, I < 0.

3. Field Equations

Returning to the metric (1), let us introduce a pair of complex variables,

ξ = y + iz, ξ = y-ίz.

The field equations (4) and (5) reduce to

? δ -j8) = 0, (10)

α ί(iS-ά) = 0, (11)

aξ(β-&) = 0, (11')

09 (12)

0, (120

-2βξoιξ = O, (13)

(14)

(15)

where ' = d/dr, and

aξ = da/dξ = ̂ (δa/dy — ίδoc/dz),

α ? = da/dξ = \(dφy + zδα/δz).

The density is determined from Eq. (6),

2 J 2 . (16)
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We note some immediate integrability conditions for Eqs. (10)—(15). Forming
d/d 1 of (11) and d/dξ of (110 and subtracting we arrive at

ocξάi-ξ = oί-ξάξ (17)
and

ocξβξ = (xξβξ. (17')

From d/dt of (13) and d/dξ of (11) we have

and the complex conjugate of this equation results from (13') and (1Γ). Finally,
from d/dξ of (10) and d/dt of (12) we find

β'βξ = O (19)
and its complex conjugate

β'βξ = O. (19')

Thus when β' φ 0, we must have βξ = βξ = 0, or

β = ψ(t9r) = v(r9ξ,ξ). (20)

In the next two sections we shall obtain all solutions of Eqs. (10)—(15) subject
to the condition (20). As we shall see in Section 6, even in the case where β' = 0,
this condition will turn out to be sufficiently general to include all solutions of
our equations.

4. The Case β' * 0

As discussed above, we may assume in this case that β has the form (20).
Of course ψ and v are not uniquely determined by this equation, since it is possible
to replace them by

ψ + / (r) and v — / (r)

for any arbitrary function f(r). However from Eq. (10) it follows that f(r) may be
chosen such that

α = log(v/ + v/) + ψ. (21)

Eqs. (11), (1Γ)5 (12), and (120 a r e n o w a ^ automatically satisfied, and Eq. (14)
imples that

4e~2v vξξ+ 1 = e2ψ(2ip + 3ψ2) = - k(r), (22)

so that for each value of r, the function ψ(t, r) satisfies the Friedmann equation (7),
and the 2-metric e2vdξdξ is a surface of constant curvature 1 +fc(r). As shown
in the Appendix, coordinates ξ, ~ξ may be chosen such that

e a(r)ξξ + B(r)ξ + B(r)ξ + c(r), (23)
where _

ac-BB = i(i+k(r)). (24)

Eqs. (13), (13'), and (15) are now satisfied automatically, and putting ψ = \ogφ
we have the complete solution expressed in terms of the Friedmann functions
introduced in Section 2,

φ = F(k(r)J(r);t-to(r)) (25)
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where l(r), to(r) are arbitrary functions of r. Substituting in the density Eq. (16) gives

fcρ = έΓ3 v(J / + 3/v/)/(v' + v/). (26)

From (21) we have α = α(r, ί) iff v' = v'(r), i.e. iff there is a function f(r) such that

where aγ,Bγ, and q are constants. It is clearly possible to pick a normalization
such that

K1=4(a1cί-B1Bι)=±ί or 0,

and, as shown in the Appendix, coordinates ξ9 "ξ may be found such that B1 = 0,
cί = 1/2 and a1 = i^/2 whence

If k(r) > — 1, the metric is spherically symmetric and reduces to a Tolman-Bondi
model [3], if k(r)= — 1 we have the class of plane symmetric models discussed
by Eardley, Liang and Sachs [2], and k(r)< — 1 is a class of "pseudo-spherically
symmetric" models (i.e. a 3-parameter group of symmetries exists whose surfaces
of transitivity are pseudospheres).

All vacuum solutions with βr + 0 fall in the above category, for putting ρ = 0
in Eq. (26) implies

1 = 0 or v=-$logl(r) + v0(ξ,ξ).

