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Abstract. The original idea of Ruelle, to associate classes of configurations of the
continuous Widom and Rowlinson model to contours on a lattice, is exploited to get
for this model an expression of the grand partition function very similar to that of the
Ising system. This allows to get, when the activities are high enough, a microscopic descrip-
tion of this system as a mere transcription of Minlos and Sinai analysis of the Ising model
at low temperatures.

Introduction

In the past decade Minlos and Sinai [1,2], using the original idea
due to Peierls [3] of contours on a lattice were able to derive a set of
integral equations a la Kirkwood and Saltzburg for the "contour cor-
relation functions" and get a very detailed microscopic description
for a large class of lattice systems of the Ising type when the temperature
is sufficiently low.

The aim of this paper is to show how it is possible to extend the
methods of Minlos and Sinai and their results to the case of a continuous
system: the Widom and Rowlinson model. Such a model [4] is a classical
continuous system with two kinds of particles, A and B, in which there
is a hard-core repulsion of range R between unlike particles and no
interaction between like particles.

Recently Ruelle [5], associating classes of (A-B)-ρarticle configura-
tions to sets of closed contours on a lattice, was able to prove the existence
of a phase transition, when the activities of the two species of particles
are equal and high enough.

Starting from the same geometrical description, we get, with a
suitable definition of subensembles of contours (the chains), an ex-
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pression for the partition function that is very similar, in structure,
to that of the Ising model and easily derive a system of integral equations
for the "chain correlation functions", (see Appendix A).

Furthermore we prove that the "chain correlation functions" are
bounded by a suitable decreasing function of the length of the chains
perimeters, (see Appendix B).

The set of integral equations, inplemented by the above-mentioned
bounds, is sufficient to fully translate the analysis, given by Minlos and
Sinai for the Ising system, to the Widom and Rowlinson model. The
rule is to substitute the words "low enough temperatures" by "activities
equal for both species of particles and high enough".

Section I

Following Ruelle [5], we assume that the box Λ9 containing the
jp

particles, is a rectangle composed of N little squares with side d =
31/2'

so that R is the diagonal of a 3d x 3d square.
We further assume that the space outside A is completely filled by

A particles, so that the strip, composed of the first four squares adjacent
to the boundary of Λ, cannot contain ^-particles (^4-boundary conditions).

If we consider now an arbitrary configuration in Λ (consistent with
the above-mentioned boundary conditions), and shade all 3dx3d
squares, centered on the little squares, containing at least one J9-particle,
the boundary of the union of the shaded areas will be a polygonal of
various edge self-avoiding closed contours1, (see Fig. ί). Among all
these contours we will consider only the subset of the outer ones (i.e. the
contours that may be connected to the boundary of Λ by a lattice path
not intersecting any other contour). We will label them by γ and define
a chain C as the smallest set of outer contours such that, if two outer

o n

contours have a distance less than ,—, they belong to the same

chain. (Notice that our definition concerns external contours only, and
therefore is different from the corresponding one in Ruelle [5]).

We further say that two chains are compatible if they can be found,
in the same configuration, as disjoint chains.

Given a chain C = ( (y 1,...,<y s) we will call Θ(C) the generally dis-
connected region of A that has C as boundary. Θ(C) will be the region
obtained by adding to Θ(C) a strip that contains all the squares at a

1 For a non ambiguous definit ion of edge self-avoiding contours see for instance Gal-
lavotti, Martin Lof, Miracle-Sole in Battelle Seattle 1971 Rencontres pag. 164. Berlin-
Heidelberg-New York: Springer 1971.



Continuous System in the High Activity Region 279
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Fig. 1. The figure describes a class of (>4-5)-particle configurations where: 1) The outer
contours are y1 ? y2, y3 2) The internal contours are y\, y'2, y'3, y'4 3) y j and γ2 belong to
the same chain: Cl y3 is the chain C2. 4) Following appendix B: y l 5 y2, yΊ, y'3 belong to Γ°

distance less than # from the little squares, containing B particles,
internal to the outer contours belonging to C, (see Fig. 1). For convenience
we shall assume that the region Θ(C) does not contain its boundary.

If C and C are compatible chains, Θ(Q and Θ(C) will not overlap,
because the minimal distance between two contours belonging respec-

o n

tively to C and C is at least 7— .

Calling X an arbitrary A-B configuration, consistent with ^4-particle
boundary conditions, and JίA(Λ) the collections of all these configura-
tions, any X is associated to a well-definite set of compatible chains
on the lattice and for X varying in J(A(Λ\ we get the collections of all
sets of compatible chains contained in A.
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According to these definitions, calling Jί(Θ(C)) the subset of all
distributions of A-B particles internal to Θ(C) and consistent with the
existence of C, it is easy to check that if C and C are compatible chains,
the distributions belonging to JP(Θ(C)) and Jί(Θ(C'}} are completely
indipendent.

