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Abstract. This is the first of a series of papers devoted to the derivation of analyticity
properties in the non-linear program of general quantum field theory, following the line
of the "many particle structure analysis" due to Symanzik. In this preliminary paper,
"convolution products" are associated with graphs whose vertices v represent general
nv- point functions. Under convergence assumptions in Euclidean directions, it is proved
that any such convolution product HG associated with a graph G with N external lines
is well defined as an analytic function of the corresponding N four-momentum variables.
The analyticity domain of HG is proved to contain the corresponding JV-point "primitive
domain" implied by causality and spectrum and the various real boundary values of HG

satisfy all the relevant linear relations. For appropriate boundary values, the convolution
products generalize the perturbative Feynmann prescription. As a by-product of this
study, it is proved that in any perturbative theory using "superpropagators" with Euclidean
convergence, Feynmann amplitudes that satisfy all the requirements of the linear program
can be defined without the help of a regularization.

1. Introduction

Since the axioms of general quantum field theory were proposed
[1,2], many papers have been devoted to the study of the analyticity
properties of the rc-point Green's functions of the fields. Interest was
particularly taken in the existence of regions of analyticity lying inside
the complex mass shell manifold Mc since in view of the reduction
formulae [3,4] this entails the analytic character of the rc-particle scat-
tering amplitudes.

It was by exploiting the so called linear properties of the Green's
functions that the notion of a "primitive domain" of analyticity of the
rc-point function in momentum space was derived [5-7]. Then it was
soon realized that on one hand this primitive domain did not intersect
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Jί\ but that on the other hand it was not a natural domain of holo-
morphy, so that general techniques of analytic completion could be
applied which allowed to reach the mass shell. In fact using different
methods, it was proved that the four-particle scattering amplitude is the
boundary value of an analytic function on the complex mass shell in
a domain including Lehmann ellipses in t [8], cut planes [9] or crossing
regions in s [10, 11], etc More recently, it was proved that in the
neighbourhood of any physical point, the general rc-particle scattering
amplitude can always be decomposed as the sum of a relatively small
number of boundary values of functions which are analytic on Mc [12].
However when n increases, the analyticity properties on the mass shell
are more and more difficult to derive from the linear program. For
instance, the number of analytic functions obtained so far in the frame-
work of [12] may be larger than one and the regions where this critical
situation occurs are in fact wide neighbourhoods of some thresholds
singularities.

Now if we have in mind the macrocausal approach of S-matrix
theory [13,14] as well as all examples of perturbation theory which
have been studied by now, we could think that local analyticity at all
the points of the physical region outside the Landau surfaces should be
a rather reasonable goal to be reached starting from the axioms of local
field theory, provided that we make an extensive use of all the non-linear
properties of the theory.

At present there are at least two lines of investigation to incorporate
the non-linear properties of field theory in the analytic framework. The
first one starts from the results of the linear program on the mass shell
and applies the positivity conditions of absorptive parts and the uni-
tarity relations of scattering amplitudes to get new analyticity prop-
erties. Up to now, it has been very successful in the case of the four-
point function [15, 16] and has led to important improvements of the
analyticity domain (the Martin ellipses). The use of unitarity (for in-
stance through partial waves) has also led to continuation in a second
sheet across the elastic region. Recently a generalization of these
methods has been undertaken with promising results [17].

The purpose of the present series of papers is to develop an alterna-
tive and rather different way of incorporating the non-linear properties
in the analytic framework. Indeed as early as 1960, Symanzik sketched
a very interesting program [18] which he called "Many Particle Structure
Analysis" (M.P.S.A.) of Green's functions, where he proposed to incor-
porate in general quantum field theory the perturbative notion of the
p-particle irreducible part of a Green's function with respect to a certain
channel. This, he conjectured, should lead to important improvements
in the knowledge of the analytic structure of Green's functions, since a
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larger analyticity domain could be expected for these irreducible parts.
However at that time, the analyticity properties of the n-point functions
in the framework of the linear program had not yet been studied far
enough to allow the exploitation of Symanzik's ideas from the point of
view of analyticity properties. It is our purpose in the present series of
papers to develop the M.P.S.A. program in a way which should make
clear the analyticity properties there involved, following a plan proposed
by Bros in 1967 [19, 20].

Let us first recall the main ideas of Symanzik's program. The per-
turbative expansion of rc-point Green's functions in terms of Feynmann
graphs introduces the notion of the p-particle irreductible part of a
Green's function in the following way. Having chosen a certain channel,
namely a partition of the set of all external four-momentum variables
into two subsets (nitϊ incoming and nom outgoing four-momenta), any
term of a perturbative expansion is said to be p-particle irreducible with
respect to this channel if at least (p + 1) internal lines of the corresponding
Feynmann graph F must be untied in order to get two disjoint con-
nected subgraphs in such a way that in this process the set of all external
lines of F should be split up according to the above partition (nin, nout).
The formal sum of all such p-particle irreducible contributions to the
expansion of any rc-point Green's function is called the p-particle irre-
ducible part of this function with respect to the considered channel.

Now it turns out that the various p-particle irreducible n-point
Green's functions thus introduced satisfy as formal series of Feynmann
graphs certain integral relations, among which the complete Bethe-
Salpeter equation is the simplest and best known example. This equa-
tion usually written in the graphic form

•3 1
1

2_^_^_4 2

has the following algebraic meaning:

4

Here ]Γ p, = 0 and t[p)(pu ...,ρ4) denotes the p-particle irreducible
i=l

part (p=l,2) of the connected (or truncated) four-point time-ordered

product in momentum space that is the Fourier transform of the con-
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nected vacuum expectation value of the time-ordered product of four

fields, up to the factor δ{Ar) £ pλ\ with respect to the channel [(1,2)in;

(3,4)out]. G(p) denotes the complete two-point Green's function (with the
Feynmann prescription).

The basic idea of Symanzik's program was then the following: once
extracted from the perturbative framework, all the integral identities of
this type should provide a basis for a rigourous introduction of the
p-particle irreducible parts of all the w-point Green's functions in general
quantum field theory. Indeed from a more thorough investigation of the
algebra there involved, which will be found in a forthcoming paper [21],
it results that any p-particle irreducible rc-point function can be defined
as the solution of a Fredholm equation, if all the (p — i)-particle irre-
ducible w-point functions are supposed to be given.

Symanzik then conjectured that a double recursion over p and n,
starting from the n-point Green's functions submitted to all the require-
ments of the linear program, should allow one to introduce p-particle
irreducible rc-point functions satisfying the following properties:

i) these functions exist for any p and n, and any channel;
ii) each of them satisfies all the analytic and algebraic properties of

the linear program as well as the complete Green's functions do
iii) once extracted from the perturbative graphic interpretation, the

irreducibility property gets the following general meaning: for any
p-particle irreducible n-point function (in a given channel) the absorp-
tive part in this channel takes its threshold value at the total square
mass of a system of (p + 1) particles (with relevant quantum numbers)
travelling together in the corresponding channel. It is in the proof of
this third property that the non-linear properties of general quantum
field theory should play a crucial role.

However the functional formalism which was used in [18], though
very powerful in many respects, does not seem to be the most suitable
for the derivation of analyticity properties since it does not yield the
complete analytic structure of the Steinmann-Ruelle-Araki generalized
Green's functions [5-7]. Actually as early as 1967, Bros has proposed
a general method of incorporating the M.P.S.A. program in the frame-
work of analyticity properties [19,20] which he carried through suc-
cessfully in the special case n = 4, p = 2 which makes use of the Bethe-
Salpeter equation. The aim of the present series of papers is to investigate
this general non-linear program whose main steps are the following.

i) Once extracted from the perturbative framework, the integral
equations which relate the various irreducible functions must be made
meaningful in the sense of analytic functions. For this purpose, once we
have recalled the primitive structure of the w-point functions deduced
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from the linear properties of the theory (namely existence of a primitive
domain of analyticity, Steinmann relations, connection with the time-
ordered product), we shall need to prove that this structure is preserved
by "G-con volution" in the following sense.

Consider any connected graph G with N external lines. With any
vertex v incident to nv lines, associate a np-point function H{riv\

Define a prescription of integration on the complex four-momenta
associated with the internal lines. Then the object HG thus obtained
(which we shall call "convolution product associated with G") is an
analytic function of the N external four-momentum variables which
enjoys all the analytic and algebraic properties of the primitive structure
of a JV-point function.

The present paper is devoted to the proof of this conservation prop-
erty which is the first step of the non-linear program.

ii) As a second step, we shall turn to the introduction of irreducible
functions through a double recursion over p and n: assuming the exist-
ence of p-particle irreducible π-point functions for any channel, with
p ̂  p0 — 1 and n arbitrary, any po-particle irreducible n-point function is
introduced as the solution of a certain integral relation suggested by
the perturbative framework. As a result of i), this equation makes sense
as a Fredholm equation in the complex n-point primitive domain. Then
the classical Fredholm theory allows one to prove that the solution
enjoys all the analytic and algebraic properties of the primitive struc-
ture of the n-point function. However as already pointed out in [19],
additional regularity assumptions have to be made to ensure that the
boundary values of this function are actually temperate distributions.