The case / = 0 gives flat space since a detailed computation shows that the Riemann
tensor Rμvρσ vanishes. The second case is as above with ef(χ) = (l{r)γ, and reduces
for k(r) > — 1 to the Schwarzschild solution in comoving coordinates (see e.g. [6]),
and for k(r)< — 1 to its pseudo-spherically symmetric relative, which can be
arrived at from the usual Schwarzschild coordinates by the complex substitution
θ-+iθ, ds2-* — ds2, while the case k(r)= — 1 can be obtained from Schwarzschild
by a limiting procedure [7].

When the ratios a.c.B are non-constant we have a generalization of the
Bondi-Tolman, ELS and pseudo-spherically symmetric metrics to spaces with a
set of displced or "non-concentric" spheres, planes and pseudospheres. We write
out the complete metric explicitly in the case fc = 0:

ds2 = dt2-(t-t0y
2/3(t-t1)

2R2(dlogP/dr)2dr2-(t-t0)*/3p-2dξdξ

where

P = R(ry' [a(ξ + B/a) (ξ + B/a) + l/4α)] ,

a = a(r), B = B(r), t0 = to(r), R(r) = (f/(r))1/3 ,

and

h = h (r, ξ, ξ) = t0(r) - idt0/dr(d\ogP/δry1 .

The density is given by ,

Q =
6πG(ί-ίo)(ί-ίi)'
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The 2-metric dξdξ/P2 is that of a sphere of radius R which may, by a coordinate
transformation r'' = f(r), be set equal to r in any region where dR/drΦO. The
metric reduces to the familiar k = 0 Bondi-Tolman metric in the case of spherical
symmetry:

ds2 = dt2 - (t - t0y
2^ (t - t,)2 dr2 - (ί - tof dξdll\_\(\ + ξξ)Y ,

h = to(r), it = tt(r) = to(r) + \rdtjdr .

5. The Case 0 = 0 , /lf = 0

Under these assumptions we have again that Eq. (20) holds but now with the
variable r supressed:

v(ξ,ξ). (27)

Eqs. (10), (12), and (12') are all automatically satisfied, and Eqs. (11), (11;) imply

α = log(μ(ί,r) + 0(ί)σ(r,ξ,ξ)) (28)

where φ = eψ. As in the previous section we have from (14) that

4e~2vva=e2xp(2ip + 3ψ2)= -k, k = const

Hence
eψ = φ = F(k, I; t-t0), k, /, t0 = consts.

ψ and v may be defined in such a way that k = ± 1 or 0, and a coordinate transfor-
mation f->ί — ί0 may be used to set t0 = 0. Again we have

e-^aξξ + BξΛBξ + c,

where a, c are real constants, B a complex constant satisfying

From Eqs. (13), (13r) we now find that

(e-V)« = ( e - V ) w = 0 ,

whence

(29)

where w, w are real functions and V a. complex function of r.
Substitution in Eq. (15) results in

φμ + φμ = φμ = f(r) (30)
where
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These metrics are generalizations of the Kantowski-Sachs homogeneous and
anisotropic models [4] which arise when we put fc=±l, σ = / = 0, μ = μ(ί).
Using Eq. (9) the various cases may, after suitable coordinate transformations,
be brought to the following canoical forms:

(i) fc= + i , / > 0 ; έΓ v =4( l + ^ ) ,

φ = F(l, /; ί) = lcos2η , t =

μ = ε + (εη + b(r))tanη, ε = ± 1,0,

KQ = (ε + 3 Zσ) Z2 cos2η(μ + φσ).

(ii) fc=-l; <Γ v ?

(iia) Z<0; φ = F{- 1, Z; ί)= - Zcosh2^/, ί = -

μ = ε — (εη + fe(r))tanhτ/, ε = ± 1,0,

K ρ = ( - ε + 3 lσ)/l2 cosh2 η(μ + φσ),

(iib) Z > 0 ; (/> = F ( - l , Z ; ί ) = Zsi

μ = ε — (εη +b(r)) cothη, ε= ± 1,0,

κ:ρ = ( - ε + 3/σ)/Z2 sinh2^(μ + φσ),

(iic) / = 0; 0 = F ( - l , O ; ί ) = ί,

, ε = ± 1 , 0 ,

(iii) fc = 0 ; e ~ v = l ,

(iii a) l>0;φ = F(0J;ή = t2/\ (i.e. can set Z = 4/9)