As a consequence of this fact, the grand partition function for the
Widom and Rowlinson system, contained in the volume A, can be
written in the following forrfi :

SU)= Σ' sίβίQSoμ/ujθίc,)) (i)
{Cι,.. ,Cs} 1

where the primed sum is over all sets of compatible chains contained
in A\Ξ(Θ(CiJ) is the grand partition function for all configurations
in Jt(β(C$)\ Ξ0(A/UiΘ(Ci)) is the grand partition function for a gas
of τ4-particles in the region A/

σ (A)
Now, from Ξ^Λ/^θ^)) = π Γ",A ' ^ we obtain

1 li'-'0\vy

This expression for the grand partition function has the same structure
as that of the Ising model (i.e. is a sum of factorized indipendent con-
tributions) and we can define the "chain correlation functions" (i.e. the
probabilities of finding a certain finite set of compatible chains present
in a configuration) by:

Qm(Cί,...,Cm\Λ) = [_Ξ(Λ)Yί Σ' Π. g ,«5 Jo; 30(Λ) (3)
{C?,...,C§} 1 ^ O V ^ V V i ^

where ^ extend over the collections of compatible chains con-
{C?,...,CO}

tainingC l 5...,Cm.
Following Minlos and Sinai we can write a set of equations for such

functions :

Σ Qm-ι+k(C2, ,Cm9C'iί9...,Cίk\Λ)
€{,,..., C'lk\

(4)

ι+Σ*(-)* Σ
i {£•;,....,(;;,,}

(5)
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where the sums are over all collections of chains each of them "inter-
secting"2 C l5 and over all chains "embracing"3 Cl9 and

Ξ(Θ(CL))

The quantity Ξ(Θ(Cί))9 in the numerator, is the grand partition
function with respect to all distributions in Jί(Θ(C^) (i.e. all (A-B)-
particle distributions in 0(0^ associated to the chain C^. On the
contrary 3(0(Ci)), in the denominator, is the grand partition function
over the set Jf(Θ(Cj) of all (,4-£)-particle distributions internal to
©(CΊ), that give rise to sets of chains non intersecting C^

The derivation of (4) and (5) is given in Appendix A. While in Ap-
pendix B we show that the following two inequalities hold

^ ^

zR2

where |C| is the total length of outer contours belonging to C; α = .

Once inequalities (7) are granted, the procedure in dealing with these
equations is almost standard: introduced by Ruelle for a gas system
in the low activity region [6], and extended to a "gas of contours" by
Minlos and Sinai [7], it is applicable to a "gas of chains of contours"
with minor obvious changes [8].

The main results can be summarized in the following way. When the
activities of the particles are

. , Λ Λ & , „ 72

—
where 3t is equal to 7-, and ξ = 3 6 e~* the following results hold:

3α]/2
a) If the "chain correlation functions" ρm(C1,...? Cm\Λ) are defined

by (4) and (5) there exist "infinite volume chain correlation functions"
2 C is a chain "intersecting" C, if some outer contour belonging to C "intersects"

O D

an outer one of C, or lies closer than —-p— to it. Notice that C itself is among the "inter-

secting" chains.

3 C is a chain "embracing" C, if all the contours of C are contained inside an outer
O O

contour of C and lie at a distance larger than —-τ=- from it.
j y 2'
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Qm(C ,,..., Cm\Λ) such that

where C l 5..., Cm are compatible chains in A, δ is the distance of the
outer contours belonging to C l 5 . . . ,C m from the boundary of A, and
|Cf| is the total length of outer contours belonging to Q; B is a constant.

b) The "chain correlation functions" and the "infinite chain cor-
relation functions" have one and only one solution.

c) The "chain correlation functions" have the cluster property:

where K is some constant and τ denotes the distance between the set
of chains (C15..., Ck] and (Cfc+ l ? . . ., CJ.

Conclusions

The physical relevance of the results of the previous section can be
illustrated by the following theorem:

Theorem, if ZA = ZB = Z is large enough, there exist positive numbers

such that an (A-B)-particle configuration X, randomly chosen out of the
ensemble JfA(A), will contain, with a probability approaching 1 as A->co,
a number K(C)(X) of chains congruent to C, such that

κ(C)(X)-β{c}^
where D(z) is a function of z independent from A and the relation has to
be interpreted as holding simultaneously for all Cs.

The proof of this theorem, once inequalities (7) are assumed, runs
exactly as in the Minlos and Sinai papers [1,2] to which we refer for
details.

