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Abstract. We give a rigorous proof that under certain technical conditions the memory
effects in a quantum-mechanical master equation become negligible in the weak coupling
limit. This is sufficient to show that a number of open systems obey an exponential decay
law in the weak coupling limit for a rescaled time variable. The theory is applied to a fairly
general finite dimensional system weakly coupled to an infinite free heat bath.

§ 1. Introduction

In the last fifteen years there has been a growing realisation by
physicists of the importance of master equations for the study of the time
evolution of open quantum-mechanical systems. As well as providing
a suitable framework for the consideration of the fundamental property
of irreversibility [1], they have proved an important technique in the
analysis of a variety of models, such as harmonic oscillators and lasers.
It becomes clear in the excellent survey article of Haake [2] that one
of the main reasons for the usefulness of master equations is the radical
simplification obtained when memory effects are neglected.

It is rather surprising, therefore, that in the recent rigorous studies
of these models, the use of master equations has been avoided. This
appears to be because, although it is possible to give a rigorous proof
of the master equation itself, conditions under which the memory effects
can be neglected have not been found.

In this paper we give a rigorous proof that the time evolution of an
open system is Markovian in the weak coupling limit. As the coupling
constant converges to zero we rescale the time variable to compensate
for the slower decay of the system. The theory is developed in a general
form and its application to a variety of models is outlined. The case of a
general finite-dimensional system weakly coupled to an infinite free
heat bath is investigated in some detail and relaxation to the Gibbs
state is proved.
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§ 2. The Abstract Theory of the Weak Coupling Limit

In order to establish our notation we start with the derivation of the
master equation. For motivation and a historical discussion we refer
the reader to [1,2]. We let P0 be a projection on a Banach space @&
and put Pί = ί—P0. We refer to ^0 = P0 J* as the system and to ^S1

= P! & as the bath. We suppose that the free evolution of both is deter-
mined by a strongly continuous one-parameter group Ut of isometrics on
3t which leaves each of <8Q , St^ invariant. The infinitesimal generator Z
is then closed and densely defined and

We define Zi=^PiZ for later use.
We introduce a perturbation A which is supposed to be a bounded

operator on .̂ Writing Aij = PiAPj.> we suppose from here onwards
that

Λoo = 0. (2.2)

We let Ut

λ be the one-parameter group generated by Z + λA^ so that
for all t

[l/ΛP 0]=0. (2.3)

We also let Vt

λ be the one-parameter group generated by Z + λA, so
that by a well-known formula [3]

V,*=Ut

λ + λ Uίs(Aol+A10)V*ds. (2.4)
s = 0

In this and all subsequent integrals, the integrand is everywhere bounded
and strongly continuous, so no difficulties of interpretation occur.
From Eq. (2.4) we can obtain

Po7/P0 = l/t

λPo + λ } Uί.AnP^Pods (2.5)
s = 0

and

P,Vt

λPQ^λ ] UtsA1QP0Vs

λP0ds. (2.6)
s=0

λ λPutting Wt

λ = P0 Vt

λPQ we obtain by substitution

t s

f ί Ut

λ_sA01Us

λ.uA10Wu

λduds. (2.7)
s = 0 u = Ό
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Using Eq. (2.2) we finally obtain

Wt

λ=Ut + λ2\ j Ut_sA01Us

λ_uA10Wu

λduds (2.8)
5 = 0 14 = 0

where we have dropped reference to P0 since we shall from now on work
entirely within &Q .

This is an integrated form of the master equation constructed by
Nakajima, Prigogine, Resibois, and Zwanzig. To see this we put φt = Wt

λφ
where φe<2S0to get

φt=Vtψo + λ2 U_sA01Us

λ_uA10φududs (2.9)
\ S=0 11 = 0 /

so that formally

2 (2.10)

However we prefer not to work with this equation because it necessitates
consideration of domain questions. It does indicate that in Eq. (2.8)
the integral contains memory terms. We now come to the problem of
going to the weak coupling limit.