This second step of the program can be successfully achieved and
will be reported in a forthcoming second paper in the announced
series [21].

iii) The next step of the program will be the proof that the n-point
function thus introduced is indeed po-particle irreducible in the con-
sidered channel. It is in this third step of the program that the non-
linear properties of general quantum field theory will play a crucial role
through the Glaser-Lehmann-Zimmermann relations [22]. These rela-
tions, obtained through an extensive use of reduction formulae and
completeness of asymptotic states, are the field theoretic off-shell extra-
polations of the unitarity relations.

Partial results have been obtained so far in this direction and will
be reported in [21]. A generalization of the method there used is at
present under study.

iv) Once it is proved, the existence of irreducible functions can cer-
tainly lead to important improvements of our knowledge of the analyti-
city domain of the rc-point function. Indeed we notice that all the results



190 M. Lassalle

of the linear program (Lehmann ellipses, crossing regions, etc....) apply
to the irreducible functions with the improvements due to the raising of
the thresholds. Then this improved primitive analytic structure allows
one to enlarge the analyticity domain of the complete n-point function in
a way which we shall give only a brief account of by getting back to the
special case investigated in [19].

Using the Bethe-Salpeter equation as a Fredholm equation in the
opposite way, it was shown there that the better analyticity properties
of the two-particle irreducible four-point function entail the existence
of an analytic continuation of the complete four-point function in a
second sheet across the elastic part of the physical region, a result which
can certainly not be obtained in the framework of the linear program.

This fact indicates the possibility that, using larger and larger values
of p, the improved analytic structure of the p-particle irreducible n-point
functions would yield local analyticity properties for the complete
n-point function in higher and higher parts of the physical region. Pieces
of the Landau surfaces would then probably come out as isolated singu-
larities through pinching-type arguments quite similar to those already
encountered in the study of the analyticity properties of Feynmann
integrals.

This step will be fully investigated further in the announced series.
Let us now come back to the present paper which is devoted to the

first step of the non-linear program. In Section 2, the algebraic and
analytic primitive structure of the n-point functions is fully recalled.
Section 3 introduces the notion of convolution product associated with
a graph. The central property to be proved in this paper (the conserva-
tion of the primitive structure of the n-point functions) is exposed there
as well as the general method used to get it. Sections 4 and 5 are devoted
to the proof. In Section 6 it is shown that the convolution products
generalize Feynmann graphs, in a sense which will be made clearer
there. An application to perturbation theory is indicated in Section 7
as a by-product of our study. Finally an appendix is devoted to some
technical aspects of the central proof.

2. The Primitive Structure of the w-Point Function

We start from the following facts which have been proved from the
general principles of local field theory [5-7,9, 23]:

i) The existence of a primitive domain of analyticity for the n-point
function H{n)(k). Here the argument k = p + iq denotes the set of n com-

n

plex four-vectors \k{ =pt + iqh i^i^n} linked by the relation £ kt = 0.

The first part of this section is devoted to the description of this domain.
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ii) The so called "Steinmann relations" which are linear relations
between the various real boundary values of the rc-point function. These
relations will be studied in the second part of this section.

iii) The "Ruelle prescription" which connects the various real
boundary values of Hin) with the Fourier transform of the connected
(or truncated) vacuum expectation value of the time-ordred product of
n fields. It will be described in the third part of this section.

2.1 The Primitive Domain

It is composed of the union of a certain family of tubes {^, λ e Λ(n)}

ί n )
in the linear manifold </ceC4": ]Γ fc; = 0> with appropriate complex

{ i=l J
neighbourhoods of real regions which connect the various tubes to-
gether. (We recall that a tube is a domain invariant under real trans-
lations.) In order to describe the family of tubes {£Γλ, λ e Λ(n)} some
definitions are needed. Let us first specify our notations: in the fol-
lowing X will always denote the set {1,2, ...,n} of indices numbering
the different four-vectors {ki9 ..., kn}. &>*(X) will denote the set of proper
subsets of X and (/, X\I) any partition of X. We shall consider the space
R"" 1 of the n independent variables {s1? s2,..., sn} linked by the relation

n

YJsi = 0; and similarly the space I R 4 ^ " 1 ) of the n four-vectors
i = l

n

{Pi,p2, -. ,pn} linked by the relation £ Pi = 0. Moreover Sj will denote-
i=ί

ΣSi and similarly Pi=YJpi. Then we have the following
iel iel

Definition ί. Let us consider the "triangulation" of the space IR""1

of the variable s = {sl9..., sn} by the family of planes {s7 = 0, / ε ^ * {X)}.
The planes s7 = 0 and sX\/ = 0 are of course identical. We call a cell any
open convex cone yλ into which IR""1 is thus divided and {γλ, λ ε Λ{n)]
the family of these cones.

The reason for this notation is the following: any open convex cone
yλ of the triangulation can be written:

yλ = {seW1'1: λ(I) s7 > 0 v / ε 0>*{X)}

where A is a sign function defined on 0>*(X) and taking its values on
{— 1, +1} which satisfies certain compatibility conditions, namely

* i) v / G ̂ * (X) λ{I) - - λ(X\I),
ii) v/, Je0>*(X) with InJ = 0 and λ{I) = λ{J\ then A(JuJ)
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We are now in a position to describe the family of tubes inside which
the w-point function H{n) is analytic. With every cell yλ let us associate
indeed the following cone %>λ defined in IR4 ("~υ:

<βλ = {q e R 4 (»-i> : λ(I) qI e V+ v / e

Clearly <&x is obtained from yλ by replacing all the conditions ^ 0 by
the corresponding conditions e V±. But while the union of the closures
of the cells yλ exhausts the whole space R""1, nothing of this type occurs
for the cones ^λ since the vectors qι can never be space-like.

Then the rc-point function Hin) is analytic inside the union of the
family of tubes {^λ, λ e Λ{n)}> where 9~λ denotes the tube in <C4(n ~1} whose
basis is the cone # λ , namely:

&λ = {ke(£4{n~1}: λ(I) Imfcj e V+ v /e 0>*(X)}.

In order to study in detail the connections between all these tubes
we shall introduce the various boundary values which H(n)(k) can take
when k tends to a real value p inside any tube:

Hf(p)= lim H(n){k).
k-*p,qeVλ

These boundary values (the so called Ruelle-Araki generalized retarded
functions) have certain properties of coincidence (in the sense of dis-
tributions) that we are going to recall.

Definition 2. Two cells γλί and yλl (resp. two tubes 5 r

λ l and &~λ^ are
called adjacent if there exists one partition (J, X\I) of X such that the
indices λί and λ2 take the same value on any proper set of X but /
and X\L

Namely

λAi) = λ2(x\i) = - λλ{i) = -

We shall say that the partition (/, X\I) separates the two cells (resp.
tubes). In other words, the corresponding plane s7 = sxχi = 0 is a common
(n — 2)-dimensional face of the two cells yλl and yλ2.

Let us then consider the boundary values H${p) and H^ip) asso-
ciated with two adjacent tubes 2Γλι and 3~λl, separated by a partition
(/, X\I). It is a consequence of the spectral condition that these two
distributions coincide on the real region Mι thus defined:

where mι is the discrete mass and M1 the threshold mass associated with
the channel (/, X\I) by the spectral condition. That is
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This fact ensures through the general edge of the wedge theorem [24]
that H{n) is certainly analytic inside a small complex region Jf{0t^) which
connects the two tubes ZΓλγ and ^ 2 , and turns out to be the intersection
of a complex neighbourhood of 0lι with the convex hull of the union of
the two given tubes. In the following, 01 ι will be called the "edge of the
wedge region" of the two tubes.

A special role is played in this context by the real region 01 = f] 0tj.
Ie#>*{X)

Actually & is the region where all the distributions H^{p) coincide.
Therefore by applying the edge of the wedge theorem to any couple of
opposite tubes, it is proved that 01 is a real region of analyticity.

22 The Steinmann Relations

Let us consider the set of the various boundary values {Hf](ρ),
λ e Λ{n)}. These distributions are linked by certain linear relations known
under the general name of "Steinmann relations". In this section we
intend to describe the main feature of this linear system, which will be
used extensively in the following, namely the existence of a special class
of Steinmann relations, the so called "quartet relations" which generate
all the others*.

Definition 3. Two partitions (/, X\I) and (J, X\J) are called transverse
if In J φ 0 and In(X\J) Φ 0. If not they are called incident and we have
either IcJ or ICX\J.

Definition 4. We say that four cells {yλι, 1 :g i^4} compose a quartet
if there exist two transverse partitions (/, X\I) and (J, X\J) such that:

i) yλι and yλ2 (resp. yλ3 and yλ4) are adjacent cells separated by the
partition (J, X\J);

ii) yλί and yλ3 (resp. yλ2 and yλ) are adjacent cells separated by the
partition (/, X\I).

Then we also use the denomination of quartet for the set of the four
corresponding tubes {&\t, 1 <;/^4}.

In the following we shall always represent the four tubes which
compose a quartet with the notation {&~χ++9&~λ_+9&'λ__9&'λ+_} where
the first index refers to the sign of the partial sum s7, the second to the
sign of Sj, and where λ stands for the common value of the various
{λi, 1 ̂  i ύ 4} for other proper subsets of X.

Now the four boundary values of the rc-point function occuring in
each quartet {&~λ+ + ,&'χ_ + ,£~χ__,&'χ+_} satisfy the following relation,
for all real arguments, in the sense of distributions:

tf£\ (P) + HflΛv) = Hg_ (p) + H["}+(p)
1 The proof of this property is a consequence of the analysis made by Ruelle [6]

but has remained still unpublished [26]. A general proof in the framework of Bros [23]
rather different from Ruelle's will be reported in a coming paper [27].
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and the set of these quartet relations generates the whole set of Steinmann
relations satisfied by the various boundary values {Hf]{p\ λeΛ{n)}.