(iiib) Z = 0; φ=ί,

μ = εt + u{r)t, ε = ± 1,0,

Vacuum solutions can only arise as follows. In cases (i), (iia), and (iib) we must
have ε = 0, σ = 0, and the solutions are various relatives of the Schwarzschild
solution (see [4]). In cases (ii b), (iii b) all vacuum solutions have vanishing Rei-
mann tensor and are therefore flat, while in (iii a) there is no vacuum solution,
for ρ = 0 implies ε = σ = 0 and this gives rise to a singular metric.



62 P. Szekeres

6. Case βξ Φ 0

In this case there is no loss of generality in assuming α = α(ί, y\ β = β(t,y\
where y = ̂ (ξ + £).

Proof. From Eq. (19) we see at once that we must have β' = 0. On the other
hand, from d/dr of (18) we now obtain at!ξ = 0. But from Eq. (11) we see that otξ Φ 0,
whence from d/dr of (11) we have ά' = 0. Hence α = /(r) + #(ί, ξ, ξ), and after a
coordinate transformation of the form r = h(rf) it is possible to set /(r) = 0.
Thus we may assume _

α = α(t,ξ,ξ), β = β(t9ξ,ξ).

Eq. (17) may be written

whence

Let σ(ξ, ξ) be any non-zero real solution of the differential equation

σξ = eίλσξ, (e.g.σ = cι{tθ9ξ9ξ))9

then it follows that
oί = oc(t, σ ) .

Now from (13), (13') we have

i8 = i(α + logα ί + log/(ί,ξ)) = i(α + log

whence

eίλ = /(ί, ξ)/f(t, ξ) = f(t0, ξ)/f{t0, ξ),

where ί0 = const. Define the complex function g(ζ) from the differential equation

dg/dξ = f{to,ξ)9

and writting σ = σ(gf (^), g(J)), we see that

so that σ = σ{g + 'g). After performing a coordinate transformation ξ-+ξ' = 2g(ξ),
it is clear that we may assume

α = α(t,)0, y = iK + i)»
and hence that

Substituting into Eqs. (13), (13') gives at once that βξ = βξ, whence

β = β(t9y).

Thus in this case there is a two-parameter group of motions with commuting
spacelike Killing vectors (plane symmetry). The particular form of the metric
discussed here is a rather unnatural restriction with respect to these symmetries
(the general case of vacuum metrics possessing these symmetries have already
been dealt with elsewhere [8]). However for the sake of completeness one may
write out the equations resulting from imposing these restrictions and integrate
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them. A tedious and uninstructive computation reveals that in fact there are no
solutions to these equations, so that the models discussed in Sections 4 and 5 are
all the irrotational dust models with the metric form (1).

Appendix

2-Surfaces of Constant Curvature

Consider a 2-metric expressed in complex conformal coordinates

v = v(&2f). (Al)

The Gaussian curvature is given by

K=-4e~2vvξξ. (A2)

If K = const., we find immediately from (A2) that

(vξξ-(vξ)
2yξ=o,

whence
v«-(v { )

2 = τ(£). (A3)

Any coordinate transformation of the form ξ = f(ξ'), ξ = f{ξ') will preserve the
conformal form (Al) of the metric, but with a new function

Hence the function τ in (A3) undergoes the transformation

τ'{ξ') = τ(ξ) (fξ)
2 + ίflog fξ.)ξ. ξ. - i(k>g fξ,)ξ, ,

and such a transformation may clearly be chosen such that τ'(ξ') = 0. Thus without
loss of generality we may take

(e-\ξ = e-*(-vξξ + (vξ)
2) = 0,

whence

e-v = aξξ + Bξ + Bξ + c, (A4)

and substitution in (A 2) implies

ac-BB = K/4.

A further bilinear transformation

ς Rξ' + S

may be applied to reduce (A4) to a canonical form

K = + 1 is the unit sphere, K = 0 is flat space, and K — — 1 is the unit pseudo-sphere.
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