Since the memory term is small compared with the free term we
change to the interaction representation before letting λ->0. Putting

Yτ

λ=U_tWt

λ (2.11)

where τ = λ2 1 we obtain

r/ = l + } H(λ,τ-σ9σ)Yσ

λdσ (2.12)
σ = 0

where

H(λ,τ9σ)=V-λ-2σK(λ,τ)Uλ-2σ (2.13)
and

K(λ,τ)=Y U_^0 1E/Mo<*x. (2.14)
x = 0

If the kernel H(λ, τ, σ) converges as λ ->0 to an operator H on J*0

which is independent of τ and σ then the convergence of Vτ

λ to a limit
operator Ύτ as λ-»0 may easily be proved. However upon examining
the dependence of H(λ9 τ, σ) on σ it becomes apparent that such limiting
behaviour is unlikely, and that a more sophisticated approach is
necessary.
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We now restrict attention to the case where J>0 is finite dimensional.
If {gα} are the spectral projections of Z0 on ̂ 0 then we can write

P0Ut = eZot=ΣQΛe
i^t (2.15)

α

where the ωα are distinct and real. If X is any operator on ̂ 0 we define

or, equivalently

*χ*= lim y- UxXU_xdx (2.17)

which makes no reference to the spectral projections of Z0 .

Theorem 2.1. Suppose that for all τ1>0 there is a constant c such
that

| |K(λ,τ)| |=c (2.18)

provided \λ\ ̂  1 and 0 ̂  τ ̂  τ t . Suppose also that there is a bounded
operator K on &0 such that if 0 < τ0 ̂  τx < oo then

lim | |K(A,τ)-K|| -0 (2.19)
λ-»0

uniformly with respect to τ if τ0 ̂  τ ;§ τx . T/z^fi if ̂ 0 is finite-dimensional
and be&Q

lim || y/ 6 -y t ft | |=o (2.20)

uniformly on each interval 0^τ^τί, where

} (2.21)
where

K*Ut=UtK* (2.22)

as operators on &0 for all t e R

Proof. We let ̂  be the Banach space of continuous ^0 -valued
functions on [0, τj. If 2tfλ : τΓ->τΓ is defined by

τ)/(σ)dσ (2.23)
σ = 0

then /λ = y/b is the solution of

(2 24)
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where gf(τ) = fe for O^T^T!. We now define ^:τΓ->τr by

(^λ/)W= ί U_λ-2σKUλ-2σf(σ)dσ (2.25)
σ = 0

By Eqs. (2.13) and (2.19) it is easy to show that (J(fλ-jftλ) converges
strongly to zero as λ-»0.

Using Eq. (2.15) we can put

f(σ)dσ. (2.26)

(2-27)

where

(2.2.8)

(2.29)

(2.30)

(2.31)

Since Jf^ converges strongly to JΓ each term of this series converges
to zero. Also since Jfλ and Jf are Volterra integral operators

\\^g-^ng\\^2\\g\\cnτl/n\ (2.32)

Therefore fλ converges in norm to / as /l-»0.
A simple condition for the existence of the limit operator is given

below.

e^'-"'^-1'f
a,β σ = 0

As λ-+Q this converges uniformly for O r g τ r g τ i to

Λ(τ)=Σβf*aA/, ί f(°)d°
α,/? σ=0

Therefore JΓA, and hence JΓλ, converges strongly to

(Jf/)(τ)= J K * f ( σ ) d σ .
σ = 0

Now /(τ) = 7τ6 is the solution of

so
/

and a similar equation holds for fλ. Therefore

Theorem 2.2. // An = 0 and

]\\A01UxAlo\\dx«x>
o

then the conditions of Theorem 2.1 are satisfied with

K=fu.xA01UxA10dx.

(2.33)

(2.34)
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Proof. This is immediate once it is realized that when A00 — An = 0,
the operator Ut

λ is independent of A.
In order to deal with the more physically interesting case where

An φ 0 we introduce the notation

Ar=U_trAUtr. (2.35)

Theorem 2.3. Suppose that

\\P0A0AP0\\dt<π. (2.36)

Defining
o

αn(t)= ί ...'"ϊ' P0A0P1A1P1...P1AnP1AP0dtn...dt0 (2.37)
ίθ = 0 ίn = 0

suppose that for n ̂  1

\\an(t)\\^cn^2 (2.38)