23 The Ruelle Prescription

This prescription refers to the fact proved in Ref. [6] that the Fourier
transform of the connected (or truncated) vacuum expectation value of
the time-ordered product of n fields tc(p) coincides with the various dis-
tributions H^ip) in relevant regions. More precisely let us consider the
following family of open sets {Ωλ, λ e Λ{n)} with

Here F/ denotes the following closed set inIR4:

It is easy to see that the collection of all Ωλ forms an open covering of the
whole space 1R4("~ υ . Ruelle has proved:

that is, the connected time-ordered product is the boundary value of
the n-point function according to a prescription (the so called "Ruelle
prescription") which connects the tube inside which the boundary value
is taken with the location of the real limit point.

More precisely:

φ)= Urn H{n\k).
peΩλ,qe<gλ

This is of course very important since in the L.S.Z. theory [3] the trun-
cated time-ordered product is the fundamental object which allows to
express the connected scattering amplitudes in terms of the fields. More
precisely, we have the well known "reduction formulae" [3,4]:

Here <p7|S| — p* u > c denotes the connected scattering amplitude de-
scribing the process I-*X\I and tc(p) the connected amputated time-
ordered product

ieX

whose restriction to the relevant physical region

is meaningful in the sense of distributions on the mass shell [4,12].
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2.4 General n-Point Functions

In the following we shall meet functions enjoying all the analytic
and algebraic properties of the rc-point function stated above except the
physical connection with products of n fields.

We shall call these functions general n-point functions in order to
distinguish then from the "physical" one. More precisely we call general
rc-point function any function / defined on C 4 ( "~ 1 } and enjoying the
following properties:

i) analyticity and slow increase near the real inside the tube
{&~λ9λeΛ(n)}. The real boundary values {fλ(p),λeΛ(n)} are then dis-
tributions;

ii) Steinmann relations between the various real bondary values

iii) coincidence relations between two adjacent boundary values
fλί(p) and fλl{p) on a real region 0lι thus defined:

where mι and M7 are now general positive numbers.
Moreover the Ruelle prescription allows to introduce the t-boundary

value of the function /, denoted ft(p\ by the following prescription:

ft(p)= lim f(k).
k

Of course the masses mI and Mι which occur in the definition of Ωλ are
now those of Conditions iii). As in Section 2.3, such a definition makes
sense: the collection of all Ωλ forms an open covering of R4(w~ υ and it is
easy to check that the intersection of any two open sets Ωλ and Ωλ, Ωλ>
lies in the coincidence region of fλ(p) and fλ, (p). Actually as seen in
Section 2.3 the ί-boundary value of the physical rc-point function is
nothing but the connected time-ordered product tc(p).

In this paper we shall always deal with general n-point functions.
Moreover these functions will always be assumed to enjoy integrability
properties at infinity in the set of all the Euclidean directions of the
tubes {^λ9 λ e Λ(n)} 2. This will be stated more precisely in the course of
Section 4.6. Let us only notice that we shall not assume any regularity
properties in real directions at infinity. In particular no use will be made
of the possible temperate character of the boundary values.

2 For applications to the non linear program [21], this will necessitate the use of an
analytic regularization process, as already pointed out in [19].
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3. Convolution Product Associated with a Graph: the Method

In this section we shall briefly describe the general method which
will be used further. We first sketch the relevant terminology. Let us
consider a graph G. Being given a vertex υ and a line /, we say that v
and / are incident if v is an endpoint of /. We call external those lines
which are incident to one vertex only. The set of lines incident to a given
vertex υ is called the star of v and denoted £fv. We avoid disconnected
graphs because they reduce to the discussion of their connected com-
ponents. Similarly we shall suppose that every vertex is incident to at
least three lines. Simply connected graphs (or "trees") will play a special
role in the following. We introduce the numbers

n: number of external lines of G,
/: number of independent loops of G.

The successive steps of the method are then the following:
i) With every line of G associate a complex four-vector so as to

satisfy the energy-momentum conservation law at every vertex. Let
{&i> 1 =: i^ ri) be the n complex four-vectors thus associated with the
external lines of G. It should be understood that, in order to satisfy the

n

global conservation law £ kt = 0, it is necessary to associate opposite
ΐ = l

vectors with each of the two endpoints of every internal line of G.
ii) With every vertex v of G incident to nv lines, associate a general

TVpoint function of the relevant complex arguments.
iii) The external variables being held fixed in the rc-point domain,

define a prescription of integration on the four-vectors associated with
the internal lines.

iv) Then study the algebraic and analytic properties of the object
there obtained which we shall call convolution product associated with
the graph G (shortly G-product) and denote HG(ku fc2,..., kn).

The aim of this paper is to prove that HG is a general rc-point func-
tion (in the sense of Section 2.4). In other words to prove that the
primitive structure of the n-point functions is preserved by G-convolu-
tion. We shall use the following ideas:

i) Among all others, the case of simply connected graphs appears
to be the easiest. This is because conservation laws at every internal
vertex are sufficient to determine internal momenta once known the
external ones so that the prescription of integration is trivial. Section 4
is devoted to this simple case.

ii) One is then led to define and study the G-product by recursion
over the number / of independent loops of G. The case of trees is indeed
the case / = 0 which initiates the recursion and it remains to prove the
following property:
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"Assume that for any graph G with I ̂  Zo — 1 independent loops and
any number n of external lines, it is possible to define a G-product which
is a general rc-point function.

Then, the same can be done for any graph with I = l0 independent
loops and any number of external lines."

This will be proved in Section 5.

4. The Case of Trees

4.1 Preliminary Remarks

Let us consider a tree T and denote {kh 1 ̂  i: g n} the n four-vectors
associated with its external lines. We shall first prove some simple
properties.

Proposition 1. With any internal line i of T it is possible to associate
a partition (/, X\I) of the set X = {1,2,..., n}.

Proof By u cutting" i, we get two subtrees Tx and T2. The complex
four-vectors associated with the external lines of Ti and T2 are then
{ki9iel; -kj} for Ti and {khieX\I; -kxv} for T2.

Proposition 2. Let us consider a vertex v of T and denote ίfv the set
of lines I incident to v. Then it is possible to associate with v a partition
{I(l9v)9le&Ό}ofX.

Proof With every line I e £fv, we associate a subset 1(1, v) of X by the
following rule:

— if I is an internal line of T, 1(1, υ) is the subset of the associated
partition (see above) (1(1, v); X\I(l9 v)) corresponding to the subtree which
does not contain υ.

— if I is an external line of T associated with the four-vector kh 1(1, υ)
is reduced to the set {ί}.

Then it is easy to check that the collection {/(/, v), le£fΌ] forms a
partition of X and that we have for any vertex v:

n

Σ kκhv)= Σki=°-

In other words, it is possible to associate with any line I of T incident
to v a complex four-vector kI{lv)= Σ ks and with any vertex v a

jeΠhv)

general n^-point function H{tlv) of the nv arguments {kI{lυ), le£fv} linked
by the relation £ kI{ltV) = 0.

leSPv

Proposition 3. Let us consider the family of tubes {3~λ, λ e Λ{n)} defined
in the space of the complex four-vectors {kh l gί^rc} linked by the
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n

relation ]£ kt = 0. With any tube of this family and any vertex v of T, it

is possible to associate a tube 2Γλυ defined in the space of the complex
four-vectors {kI{ltV)Je£fv} linked by the relation £ kI{l v) = 0. Moreover

leS?v

3~λ is contained in the intersection of the various ?Γλυ.

Proof 3Tλv is defined in C 4 ^ " ^ by the restriction λv e Λ{nv) of the sign
function λ to subsets of X which are unions of sets of the family {/(/, f),
/eS?v}. Clearly ^λC [\3Tkv.

V

We are now in a position to introduce the convolution product.

4.2 The Convolution Product Associated with T

Let us consider the family of functions {ίfj(fc), λ e Λ{n)} thus defined:

Hl(k) = Π Hlv) ({km,*, I e&v}) Π E ^ ( 2 ) ( ^ ) ] " ' . (i)

In this formula, the first product is taken over the vertices of T; H{"υ

v)

denotes the restriction of the general n^-point function H{Άv) associated
with v to the tube &~λv defined in (C4 ( W v~1 }; its arguments are the nv com-
plex four-vectors {kHl v), le^v}. The second product is taken over the
internal lines i of T; (I,X\I) denotes the partition of X associated with
the line i; and [H^^fcj)]"1 the inverse of a general two-point function
H{1)(k^) associated with the line i. Had this factor been omitted, Hf
would have presented a double pole in the channel (/, X\I). The reason
for its introduction is to recover a simple pole.

Remark. In fact for this purpose the choice [Hi2)(kIJ]~1 = (k] — m})
would have been sufficient. However in the context of the non-linear
program [21], the use of a complete propagator appears necessary. Then
the possible occurence of C.D.D. poles [18] (i.e. zeros of H{2)) leads us
to assume that each completely "amputated" n^-point function

£<->(*!, . . . Λ > ft IH^ikj)]-1 H«*\kl9... A J
7 = 1

is analytic in the n^-point primitive domain. In other words we assume
that the possible C.D.D. poles are cancelled by corresponding zeros
oϊHinv).