The above theorem implies that very few chains are present and in

particular no chain can have a perimeter |C|>D(z)ln . Hence

a typical (,4-J3)-particle configuration, in the grand canonical ensemble
with ^4-particle boundary conditions, is such that only few small regions
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containing jB-particles are randomly distributed in a free gas of A-
particles only.

Furthermore, the results of this paper, in particular the cluster
properties of the "chain correlation functions", together with the
F.K.G. inequalities for the Widom and Rowlinson system [9] can give,
in analogy to what Martin-Lof has done for the Ising system [10],
an insight into other interesting properties as the central-limit theorem,
for the energy and the density, and the infinite differentiability of the
free energy [11].

Acknowledgements. We are greatly indebted to G. Gallavotti for helpfull suggestions
and criticism.

Appendix A

In this appendix we shall derive equations for the "chain correlation
functions". The procedure is that of Minlos and Sinai [7] with some
obvious changes.

Let 93({C15..., Cm}) be the collection of chain configurations in A,
that contain the chains C l 5...,Cm, and let 23Cl({C2,..., Cm}) be the
subset of elements of 93({C2,..., Cm}) such that C2,...,Cm and the
remaining chains do not "intersect" and do not "embrace" C l t (Notice
that among the "intersecting" chains there is C± itself.)

Let now C and C, respectively label chains "intersecting" and
"embracing" C±. From the previous definitions the likelihood

can be written as follows:

2,...,Cm}) = »({C2,...,Cm})-υi93({q,C2,...,Cm})

Then, since the C are not mutually incompatible, the related proba-
bilities [12] are equal to

*(-)* Σ em-1+k(c2,...,cm,cil,...,cίk\Λ)
i {C:,, ..,c;k{

C2,...,CmίCl\A). (A.I)

Calling now J((Θ(C^)) the set of all configurations withinJ^Cj) giving
rise to sets of chains non "intersecting" CA and calling Ξ(Θ(C1)) the
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associated grand partition function, we may write:

(A.2)

where the meaning of the primed sum is the same as in Section I. In
addition, noting that Eq. (3) can be written as :

Σ Πι B0(Λ)
βΛQ,..., Cm\Λ)= ,c?.....q, i ~o(0(C.)) (A3)

£(Λ)

comparing (A.2) to (A.3), we get:

Qm(Cl9...,Cm\Λ) = λ(Cι)QCί(C2,...,Cm\Λ) (A.4)

where we have set

S(θ(Cί))
-

Finally, the relation (A.4) together with (A.I) gives Eqs. (4) and (5),
as required.

Appendix B

Lemma. For ZA=ZB = z and z high enough, we have the bounds:

zR2

where α = , and \C\ is the length of the perimeter of the chain C.

Proof. The proof is substantially contained in Ruelle's paper [5],
but to avoid ambiguities, that could arise from the different notations,
we will rephrase it.

Any configuration Y of A and B particles, belonging to Jί(Θ(C)\
is associated to a collection of contours containing the outer ones
y!,..., yn9 that make C, and a set of contours, yΊ, . . . , y'k, internal to Θ(C).

We write this collection as the union of disjoint pieces Γ?, Γc,..., Γl

c.
Where each piece is a smallest subset of contours such that, if two

o n

contours have a distance less then —/=- they belong to the same piece.
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Calling Γ£ the piece containing the external contours, we say that
a point x is interior to Γ£ if a path, coming from infinity, crosses Γ£ an
odd number of times before reaching x (see Fig. 1).

From Y we obtain a class 7* of configurations as follows:
a) All ^4-particles interior to Γ£ are changed to 5-particles and

viceversa.
b) Let G(Γc) be a band consisting of all the little squares which have

one side or corner touching the contours belonging to Γ£; ,4 -particles
are placed in an arbitrary manner in G(Γ£).

If we call Jί*(Θ(C)) the collection of all configurations, obtained
via the previously described transformation from Jί(Θ(C}\ the following
inequalities hold:

Calling now Jί(Θ(C\Γ^c) the subset of the configurations belonging
to Jί(Θ(C)} that have Γ£ among their disjoint pieces and Ξ(Θ(C\Γc)
the associated grand partition sum, we get

where the sum is over all possible Γ£.
Then, noting that when ZA — ZB

Ξ*(θ(Q, Γc°) = Ξ(Θ(C\ Γ°c) Ξ(G(Γ%) ,

where Ξ(G(Γ£)) is the grand partition function for ^4-particles in G(Γc\
zR2

and, as in Ruelle [5], with α =

we get, using standard estimates,

Ξ(Θ(Q)

3(f-+1)β-2α

0 Γ Γ ι : 12

when α> —.
8

The inequality for /^Cj) is obtained by the same arguments observing
that Jί(Θ(C)) D Jt*(Θ(Cj).
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