00

where the series £ cnz" has infinite radius of convergence. Suppose also
n = l

that for some ε>Q,dn and allt^.0

\\an(t)\\^dnt"!2-ε. (2.39)

Then the conditions of Theorem 2.1 are satisfied with

K=]p0A0AP0dt0. (2.40)
o

Proof. Expanding Ut

λ as a power series in λ we obtain

\\K(λ,τ)-K^ ] \\P0A0AP0\\dt0+ £ λ"\\an(t)\\ (2 41)
λ~2τ n=l

By Eq. (2.36) the integral vanishes as A->0 uniformly for τ in any compact
subset of the open interval (0, oo). By Eq. (2.38) if 0 ̂  τ £Ξ τ0 the series is

00

dominated by the convergent series £ cnτ0

n/2. But by Eq. (2.39) the nth
n = l

term of the series is also dominated by

λ2*dnτ0

n/2-* (2.42)

which converges to zero as λ->0. Therefore the series converges to zero
uniformly if 0 ̂  τ g τ0 .

The above theorems complete the abstract theory and we give some
remarks and applications.
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(1) The Wίgner-Weisskopf Atom. The solution in [4,5] of the
evolution equations for a harmonic oscillator weakly coupled to an
infinite free heat bath reduces to a single-particle problem for the Wigner-
Weisskopf atom. This and its multi-dimensional version [6], can be
solved in a few lines using the above formalism. We remark, however,
that the results obtained in [4, 6] are stronger than those given here in
that the convergence was shown to be uniform in time. This is very
important when discussing the interchange of the limits Λ,-»0 and
ί-»oo.

(2) Stochastic Differential Equations. There is a strong formal
similarity of this work to a problem on stochastic differential equations
on a Banach space ^0. See [7]. If (Ω, dώ) is a probability space then
one can define

(2.43)

and let the projection P0 be

P 0 / = J / ( ω ) d ω . (2.44)
Ω

The interaction is then

(Af)(ω) = A(ω)f(ω) (2.45)

where A (ώ) is a "random" operator- valued function, and the free
evolution is

( U t f ) ( ω ) = f ( t ω ) (2.46)

where tω e Ω for all t e IR and ω e Ω.
(3) On the Condition \\P1 1| = 1. If the condition 1̂  || = 1 were satisfied

than a lot of the technical trouble involved in verifying the conditions of
Theorem 2.1 could be avoided. However in the example of the next
section it may be seen that \\Pί \\ = 2. This difficulty also arose in [8] and
was the reason for the condition on the spectrum of (1 — P) L(l — P) in
Theorem 3.3 of that paper.

(4) Extensions of the Theorems. The theorems can be extended to
certain cases where ̂ 0 is infinite dimensional and the operators involved
are unbounded. However, a necessary restriction is that Z0 has discrete
spectrum, since otherwise the operation tq is not defined.

(5) The Origin of Ir reversibility. We started with an evolution
equation on $ which is fully reversible and ended up with a semigroup
on $0, which represents an irreversible dissipative process. The origin
of the irreversibility in this case clearly lies in the initial conditions
rather than in any dubious procedure such as coarse-graining.
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§ 3. System in an Infinite Free Heat Bath

We show that an JV-level atom weakly coupled to an infinite free
heat bath relaxes to equilibrium in a Markovian fashion and that the
equilibrium state is its Gibbs state at the temperature of the heat bath.
This behaviour has already been proved in two particular cases [4,9].
Our contribution is therefore to show that the result is of a very general
type, being essentially independent of the nature of the system, and of
whether the coupling to the bath is linear in the field operators (at least
in the fermion cases). The problem could, as in [9], be solved without
the use of master equations, but we believe they form a useful device
for extracting the terms which contribute to the limiting behaviour.
We make comments on possible variations of the model at the end of
the section.