Proposition 4. Hj is analytic inside the tube SΓλ.

Proof Since each Hjfcv) is analytic inside the tube &~λv9 their product
H£ is analytic inside the intersection f] £Γλv, which contains 3Γλ as shown
in Proposition 3. v
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43 Proof of Steinmann Relations

Let us consider the set of the various real boundary values {Hj{p),
λeΛ{n)}. We recall that in order to check they satisfy the Steinmann
relations, it is enough to concentrate on the so called "quartet relations"
introduced in Section 2.2:

Hi + (p) + Hi _ (p) = Hi _ (p) + Hi + (p)

which must be satisfied in the sense of distributions by the four boundary
values occuring in any quartet of tubes {&~λ + +, «̂ "λ_ +, 3Γλ_ _, ZΓλ +}.

We shall need the following

Definition 5. Let us consider a partition (J, X\I). We shall say that
it is a vertex partition for T if there exist a vertex v0 of T and a partition

of its star &>ΌQ such that

leS

where /(/, ι;0) is associated with the line / as indicated in Proposition 2.
If so, we shall say that (I,X\I) is connected with v0.

The reasons for which this definition is needed are the following. Let
us consider two adjacent cells γλί and γλ2 separated by a partition (I,X\I).
At any vertex v of T the two sign functions λί and λ2 define relevant
restrictions λlv and λ2>v. It is easily checked that if (/, X\I) is not a vertex
partition for T, then λx and λ2 define the same restriction at any vertex v
of T, that is: λί>v = λ2>v. Similarly, if (I,X\I) is a vertex partition for T
connected with the vertex v0, then it is easily checked that λi and λ2

define the same restriction at any vertex v but υ0. This point is the basis
of much that follows in this section. It should be thoroughly understood.
Now we have the following algebraic lemma:

Lemma 1. // two partitions (/, X\I) and (J, X\J) are transverse vertex
partitions, they are connected with the same vertex v0. Moreover there
exist Wo partitions {J,ίfv^\J>) and (/,^ 0 \ £ /) of its star ίfVςy which
satisfy the following conditions:

i) I=\Jl(l,Ό0)andJ=[)l(l,Ό0).

ii) {A^V0\J) and ( / , ^ 0 \ / ) are transverse in £TΌQ.

Proof. We remark that if (I,X\I) and (J9X\J) were connected with
two different vertices of T, they would be necessarily incident (in the
sense of Definition 3). This point is sufficient to conclude.

Now we are in a position to prove

Proposition 5. The four boundary values occurring in any quartet of
tubes {^λ++,^λ+_,έFλ__,^λ_ +} satisfy the following relation for all real
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arguments, in the sense of distributions:

Hi + (p) + Hi _ (p) = Hi _ (p) + tfj_ + (p). (2)

Proof. In view of the analysis made above, we have to distinguish
two different cases:

i) At least one of the two partitions which define the quartet is not
a vertex partition for T, for example the one that corresponds to the
second index.

As already noticed, λ++ and A+_ (resp. A_+ and A__) then define
the same restriction at any vertex v of T and we have for all real
arguments:

HlM) = Hl_(p) and ffA

τ_ t (p) = ftf_ _ (p)

which proves relation (2) to be trivially satisfied.
ii) Both partitions are vertex partitions for T.

Since they are transverse partitions, we apply Lemma 1 and conclude
that they are connected with the same vertex v0. It is then easily checked
that the four sign functions {A++,A+_,A_^,A_+} define the same
restriction at any vertex v of T but v0. We denote {A+ + ϋ0,A+ _ Uo,/l_ _ t;o,
λ-+tVQ} the four different restrictions at this vertex. Then we can apply
the second part of Lemma 1, which asserts that the four tubes {̂ ~, ^ ,
«̂ λ+ - v' ^λ_ - υ J «̂ λ_ + „ } constitute a quartet in the space of the com-
plex four-vectors {kI{lvoY le^Vo}. As the function H{tίvo) associated with
the vertex v0 is a general nVo- point function, its four boundary values
satisfy a quartet relation. Then it is enough to multiply all the terms
of this relation by the common factors coming from the other vertices
of T, to get the announced result.

4.4 Proof of Coincidence Relations

Proposition 6. Let us consider the boundary values Hj^p) and H[2(p)
associated with two adjacent tubes ?Γλχ and 3~λl_ separated by a partition
(I,X\I). Then these two distributions coincide on a real region:

where mι and MI are certain masses associated with the channel (/, X\I).

Proof. We have to distinguish two different cases:
i) The partition (I,X\I) is not a vertex partition for T. Then we

have already noticed that λγ and λ2 define the same restriction at any
vertex v, and therefore the coincidence relation Hj^ip) = H[2(p) is satisfied
for all real arguments.
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ii) The partition {I,X\I) is a vertex partition for T connected with
one vertex v0. Then, as already mentioned, λι and λ2 define the same
restriction at any vertex v but v0. We denote λiiV0 and λ2tV0 the two dif-
ferent restrictions at this vertex. As the function H{tlvo) associated with
the vertex vQ is a general nVQ- point function, its two boundary values
# f c o a n c ^ H{"Z°vo c ° i n c ide on Mv Multiplying this coincidence relation
by the common factors coming from the other vertices of T is then
sufficient to conclude.

Remark. A special case may occur when the partition (/, X\I) is con-
nected with two vertices: (I,X\I) is then associated with an internal
line i of T (see Proposition 1) and connected with the two endpoints
of i. In that case, the proof follows closely the previous one and will be
left to the reader.

Now putting together Propositions 4-6 and applying the general
edge of the wedge theorem, we finally obtain:

Theorem 1. The convolution product associated with any simply con-
nected graph with n external lines is a general n-point function.

4.5 Additional Remark

As a final remark let us point out that the convolution product
associated with a tree T is analytic in a domain larger than the
"primitive domain" of the physical n-point function. Indeed it is a direct
consequence of Proposition 4 that its "natural" faces are only those
corresponding to the vertex partitions.

This point will be made clearer through the following example. We

consider the convolution product associated with ί J—ί j

and we represent on the "Steinmann sphere" [5,10] the traces of the
various faces for this general four-point function. Fig. 1 shows the
situation on the hemisphere s{ > 0 ; the case of the physical four-point
function is also drawn for comparison.

4.6 Bounds in the Tubes

Let us now state in a more precise way than in Section 2.5 the bounds
which we shall assume for any vertex function HiHv) in its primitive
nv-point domain of analyticity 3){Hv). We introduce the completely
"amputated" nv- point function

H<»»\kl9...9kJ= fί [ t f^MΓ 1 H^\kl9 ...,fej .
i = 1



202 M. Lassalle

F1G.1

Then we assume the following bounds inside the tubes:

1 \M

CL

for nυ>2 (3 a)

η>°- (3b)

Here kv = pv + iqv stands for the nv complex four-vectors {/cj? 1 ̂  j ^ nv}
a time direction e has been chosen as a coordinate axis, which allows to
write kv = (fĉ , k°υ) = (pv + /«„, p? + i ^ ) ; ^(/cy, 5^(Πv)) denotes the Euclidean
distance of the point kυ to the boundary of Q){nv)\ Cκ (resp. CL) is a posi-
tive constant which depends of a compact set K (resp. L) in p^-space
(resp. p°-space); the integer Mv indicates the order of the distribution
which is the boundary value of H{r%v\
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As a direct consequence of (3 a) and (3 b), we have

,
< 3 c )

Now under these assumptions it is easily checked that the convolution
product Hτ satisfies similar bounds, namely:

In the following such bounds will be needed to ensure integrability
at infinity on the set of all Euclidean directions defined as follows

with ρ-> 4- oo and q° chosen in any cell of the family {γλ, λ e Λ{n)}.

5. The General Case

In this section we intend to prove the following property: uAssume
that for any graph G with l^lo — ί and n arbitrary, it is possible to
define a G-product which is a general n-point function. Then the same
can be done for any graph with / = l0 and n arbitrary". We shall use
the following ideas:

i) With every graph G with /0 independent loops and n external
lines, we can associate a graph with (Zo — 1) independent loops and (n + 2)
external lines which we call an antecedent of G. This is easily done by
"cutting" any internal line of G. Of course such a process is not unique
and G admits a finite number of antecedents. In the following we choose
one of these which we denote G.

ii) Now it is possible to apply the recursion hypothesis to G and to
define a G-product HG which is a general (n + 2)-point function, defined
on the space (C 4 ( Λ + 1 ) of the (n + 2) complex four-vectors {ki91 ^ i ̂  n + 2}

n + 2

linked by the relation £ kt — 0.

iii) Then we define the convolution product associated with G by
the following rule:

Ut. (4)
kn+ι= -kn + 2 = t

Here k stands for the n complex four-vectors {khί^ί^n} linked by
n

the relation £ kt = 0; t — uΛ- ίv varies in the space C 4 of one complex

four-vector; Γk is a four real dimensional integration region in this space,
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whose infinite part belongs to the set of the Euclidean directions and
which will be defined further. The integrability assumptions made at the
end of Section 2.5 are then sufficient to ensure convergence at infinity.
[ i ϊ ^ ^ ί ) ] " 1 denotes the inverse of a general two-point function Hi2)(t)
which is introduced under the same assumptions that in Section 4.2.

Finally let us remark that in the integral (4) HG is restricted to a
region of the analytic hyperplane kn+ι + kn+2 = 0 which lies on the edge
of the (rc + 2)-point configuration. Analyticity of HG in this region
will then result from a local procedure of analytic completion which will
be made in the second part of this section.

Then the proof will go in three steps:
1) We shall first introduce the convolution product at points k lying

on a certain submanifold V% in C 4 ( l l ~ 1 ) associated with a chosen time
direction e. We shall define a contour Te k such as the integral (4) HG(k)
will be shown to have certain analytic and algebraic properties.

2) In a second step, we shall move e in the light cone and the various
Hf will appear as pieces of a unique analytic function HG. Putting
together the analytic and algebraic properties of every HG will yield for
HG the relevant structure of a general rc-point function.

3) Finally it will be necessary to check that HG is independent from
the original choice of an antecedent G and this will achieve the proof
of the recursion property.

5.1 Choice of a Time Direction

Let us make choice of a time direction eeV+ and therefore of a
coordinate system in IR4. We write:

and
t = u + iv = (t, t°) = (u + iv, u° + iυ°).

We introduce the following submanifold in (C4*""1*;

and consider the traces of the family of tubes {̂ "A, λ e Λ{n)} on this mani-
fold, namely the family of "flaΓ tubes {2Γλc\V^λeΛ{n)}. Whereas the
union of the closures of the tubes 2Γλ is indeed very far from exhausting
the whole of C 4 ( w~ 1 }, it is not difficult to check that the union of the
closures of the various &~λr\ V$ exhaust the whole of Fέ. This comes from
the fact that for any point k on Vέ, any of the partial sums {ql9 Ie0>* (X)}
lies along the time direction e. The various conditions qι^V± then
become q® ^ 0 and we can write

*Γλn Vι = {k e (C 4 ( n ~ 1 ) : Imfc = 0, Im/c° e yλ} .
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FIG. 2

Now the property already stated (J γλ = Wίn 1 } allows to conclude.

In the following we shall first try to define the G-product HG at points
which lie on Vέ9 more precisely at points inside any flat tube
We shall need some definitions.

"" 1
Definition 6. Let us consider the "triangulation" of the space 1R

n

of the variable s = (sί,s2, ...,sn) with £ st = 0 by the following planes

and {s^syJJe0>*(X)}. Clearly a lot of these
planes are identical. We call a pseudocell any open convex cone σμ into
which 1R""1 is thus divided and {σμ,μeΘ{n)} the complete family of
these cones.

Of course a cell yλ is in general the union of several pseudocells since
we have introduced new planes in the configuration. This is quite clear
in the case n = 3 showed in Fig. 2. New planes there involved are drawn
in dotted lines.

With every pseudocell σμ we associate the following flat tube in Vέ:

Clearly the union of the closures {Sμ, μ e Θ(n)} exhausts the whole of Vέ.
Now in order to define the G-product at points which lie on F έ,

two steps are needed:
i) First for any flat tube Sμ of the family {Sμ, μ e Θ{n)} define a func-

tion Hf μ analytic inside Sμ.
ii) Then consider the various Sμ included in a given ^ π F ^ and

prove that the corresponding functions Hf μ are pieces of a unique
function Hf λ analytic inside the flat tube 3~λc\ V$.



206 M. Lassalle

Actually, as it will appear further, these two steps are made neces-

sary by the analytic structure of the restriction of HG to the hyperplane

K+i + ^n+2 = 0> which we shall study now.

5.2 Analyticity Properties and Bounds for the Integrand

In this section we shall study the analyticity properties of the restric-
tion of HG to the analytic hyperplane

Clearly any point of π can be uniquely represented by the point (fc, t)
chosen in <C4n such as t = kn+1 — — kn+2.

In the following we shall thus denote HG(k, ή the restriction to π of
the G-product HG. We shall need the following lemma of analytic
completion.

Lemma 2. A general n-point function f is analytic at all the boundary
points of the tubes {ϊFλ, λ e A{n)) which do not belong to the union of the
family of sets {Δ^ I e ^*(X)} with

where mI and Mι are the masses associated with the partition (/, X\I) by
coincidence relations

The proof of this basic lemma uses the special continuity theorem of
Bremermann [10, 28] and will be fully given in another forthcoming
paper [27]. Then we are in a position to prove

Proposition 7. HG is analytic at all the points (/c, ί) of π which are
boundary points of the tubes {&~β,βe Ain+2)} and do not belong to the
union Σ of the following sets:

Σo = {(/c, t) e π : t2 = m2} u {(/c, ί) e π : t2 = M2 + ρ, ρ ^ 0}

where X stands for the set {1,2,..., n} of indices numbering the external
lines of G.

Proof. This is a straightforward consequence of Lemma 2 applied
to the (n + 2)-point function HG on the face qn+ί + qn+2 = 0, with an
appropriate specialization of the notations for the masses.
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Now we introduce the following submanifold in π:

W6 = {(k9t)en:qi = 0, ί^i^n; v = 0}

and we study the domain of analyticity of HG inside this manifold.
We shall prove:

Propositions. HG is analytic in the variables {t°;kf,i^i^n} at
all the points of Wέ which do not belong to Σ.

Proof. This is a trivial consequence of Proposition 7 since any point
lying inside Wέ is a boundary point of the tubes {^, β e Λ{n+2)}.

Let us now state the bounds which are assumed to hold for HG (in
view of the recursion hypothesis) in its primitive (n + 2)-point domain
of analyticity 3){n+2\ namely:

Here k=j)+ic[ stands for the (n + 2) complex four-vectors {ki9 l ^ i
^ n + 2} and the other notations are similar to those already used in
Section 4.6. This bound ensures the integrability of HG at infinity in the
set of all Euclidean directions k = {ρp,£° + iρg°\ with ρ-> -f oo and g°
chosen in any (n + 2)-cell of the family {yβ,βe Λ{n+2)}.

The following proposition will show that HJ* satisfies similar bounds.

Proposition 9. Under the above assumptions we have

π 1 1

j=i i + Etej9)

in '

Proof. We represent k° by the variables (fc°, ί, ξ) with k° = {fc?,
i g i ^ n } , ί = fc°+1, ξ = fc^+1H-fe^+2. For fixed (fc°, t) we make the
following argument in the complex £-plane: in view of Lemma 2, HG{ξ)
is analytic inside a cut neighbourhood of the real. Moreover HG is
nothing but the restriction HG(ξ = 0). Then let us choose a contour γ
inside the analyticity domain of HG(ξ), enclosing the origin and con-
taining each of the two endpoints of the cuts. In view of (5) one can show
that the following bound holds for HG at any point chosen on y:

\H~G{ξ)\ύ °
(ξ2-μ2f

with D the right-hand side of (6).
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Now inside y, log|ifG(ξ)| is certainly bounded by the harmonic

function log-r^ jΠf a n c * *-h& bound (6) follows for the restriction

Now let us describe the analyticity domain of H% by its sections in
the complex variable t° when k is held fixed outside the union of the
family of sets {ΞIy le^{X)} introduced by Proposition 7 and t is
fixed real and arbitrary.

Proposition 10. HJ* is analytic at all the points of the complex plane
t° which do not belong to the union Σ of the following "cuts":

j = {t° G <C: (ί° - fc?)2 = (t - pj)2 + m'j2} u {ί° e (C: (ί° - k°j)2

Proof. Clearly Σo (resp. Σj) is the trace on the complex plane t° of
the set Σo (resp. Σj) introduced by Proposition 7. Then, since k does not
belong to the union of the sets {Ξ J ? /e^*(X)}, it is sufficient to apply
Proposition 8 to conclude.

FIG. 3
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Such a situation is partially pictured on Fig. 3 which shows the cut
Σo and two typical couples (Σl9 Σx^). We remark that Σo (resp. Σj) is
symmetrical with respect to the origin (resp. the point t° = fcj) and that
Σj and ΣXXI are symmetrical sets with respect to the origin.

Then it is easy to check that any line i f passing through the origin
and each of the points {/c°, / e ̂ *(X)} with a slope always different from
zero lies inside the ί°-section of the domain of analyticity of H£ if the
following conditions are fulfilled:

i) None of the cuts Σ1 should be confused with Σo, that is

ii) None of the cuts Στ should be confused with one another, that is

Should these conditions on the external variable be unsatisfied, the
domain of JFζf in the t° plane would become disconnected and the line JS?
would get pinched. This analysis is the basis of much that follows and
should be thoroughly understood.

5.3 The G-Product

Proposition 11. With any point k inside a flat tube Sμ of the family
{Sμ, μe Θ{n)} it is possible to associate a four real dimensional region
Γέk in <C4 such that the function

H?Jk)= ί Hl{k,t)ίH^{t)Y'dt (7)

is analytic inside a neighbourhood of Sμ.

Proof. Since k belongs to Sμ all the conditions stated at the end of
the previous section are fulfilled. Then any line i£k passing through the
origin and each of the points {fcj, J e ^ * ( X ) } lies inside the analyticity
domain of ϋ f in t°. So we choose the contour Γέk as 1R3 x 5£k. Moreover
we choose <£k with its infinite parts parallel with the imaginary axis so
as to make (7) convergent at infinity (see Proposition 9).

Now we can release the constraint that Jέfk should contain the origin
and the various points {/c°, / e gP*(X)} and only require that these points
be sufficiently close to jSfk so that 5£k does not intersect the cuts.