The atom is described by an N-dimensional Hubert space J^
with a free Hamiltonian HA. The heat bath is described by a quasi-free
representation of the canonical anticommutation relations (CAR's)
with an infinite number of degrees of freedom [10]. To be specific we
let the complex Hubert space 1^ be the test function space and S the
single particle Hamiltonian on i^. For each fei^WQ have a bounded
operator φf on a space Jfβ satisfying the CAR's

. (3.1)

There is given a cyclic vector Ω in jfB and a Hamiltonian HB on JΓB

such that
HBΩ = Q (3.2)

and

eiHBtφ(f) e~ίHBt = φ(eίstf). (3.3)

The representation is determined by its correlation functions as follows.
For any integer n we define the set 0>n of pairings as the set of all permuta-
tions p of (I, . . . , 2n) such that

p(2r-l)<p(2r) and p(2r-i)<p(2r+i) (3.4)

for all r. Then writing < ... > for the expectation with respect to Ω,

= Σ Sΐgnp Π <φ(/P<2r-l)M/p<2r))> (3.5)
p e 0>n r = l

while

+ ι)> = 0. (3.6)
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The formula for the two-point functions at the inverse temperature β is

The Hubert space for the composite system is Jf = C^A®^E and the
Hamiltonian is

(3.8)

where the interaction term is

(3.9)

Here Q is an arbitrary self-adjoint operator on J^ and the self-adjoint
operator Φ is given by

where the test functions /x and /_ l are supposed to have disjoint energy
spectra, that is

<* ίs7ι,/-ι>=0 (3.11)

for a l l ίeR
We now state the problem in the terminology of Section 2. Let the

Banach space & be the space of trace class operators on Jf and let J*0

be the space of trace class operators on 3CA. The projection P0 : &-+ &0

is the partial trace, which is determined by

tr[P0te)*]=tr[ρ(*<8)l)] (3.12)

if ρ is an arbitrary trace class operator on tf and X is an arbitrary
bounded operator on tfA . For this to be a projection we have to identify
JO as a subspace of J*, and we do this by the injection ρ-^ρ(χ)σ where σ
is the state |Ω> <Ω| on jfB.

The free evolution is the one parameter group of isometries on &
given by

Ut(ρ) = e-ίHotρeίH°t (3.13)

whose infinitesimal generator is formally

= -i[Jf0,ρ]. (3.14)

The necessary and sufficient condition for Ut to leave ^0 and ^Sί

= (i—P0)& invariant is that HBΩ = fy which we have assumed. The
perturbation introduced is the derivation A on ̂  given by
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The evolution group of the total system is therefore

V,λ(Q) = e-iHλtQeiHλt . (3.16)

The condition A00 = 0 is satisfied provided

<ΦΩ,Ω>=0 (3.17)

and this is a consequence of Eqs. (3.10) and (3.11).
We have now set up the problem in the notation of Section 2 and

have to check that the conditions of Theorem 2.3 are satisfied. We first
introduce the following abbreviated notation.

Aγ = U_trA Utr, Qγ = eiH^Qe~ίHΛtr

φ _ eiHBtrφe-iHBtr

φ r ( f ) = eίHBtrφ(f) e~ίHBtr = φ(eist*f} (3.18)

and define
ht = eiHBtΦe-ίHBtΦΩΩ

(3.19)

It may easily be proved from Eqs. (3.5) and (3.1 1) that

(f). (3.20)

Theorem 3.1. // j \h± (ί)| dt < oo then
o

oo

$ \\P0A0AP0\\dt0«π. (3.21)
o

Proof. lϊρe&Q then

PO A0 A P0 Q = - P0 [ρ0 <g> Φ0 , [Q ® Φ, ρ ® σ]]

= -βoQαtr[Φ0Φσ] + αoρβtr[Φ0σΦ] (3.22)

+ βρβ0 tr[ΦσΦ0] -ρββ0 tr[σΦΦ0] .

Therefore
2

which immediately yields the result.

Lemma 3.2. a2n+1 (t) = 0 for allt^Q and

α2B(ί)= ί ... 1 ' P0A0A1P1A2A3P1...P1A2aAP0dt2Λ...dt0. (3.24)
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Proof. Let N be the operator counting the number of particles whose
energy lies in the energy spectrum of/ 1 ? so that [N, φ(/_1)] =0, and
defined :&-+& by

Then for all ρ e J*0 and all ί ̂  0

β> 77 _ 77 & & p _ p &^u—uό όrQ — ΓQ&

The statements of the lemma follow by applying the symmetry S to the
integrand.

In the following we shall occasionally write A2n+1 for A: this is
equivalent to introducing a dummy variable t2n + 1 = 0.