Since we work with strictly positive masses, this is allowed independ-
ently of the real part p and this moderate freedom which we have to
shift «£?k is sufficient to get analyticity inside a neighbourhood of Sμ.
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Proposition 12. Inside Sμ, Hfμ satisfies the bound:

Λ 1 / 1 M

ι + ί ( q r ) + p ; r

with Lκ some positive constant which depends of a compact set K in p°-
space and d(q°,dσμ) the Euclidean distance in 1R""1 of the point q° to the
boundary of the pseudocell σμ. This bound ensures integrabίlity of Hf μ in
Euclidean directions. Moreover the order of increase M is the same
that for Hδ.

Proof. We start from the bound (6) which can be rewritten:

M

1 +

Now the integral on Γέk of the term [_{v°)2 + u2~]~(2 + η) is certainly con-
vergent. Moreover it is possible to choose the compact set K as a product
K x [ — α, + α] in (p°, w°)-space. Then in order to prove (8) it is sufficient
to check that for any t on Γέk we have the following inequality:

rf[(M;£]^Ci^°,<5σμ) (9)

with Cx some positive constant.
This will be seen as follows. First we notice that in view of the

equivalence of distances in Wέ, we have

);Σ]^C2 inf ld(q°, dσμ\ d(t°, Σ)]

with C 2 some positive constant and d(t°, Σ) the Euclidean distance in C
of the point ί° to the union of the cuts Σ.

Now since the complex line jS?k can always be chosen to lie at a finite
distance of the cuts (and this is easily checked), there exists a positive
constant C 3 such as

But this last term is exactly d(q°,dσμ) and the inequality (9) is proved.
Now let us consider a given cell γλ and the family {σμ, μeMλ} of the

pseudocells included in yλ. In any flat tube Sμ of the family {Sμ,μeMλ}
a function Hfμ analytic inside a neighbourhood of Sμ has been introduced.
We have the following

Proposition 13. The functions {Hfμ,μeMλ} are pieces of a unique
function Hfλ which is analytic inside a neighbourhood <3έ>λ of the flat
tube ZΓλc\ Vέ and satisfies integr ability conditions of the type (8) in Euclidean
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directions. Hfλ has a slow increase near the real in 2#έiλ and has therefore
a boundary value in the sense of distributions.

The derivation of this property is rather intricate and will be found in
the appendix. Let us only stress that it is crucial for the proof that the
various boundary values of H^ satisfy Steinmann relations.

5.4 Moving the Time Direction

In the previous section we have seen that for any time direction eeV+

and any tube 3~λ, there exists a function Hfλ which is analytic inside a
neighbourhood 2fέtλ of the flat tube &~λnVέ. As a matter of fact 9)έtλ

itself can be chosen as a convex tube. In this section we intend to move
the time direction e everywhere in the light cone and prove that the
various functions Hfλ are pieces of the same analytic function Hf.

For this purpose we shall need the following well known result.
Assume that a domain 2 is covered by a family of domains \β^ i e •/}
and that in each @}{ an analytic function φ{ is given. Assume that in each
non empty £ ^ n ^ y we have the compatibility condition φ{ = φ-Γ Then
it is possible to define a single valued function φ which is analytic inside
Q) and in any 2)t is identical with φt. Now we are in a position to prove:

Proposition 14. For any λeA{n\ the functions {Hf λ, eeV+} intro-
duced in the previous section are pieces of a unique function Hf which is
analytic inside the tube Tλ with convex conical basis yλ®V*:

Tλ = {ίceC4 ( n~ υ : Im/c e yλ® V+}

where yλ®V+ denotes the tensor product of the cones yλ and V+.

Proof. Consider the direction e{ ( i = ί , 2 ) and the corresponding
function Hfiλ which is analytic inside the tube @luλ. If non empty, the
intersection <3έuλn<2)έlfλ is then a connected convex tube. Moreover
for any point k inside Φέuλn@έ2>λ, using the convergence at infinity and
Stoke's theorem, we check easily that Γέuk can be distorted into Γέ2>k

without modifying the value of the integral (7), which yields:

From the remark made above, we conclude to the existence of a unique
function Hf which is analytic inside (J 3>itλ and is a common analytic

JGcontinuation of the various Hf λ.
Now (J <$έtλ is not a natural domain of holomorphy since its basis

eeV +

is not convex. We claim that its holomorphy envelope contains the tube
T; with convex conical basis y ; ® V + . Indeed the basis of the flat tube
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&~λn Vέ can be written:

or similarly:

And it follows directly from this representation and from the definition
of the tensor product of two cones that the convex hull of (J Rέ λ

is precisely γλ®V+. Then it is sufficient to apply the tube theorem [10]
to conclude.

5.5 Getting the Tubes 2Γλ

In the previous section, we have shown that for any λ e Λ{n) there
exists a function Hf which is analytic inside the tube Tλ with convex
basis yλ® V*. However it is not yet the relevant tube 3~λ since we have
the following lemma:

Lemma 3. [7]. The tube Tλ with convex basis yλ®V+ is included in
the tube 3~λ. The equality Tλ = ZΓλ occurs if and only if the cell yλ is simplicial.
(We recall that a cell is simplicial if limited in 1R""1 by (n — 1) planes.
Non-simplicial cells appear when n ^ 5.)

Thus in order to recover the analytic structure of a general n-point
function as defined above in Section 2.5, we need to enlarge the
analyticity domain of the function Hf when the cell yλ is non-simplicial.
However since Tλ is a natural domain of holomorphy, this cannot be
made by purely geometrical techniques of analytic completion. Actually
we shall need the following basic lemma:

Lemma 4. Let us consider a family {fλ,λeΛ^n)} of functions which
satisfy the following conditions:

i) For any λ e Λ(n\ fλ is analytic inside the tube Tλ.
ii) The various real boundary values {fλ(p\ λeΛin)} satisfy the

Steinmann relations.
Then for any λeΛ{n\ fλ is analytic inside the tube 2Γλ.

The proof of this lemma is out of the scope of the present work and
will be reported in [27]. It uses a basic property of the Steinmann
relations, namely the possibility to "solve" them by introducing auxiliary
functions which enjoy better analyticity properties than the original
/A [23].

Thus in order to apply Lemma 4 to the family {Hf, λ e Λ(n)} we need
the following
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Proposition 15. The four real boundary values {#f+ +(p), #f+_(p),
Hχ_ _ (p), fff_ + (p)} which occur in any quartet of tubes satisfy the quartet
relation

in ί/ze sense o/ distributions for all real arguments.

The proof of this property is rather cumbersome and lengthy and
will be shown in [27]. In view of Lemma 4, it allows to state

Proposition 16. For any λ e Λ{n\ Hχ is analytic inside the tube 9~λ.

5.6 Proof of Coincidence Relations

In this section we intend to prove that the functions {iff, λ e A{n)}
are restrictions to the tubes {&~λ, λ e A{n)) of a unique function HG which
is a general n-point function. We shall need the following

Proposition 17. The two boundary values H^ip) and Hf2(p) associated
with two adjacent tubes &~λl and £Γλ2 separated by a partition (/, X\I)
coincide (in the sense of distributions) on a real region &j

®I= {pelR*<»-i> :pj + mj9pj <Mf)

where mι and M1 are certain numbers associated with the partition (I, X\I).

Proof. In order to prove the coincidence of H^(p) and Hf2{p) on ^ / 5

we remark that it is sufficient to stick to the situation where a given time
direction eeV+ has been chosen and prove the coincidence oίHf λl(p)
and Hftλ2(p) on the real open set:

Indeed any function Hfλ is the restriction to Vέ of the function i/
and we have for all real arguments:

To conclude it is then sufficient to notice that fflj= [j 01 j έ.

Now let us consider the two adjacent tubes ^λίnVέ and ^
and a complex point k lying on their common face, inside the submanifold
q° = 0. First, in order to ensure in (7) the analyticity of the integrand HJ*
in the external variable fe, we remark that, in view of Proposition 10, the
following condition must be satisfied:

IP/Ίφm, \p°I\<MI (10)

where m1 and Mι are the masses which occur in the definition of ΞI in
Proposition 7.
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Then we notice that in the complex plane ί°, when q° tends to zero,
the following couples of cuts become confused: (Σ^ Σo), (ΣX\l9Σ0) and
thetwofamilies{(ίL,Σ J u L);LG^*(X\/)} a n d { ( £ M , Z M u ( W ) ) ; M e f *(/)}.

The situation in the neighbourhood of a given couple (^ L ,Γ I u L ) is
shown in Fig. 4. Clearly at the limiting case q® = 0, no contour will get
pinched if the two analyticity "gaps" \u° - p£| < m'L and \u° - p?u L | < mf

Iκj L

have a non-empty intersection: indeed the line <£ shown in Fig. 4 will
provide a common distortion for each of them. This necessitates the
condition |p°| <{m'L + rnf

IuL) to be satisfied. Now this analysis goes
similarly with all couples of confused cuts and there exists a certain
mass Mj such as the condition

\PΪ\ Φwj |p?l <Mj= i n f ( M J ? M ; ) (11)

allows the two functions Hf λi and Hfλl to have a common analytic
continuation on the submanifold q® = 0. Since for a function which is
analytic and with slow increase near the real in a tube the distribution
boundary value is the same for all directions inside this tube, it is enough
to tend to the real inside q$ = 0 to get the desired result.

Putting together Propositions 15-17, we finally obtain that the
functions {iff, λ e Λ{n)} are pieces of a unique function HG which is a
general π-point function.

5.7 Additional Remark

As in the case of trees, we must point out that HG is analytic in a
domain larger than the "primitive domain" of the physical n-point
function. Indeed let us introduce the tree T obtained by "cutting"
successively / internal lines of G and denote {fcx, fc2, > K> K+ I > •> K+u)
its (n + 2ΐ) external lines. We consider the sets / e ^ * ( X ) such as the
partition [/;(X\/)u{rc+ l,n + 2, . . .,n + 2/}] is not a vertex partition
for T. Hτ is analytic on such faces g7 = 0 and consequently, in view of
the analysis made above, we claim that the coincidence region 011 oϊHG
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associated with the channel (/, X\/) is of the form:

This comes from the fact that Hτ is analytic on the face qι = 0 and that
the pinching of the complex line JS?fc is by nature unable to produce in 011

any condition of the type p\ φmf.
We shall say that HG is one-particle irreducible in such channels

(for a detailed study of the notion of p-particle irreducible functions
in axiomatic field theory, see [21]). For instance the convolution

product 0 ( ) Cj Λ *s o n e -P a r t ic le irreducible in the channels t and u.

5.8 Independence of the Antecedent

In this section we shall prove that the G-product does not depend of
the original choice of an antecedent G of G.

Let Gί (resp. G2) be an antecedent of G obtained by cutting an
internal line it (resp. i2) of G, and G 1 2 the common antecedent of Gγ
and G 2 obtained from G by cutting simultaneous ix and ί2. For a given
time direction e, with G ; (/=1,2) we associate the G-product JίJH
Then we introduce the following 4(n — 1) real dimensional submanifold

^ n ) is the Euclidean region associated with the time direction e. In order
to check that HfΛ and Hf2 'define the same function at any point of
their common analyticity domain, it is enough by analytic continuation
to check that they coincide on S§\ As for the latter point, it will appear as
a straightforward consequence of the following result, once taken into
account the Fubini's theorem for multiple integrals:

Proposition 18. At any point k inside a neighbourhood of S§\ HfJ

(/'== 1,2) satisfies the following representation:

n l n 2
fcn+3= -fcn + 4 = ί'

with Γέ o = 1R3 x Lo and Lo — ilR the imaginary axis in the complex plane t°
(resp.i'0).

Proof. Once k is held fixed inside a sufficient small neighbourhood of
$$\ the situation in the ί°-plane is as pictured on Fig. 5: all the cuts are
centered on the imaginary axis L o . Then we can choose Lo as the integra-
tion line and write:

Hξ-Kk)= ί H^ήίH^iήΓ'dt.
lR3
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Now the following basic argument is easily checked: when k lies
inside S^ and t varies on Γέtθ9 the point (fc, ί, — t) lies inside the corre-
sponding Euclidean region in <C4(M+1}, namely

But at such points in <C4 ( Λ + 1 ), the same argument still allows to write,
with the same contour Γέ0:

HHKh+uh+2)= J Hδ»{k,kn+1,...,kn+J
Γs,o

1 1 11 ^ 1 1 fen + 3=-fen + 4 = ί'

which allows to conclude.
Thus we have shown that HG does not depend of the original choice

of an antecedent G of G and this achieves the proof of the recursion
property3. Taking into account the initial case of trees, we finally obtain:

Theorem 2. The convolution product associated with any graph G
with n external lines is a general n-point function.

5.9 A Class of Global Representations

In a neighbourhood of S^ the method used in the proof of Proposi-
tion 18 allows to write a global representation of HG, which brings out
the individual contributions of the vertex functions as well as the multiple
integral prescription associated with the internal lines. Indeed the
following fact has been put into evidence: if k belongs to a neighbourhood
of S^ the axis Lo is a suitable integration line and then the point (7c, ί, — ί)
belongs to a neighbourhood of ^ π + 2 ) . Iterating this argument we get the
following representation of Hf, at any point k inside a sufficiently small
neighbourhood of S^:

H?(k)= ί ΠίHl2)(kdT1ΠH<*>\{kJ,jeSrv})dμ (12)
(1R3 X Lo)1 i V

with / the number of independent loops of G, and dμ the usual Euclidean
measure in the 4/ real dimensional linear space ( R 3 x L 0 ) z . The first

3 The argument applies for / ^ 2. In the case / = 1 it is straightforward to check that

the tree-products HGl and HGj define the same relevant restriction.
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FIG. 6

product extends to the internal lines of G; kt denotes the internal four
vector associated with the line I The second product extends to the
vertices of G; H{rtv) denotes the general n^-point function associated with
the nv lines {/ e SQ of G incident to v. As a result of Sections 4.6 and 5.3,
in the course of this iteration the convergence of the multiple integral
(12) is ensured by the bounds (3) which we have assumed for any vertex
function Hitlv\

Actually a natural extension of this representation is provided by the
classical argument of the Wick rotation of the contours. Let us consider
the family {${

Q

n\ ρ e 1R} of 4(n — 1) real dimensional submanifolds:

The following argument is easily checked on Fig. 6: if k belongs
to a sufficiently small neighbourhood of Sf\ all the cuts are centered
along the line Lρ (with equation u° = ρv°) in the ί°-plane. Lρ is a suitable
integration line and then the point (k, t, — t) belongs to a neighbourhood
of δ£+2). Iterating the argument we get the following representation of
Hf in a neighbourhood of if:

H?(k) = J
(IR3xLe)'

(2) (*ι)] " ' Π H<*>\{kj,j e <?„}) dμ (13)

with dμ the usual Euclidean measure in (IR3 x Lρ)
1.

However this representation converges only if any vertex function
H{nv) is assumed to enjoy bounds of the type (3) at infinity inside the
manifold δ^ in C 4 ^ " ^ .

In this context a special role is played by the limiting case ρ -> + oo.
Then the submanifold ${

Q

n) tends to the real space JR4("~ 1> and of course
the previous representation (13) is nothing but a formal recipe which we
must give a precise meaning. This will be done in the next section:
under appropriate bounds at all infinite directions near the real, we shall
prove that (13) still holds in the sense of the t-boundary values of the
various n-point functions" there involved.
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6. Γ-Boundary Value of the Convolution Product

In order to give sense to (13) when the external arguments lie inside
the real space IR4 ( n'"1 ), let us first recall that the ^-boundary value of a
general rc-point function is defined by the following prescription:

ft(p)= lim f(k)

where the open covering {Ωλ, λ e Λ{n)} has been introduced in Section 1.5.
That is, ft is defined by the collection of boundary values {fλ(p), λ e Λ{n)}
with the consistency conditions fλ(p) = fλ(p) in any ΩλnΩλ.. Now we
intend to prove:

Proposition 19. // a sufficiently strong decrease is assumed near the
real at infinity, the following representation holds for the t-boundary value
Ht

G fin the sense of distributions) :

Ht°(P)= ί UίH^ipdr'Yl^^PjJe^^dμ (14)
R4Z

with dμ the Euclidean measure in the space IR4* of internal four-momenta
and H^Hv) (resp. H^2)) the t-boundary value of the corresponding general
nv-point (resp. two-point) function.

As in the previous section, the proof will go by recursion over the
number / of independent loops of 6.

6.1 The Case of Trees

In order to prove that the / = 0 form of (14):

Ht

τ(p) = Π Ht

(nv)({pI{lv), I e SQ) Y[ [H/2)(P/)] "*
V ' i

holds in the sense of distributions, it is enough to check that on any open
set of the covering {Ωλ,λeΛ{n)}, all factors are boundary values of
functions (with slow increase) analytic is the same domain. We start
from the following representation of Hτ inside the tube ?Γλ:

which yields in the sense of distributions for all real arguments:

with λ(I) the sign of Sj in the cell yλ. If we restrict the above relation in
the relevant open set Ωλ, it is easy to check that the nv real four-vectors
{Pi(i,υ)Je^Q associated with the vertex v belong to the open set Ωλv
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defined in the relevant space by λv. Thus we can apply the Ruelle
prescription at each vertex v and replace the factor H^n

v

v) by Ht

{tlv) (and
similarly each factor i f $ } by Ht

{2)\ which achieves the proof.

6.2 The General Case

We shall need the following:

Lemma 5. In order to define the t-boundary value Ht

G it is sufficient
to stick to the case of a chosen time direction e and apply the following
prescription:

with Ωέλ= {p eΊR*^1): λWpϊ > -rhj v / e ^ * ( X ) } and rhjKmj, with
mι the discrete mass associated with the partition (/, X\I).

Proof. Since the sets of the family {Ωέ λ,λeΛ{n)} form an open
covering of 1R4(W"1) such that ΩέλcΩλ for any λeΛ{n\ it is a direct
consequence of the consistency relations:

Now the proof of Proposition 19 will be a direct consequence of

Proposition 20. // a sufficiently strong decrease is assumed near the
real at infinity, the t-boundary value of the G-product satisfies (in the sense
of distributions):

Ht

G(p)= J Ht

d(p,pn + u P n + 2
4

1R
Pn+ 1 — ~ Pn + 2—U

Proof. In the following we use the Ruelle prescription such as
provided by Lemma 5 with a covering {Ωέ>λ, λ e Λ{n)} defined by the
following choice of masses:

v / E &>*(X) rhj = inf(m/? m'j).