Lemma 3.3. Let h^ be ίntegrable on [0, oo]. Then ίfπ is any permutation

Σ ί ••• ί_ Π M*πp (2r)-tnp(2r+l))dt2n...dt0

Proo/. For every permutation σ of (0,..., 2n + 1) we obtain a pairing
by associating σ(2r) with σ(2r + l) and then reordering appropriately.
After counting repetitions this shows that the integral is dominated by

ί - ί Π |Λ l( ί2r- ί2r

since l/zj is an even function. Integrating with respect to the even variables
and remembering that t2n + ί=Q, the result follows.

Theorem 3.4. // H/^ H i < oo then Eq. (2.38) of Theorem 2.3 is satisfied
for constants cn of the required type.

Proof. We put
ΦΪ(Q) = ΦrQ, Φf(Q) = ρΦr (3.28)

and similarly for Q and A, so that

Ar(Q) = (Aϊ + A?)(β) = (- iQίΦί + iβf Φf)fe). (3.29)
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We now expand

to obtain

α 2 n ( t )έ?=Σsignα I ...T
Oί,β ίθ = 0 Ϊ2n = 0

Λβ(Λl-l)p Λβ(*l) Λβ(*j-l)p Λβfrj)
Λxι-1 •*() A*ι •••Ax/-! M) Aj

τ2n-'aiO

In this equation we sum over all functions β: {0, ...,2n + l}-^ {L, ̂ }.
We sum over all sequences α(0), . . . ,α( f c + l) of even integers such that

-2n + 2. (3.32)

We have put signα = (— l) fe and have introduced the dummy variable
ί2» + ι=0.

It may be observed that the operators in the above integral are
tensor products and that P0 acts only on the second component. This
leads immediately to the estimate

n + 2 \\Q\\ .. dt2n..MQ.
a,β t0 = 0 ί2n = 0

Π |tr[ΦffJ'Φffy1

+1»...Φ^-Γ1)σ]| (3.33)
= o

2 " + 2 l l β l l I -..2]ί I(^n,t0...t2n)dt2n...dt0 (3.34)
a,β ί0 = 0 ί2n=0

where

/(α,π,ί 0 . . .ί2»)= Π KΦπ(α,)...Φπ(.J + 1 -i)>l (3.35)
j=o

and the permutation π of {0, . . . , 2n + 1 } depends on α and β.
We now use the quasi-free hypothesis (for the first time) and Eq. (3.1 1)

to deduce that

|/(α,π,t0...t2n)| ̂  | |AI|2"+2 Π K?>«(«,)(/ι)...ί>«(«J+1-i)(Λ)>l (3.36)
J = 0

^ ll/-ι l | 2 " + 2 Σ Π l<9>»p(2r,(/ι) P,J,(2r+i)(/ι)>|. (3-37)
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The use of Lemma 3.3 now yields

ιι*2»(ί)iι^ Σ ι ιeι ι 2 " + 2 ι ι/-ι i ι 2 n + 2 ίΊi^ιιrv2 w + ι (n+i)!
°'β (3.38)

which is the required estimate.

Theorem 3.5. Suppose that for ί= 1,2 and some ε > 0

(3.39)

Then Eq. (2.39) of Theorem 2.3 is satisfied.

Proof. This is harder than Theorem 3.4 in that we must make use of
some cancellations of the situation, but easier in that we do not need to
control the dependence of dn on n.

We replace Eq. (3.31) by

f ...
0 = 0 f2n = 0

p Λβ(*\) Λβ(*k-l)p jΛβ(*k) Λβfa + D Aβ(2n + l) p
r0^αi -"ΛΛk-l ^Oi^αk Λak+ι '-'Λ2n + l M) Q

+ l) Aβ(2n-l)p Aβ(2n) Aβ(2n + l) p ^ Π 40^
l - Λ2n-l *0Λ2n Λ2n + l ΓθQf ^.HUj

dt2n...dt0.

In this equation β is as before but we sum over all sequences α(0), . . . , α(fe)
of even integers such that

0 = α(0)<α(l)< <α(fc)<2n. (3.41)

As before this leads to the estimate

l l Λ 2 Λ ( ί ) e l l ^ Σ l l β H 2 " + 2 l l β l l ί •••T d t 2 n . . . d t 0 .
Λ,β ίθ-0 ί2n = 0

Ή Itr
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Using the quasi-free hypothesis and Eq. (3.11) the last term of Eq. (3.42)
can be written as

Π
ί=:±1

- Π tr[φ'^>(/0...φ^^

l ί = : ± 1 (3.43)

i = ± l

in an obvious notation,

^\al-bιc1\\a-.1\ + \b1cl\\a-l-b-lc.1\. (3.44)

Now again using the quasi-free hypothesis

k,...,t2n)ϊ Σ IIAII 2 " + 2 -«*Σ Π

where Σ^ indicates the sum over all pairings p of {αk, αfe + 1, . . . , 2n + 1 }
such that 2n is noί paired with (2n + 1). Therefore

l l α z . W I I ^ Σ Σ Σ"

ί ί2n-l «

ί ••• ί Π\hl(t

f(2r>-tp(2r+l$dt2n...dt0 (3.46)

ί0 = 0 ί2n = 0 f = 0

where Σ^ indicates the sum over all pairings of {0, . . . ,2n + l} such
that 2n is not paired with (2n + 1). Carrying out one-half of the integra-
tions we see that each integral is dominated by an expression of the form

IIMϊ ί ...TlMs*)l<*v <fco (3-47)
s0 = 0 sn = 0

where 1 ̂  k g n,

^ const, f (t-s)n~k \ht(s)\ skds

(3.48)

^ const. tn~ε J s8 |hi(s)|ds.
s = 0

Together with Eq. (3.39) this proves the required estimate.
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This completes the proof of all the estimates required for the applica-
tion of Theorem 2.3 to this model. We conclude this section with some
comments on possible variations of the model. The interaction can be
changed by putting

(n-1>/2 (3.49)

provided the test functions /j , . . . , fn e i^ satisfy

<ys'/r,/s> = 0 (3.50)

for all r Φ 5 and all ί Φ 0. In the more singular Boson case, however, one
seems to be restricted to the case n = 1, or possibly n = 2, because of the
difficulty of even proving the Hamiltonian is a self-adjoint operator.
The proof can be extended to the case where the system is coupled to a
finite number of heat baths at different temperatures. The space tfA

need not be finite-dimensional provided Q is bounded and HA has
purely discrete spectrum. The theory can be developed in an algebraic
form, as in [11], without any essential changes.

§ 4. Dynamics of the Limit System

We have shown that the model of the last section satisfies all the
conditions of Theorem 2.3 provided Eq. (3.39) is satisfied. The operator
K* on the space ^0 of density matrices on JΓA is given explicitly by

4

- (4.1)

where

Qt = eΉAtQe-ΉAt (4.2)

and h(t) is defined by Eq. (3.19).

Lemma 4.1. The function h(t) is continuous and integrable, and its
transform satisfies

h(-x) = e-βxh(x) (4.3)

for all x e 1R, where β is the inverse temperature of the heat bath.
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Proof. The integrability of h(t) follows from Eqs. (3.20) and (3.39).
By Eq. (3.7)

hί(t) = < e ί S t f ί , f ί y + <(l+e-ί>sTίfί,e
ίStfίy

-<(l+e-'s)-1eίst //,/<>

so by the spectral theorem

hί(-x) = e-ίχhί(X). (4.5)

Now by Eq. (3.20) and Fourier analysis

= f h1(y)h-1(χ-y)dy (4.6)

which together with Eq. (4.5) yields Eq. (4.3).
We now expand

(4.7)

so that the operator Aω on 3CA is zero unless ω is the difference of two
eigenvalues of HA .

Theorem 4.2. There exist real constants a(ω\ e(ω\ and s(ώ) satisfying

a(ω) = e~βωe(ω)^Q (4.8)
such that

£'fe) = Σ e(ω){-^A.ω

+ £ a(ω){-^AωA.aρ + A.0eAω-^QAaA.m} (4.9)
ω>0

+ £ is(ω)D4_ω,4ω,ρ].
coeR

Comment. In the standard description of atomic radiation the three
terms are respectively the emission term, the absorption term and a
term describing a shift of the free energy levels (of order λ2).

Proof. Substituting the expression for Qt in the definition of K* and
evaluating the integral with respect to x leads to

(4.10)

Now

I h(t) eiωt at = %h(ω) + is (to) (4.11)
o
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where h(ω) and s(ω) are real, so

AωρA_ω(h(ω)-2is(ω))

-QA-ωAω(h(ω)-2is(-ω))}

which is the required result if for ω ̂  0

e(ω) = h(ώ) and α(ω) = Λ ( —ω). (4.13)

Theorem 4.3. The operator exp(X" τ) is for τ ̂  0 a positivity and trace
preserving semigroup on ̂ 0.

Proof. This result is true because of the limiting procedure we used to
obtain K\ but we give an independent proof.

The formula
tr[exp(X l'τ)ρ] = tr[ρ] (4.14)

for all τ ̂  0 is equivalent to

tr[K'ρ]=0 (4.15)

for all ρ, which is valid by inspection. The positivity will follow by the
Trotter product formula [12] if we can write K* as a sum of generators
of semigroups which preserve positivity. Now if Kl (ρ) = AρA* and ρ ̂  0
then

eKιτ(ρ)= Σ — AnρA*n^Q. (4.16)
nl

If K2(ρ) = -A*Aρ -ρA*A and ρ ̂  0 then

eκ*τ(ρ) = e~A*AτQ e~A*Aτ ^ 0 (4.17)

while if H3 (ρ) = i [A* A, ρ] and ρ g; 0 then

eK3τ(ρ) = e

ίA*Aτρ-iA*Aτ ^ Q . (4.18)

This completes the proof.
The above results give a complete justification for regarding the

equation

£-K . (4.!9)

as a quantum-mechanical Fokker-Planck equation. We draw the reader's
attention to [13], where more general equations of this type have been
studied from the point of view of quantum stochastic processes. In [14]
it is shown that semigroups of this type can always be regarded as
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arising from interactions with singular heat baths, instead of from
regular heat baths in the weak coupling limit. This is the point of view
taken by Hepp and Lieb in [15]. They however work in the Heisenberg
picture, which has some advantages.

We finally use the above equations to investigate the question of
convergence to equilibrium. For the sake of simplicity we let MX , . . . , un

be an orthonormal basis of tfA and suppose

HAur = ωrur (4.20)

where the ωr are all different.

Theorem 4.4. The semigroup exp{J£ήτ} on &0 leaves the subspace 2
of diagonal matrices invariant and defines a classical Markov process on
the integers {1, ...,n}.

Proof. We first observe that

Q) = {ρ e JO : Utρ = ρ for all ί elR} . (4.21)

If ρe^ then by Eq. (2.22)

Ut(K*ρ) = K!'Utρ = K!lρ (4.22)

so K* ρ e 9. Therefore

exp{K*τ}ρ= £ K*nρτn/nle& . (4.23)
n = 0

Now put
Ar8 = <Aur9uay (4.24)

and define υr e 3) by

vr(us) = δrsus. (4.25)

Then

rs e- iω*< Asr eίω"< vrh(~ dt (4.26)

(4.27)
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Therefore
K*(vr)=Σarsvs-lΣars\vr (4.28)

s \ s I

where
(4.29)

Identifying the diagonal matrices on 3CA with the functions on {!,...,«}
by

μ l 5...Λ}~Σ λ,v, (4.30)
r=l

the density matrices on 3CA correspond to the probability measures on
{1 , . . . , n}. K* is then the generator of a Markov semigroup on {1, . . . , n}.
If the process is ergodic (which certainly occurs if ars > 0 for all r, s)
then there is a unique equilibrium state and every state converges to the
equilibrium state as τ->oo. However ergodicity is not necessary for the
existence of an equilibrium state.

Theorem 4.5. // the heat bath is at the inverse temperature β then

= Σ
r = l

is an equilibrium state for the Markov process on {!,..., n}.
Proof. We have to show that

0 = K*ρp= Σ e-"°'arsvs - Σ ^e~β^vr (4.32)
r,s r,s

which is equivalent to

This follows from Eqs. (4.3) and (4.29).
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