(We recall that mι is the discrete mass in the channel (7, X\I) and m\ half

the minimum of the distance between the two poles of the cut Σj.) The
reasons for such a choice will appear clearer in the following. Now let us
consider a given point p = (p,p°) in a chosen open set Ωέ λ. We have:

In the following we denote«/ the family of proper subsets of X such that

We introduce the auxiliary point p° inside the cell yλ as follows: if / e«/,
we choose pj = p® if / φ J we choose λ(I)p® arbitrary inside the interval
]0, λ(I)p® + mj[ in such a way that p° belongs to yλ. If we consider the
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point k = (p, p° + iq°) with p° = ρq° and ρ positive, it is straightforward
that k belongs to the submanifold S^n) and q° to yλ. Since the line Lρ is a
suitable contour for k, we can write:

Now if we consider the point k = (p, p° + iq°) it is clear that k lies in a
neighbourhood of <^w) in the following sense: if we tend from k to k by
keeping q° fixed and letting p° tend towards p°, none of the moving cuts
{Σj, I φJ} will intersect the line Lρ. This is indeed checked easily on
Fig. 7 where the two situations for a partial sum have been pictured.
Thus the line Lρ is still a suitable contour for k and we write:

!R3xLe

Now we have the Ruelle prescription:

(15)

= limHξλ(p,p0

which we choose to write under the form:

Ht

G(p,p°)= lim H?Jp,p°+-p0).
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Taking into account (15) this yields:

Ht

G(p,p°) = lim J HGίUp0+-p°),t) [lϊ<2>(ί)3"* Λ (16)

provided that sufficiently strong decrease properties at infinity near the
real have been assumed.

It is easy to check that when k is fixed as above in a neighbourhood
of Sf] and t varies on IR3 x Lρ, the point (k, t) is in the situation when the
Ruelle prescription in <C4n can be applied (in the limit ρ->oo). This is
straightforward on Fig. 7 which shows the traces on the plane t° of a
(n + 2)-cell yμ and of its associated open set Ωμ. Thus we have:

p, P °+ ^ p ° L W 2 ) ( ί ) ] - ' = HG(P, Pn+ 1, Pn + 2)

Here, in view of the analyticity properties of HG, the right-hand side is
meaningful in the sense of distributions. Then (16) can be rewritten
(in the sense of distributions):

Ht

G(p)= J Ht

G(p,pn + ί,pn+2
IR4

JPn+l — ~~ Pn + 2~u

which is the desired result.

7. An Application to Perturbation Theory

Since the idea of G-convolution originates from the consideration of
Feynmann perturbative series, it is natural to set the question of the
applications of our study to perturbation theory. In this paper we do not
consider the case of a polynomial interaction lagrangian since a special
study would have there to be made in view of renormalization. However
we can deal with all theories in which convergence in Euclidean directions
is assumed to hold [29].

In fact as a consequence of Theorem 2, we shall see that the Feynmann
amplitudes associated with a certain class of "superpropagators" which
is defined below satisfy all the requirements of the linear program.

The superpropagators w(/c) which we consider are general two-point
functions which satisfy a bound of the following type in the Euclidean
directions: r

with η strictly positive and p° EK.
Then, with any function w and any graph G with n external lines,

we associate the amplitude:

= J T[n(kddμ. (18)
(IR3 x Lo)1 i
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Here the external variables k are taken in a neighbourhood of the
Euclidean region δ^\ I is the number of independent loops of G; the
product extends to the internal lines i of G; /c{ denotes the internal four-
vector associated with the line i; dμ is the usual Euclidean measure in
the Euclidean region of the internal variables (1R3 x Lo)

1. In view of (17),
this integral is absolutely convergent. As a straightforward consequence
of Theorem 2, we shall prove:

Proposition 21. The integral (18) defines an analytic function FG

whose analytic continuation satisfies all the requirements of the linear
program (i.e. is a general n-point function).

Proof. With each vertex v of G, we associate the function

(the product extends to all the lines of G incident to the vertex v). It is
clear that each function H{riv) is a general w^-point function: indeed it is
analytic in a domain which is much larger than the n^-point primitive
domain, namely the whole space (C4 ( f I υ~1 ) minus all the cuts {kj = mj,
k] = Mf -f ρ}. With this definition of the vertex functions all the factors
w~ * cancel out in (12) which is reduced to (18). Then we apply Theorem 2.

In particular this result shows that in the Efimov "non local" field
theory (which assumes Euclidean convergence) the amplitudes associated
with Feynmann graphs satisfy all the requirements of the linear program.
In contrast with [29] no regularization is needed here. Arbitrary singular
behaviour of the superpropagator w(fc) for /c2->+oo are moreover
allowed.

8. Final Remark

An alternative method has been recently proposed by Glaser [17]
for a new derivation of the central proof of this paper. This method is an
extension of the one already used by Epstein and Glaser in their basic
work on renormalization theory [30]. In fact these authors have shown
that the linear properties of general quantum field theory, expressed in
the present paper in terms of the Steinmann-Ruelle-Araki boundary
values of the n-point function in momentum space, can be equivalently
formulated in terms of the vacuum expectation values of chronological
products submitted to the requirements of "local factorization".

In this context, a general notion of G-convolution can also be defined
and a corresponding version of Theorem 2 can be given, in which one
is led to prove that the local factorization of the chronological products
is preserved by G-convolution. There most of the proof has to be worked
out in real position space.
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This method presents real advantages of algebraic simplicity, in
particular it avoids the technical problems encountered with Steinmann
relations. On the other hand the method used in the present paper deals
more directly with analyticity properties in momentum space. It shows
that most of the facts involved in G-convolution are direct consequences
of the geometry of the π-point primitive domain and that in order to
define the G-product integrability conditions have only to be postulated
in the Euclidean region, thus allowing to include the case of arbitrary
singular behaviour on the real.

Appendix

This appendix is devoted to the proof of Proposition 13.
Among all the planes Sj = ss introduced by Definition 6 and which

divide IR""1 into the family of pseudocells {σμ,μeΘin)}9 the only ones
which do not coincide with a face sκ = 0 of the original cell configuration
are those corresponding to two non empty disjoint subsets.

Thus let us consider a given cell yλ and, in the family {σμ,μeMΛ}
of the pseudocells contained in it, two adjacent cones σμ+ and oμ_
separated by such a plane SJ = SJ with InJ = 0 σμ+ is chosen to lie on
the side SJ>SJ. Now Proposition 11 ensures that it is possible to define
a function Hfμ+ (resp. Hf μ_) which is analytic inside a neighbourhood of
the flat tube Sμ+ (resp. Sμ_) and thus defined:

*keSμ± H^±(k)= f HΪ(Kt)\HV\t)Y'dt.

i) In a first step, let us prove that these two functions are pieces of a
unique function, analytic in a neighbourhood of the convex hull of

sμ+^sμ_.
For this purpose let us consider a point k+ (resp. fc_) inside Sμ+

(resp. Sμ_). We choose k+ and fc_ symmetrical with respect to the common
face q° — q® and denote k their common fixed projection onto this face.

In view of Proposition 12, we can define the discontinuity:

[ i # μ + -H9μ J (fc) = β ? ] to L o [J^ ( 1 + (k + )-f l # %.(fc_)]

in the sense of distributions in the variable (pf — pj).
Now we shall prove that this discontinuity is equal to zero at any

point k inside the common face. Since q° = q°3 the domain of analyticity
of iff in the ί°-plane becomes disconnected. Actually the following
couples of cuts are confused: for any L e ^ ( I \ ( / u J ) ) , (ΣiwL, ΣJκjL) with
SP(A) the set of subsets of Λ. The situation is as shown on Fig. 8. It is
convenient to describe the two limiting contours j£?k+ (resp. J£k_) by
giving their projection l+ (resp. /_) onto the space of the variables
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(qi—qj9 v°)9 as in Fig. 8 a. Fig. 8 b represents their common projection
onto the space of the variable u°. (We recall that t° = u° + iv°.) The
couples (α,α+), {b,b+) (resp. (a,a~),(b,b~)) define points on J5fk +

(resp. jSPfc_). We choose i? k + (resp. i?k_) as a broken line and it is defined
by associating with every point of /+ (resp. /_) inside the interval a+ b+

(resp. a~b~) the corresponding barycenter on ab.
Now H£ is analytic on the submanifold q® = q°j and using the Stoke's

theorem, it is not difficult to get:

ί H^
3

Here the vanishing contribution ε(q^ - qQ

3) comes from the difference
of the infinite parts of the cycles JS?fc+ and ^k_-yL is the cycle with
projection onto the space (q® — q°j, v°) as shown on Fig. 8a: it is limited
by the straight lines v° = q^uL and v° = q%L and corresponds to the
pinching of the contours between the cuts Σ / u L and ΣJuL. yLl and yLl are
symmetrical with respect to the (q® — q°j) axis if L1KJL2 = X \ ( / U J).
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Now let us concentrate on the edge v° ~q°IκjL = q°JκjL\ it is the trace
in the face q®+ x -f q°+ 2 = 0 of the common edge of a quartet of tubes
associated with the two following transverse partitions:

[ { },(I\(ίuL))u{n+l}]
and

If we denote { H + + , i ϊ + _ , # ? _ , # ? + } the corresponding branches
of HG, we can write the following quartet relation on IR 4 ( M + 1 ):

Now it is a consequence of the edge of the wedge theorem that such
a relation is still valid for the restriction H% taken at any complex point
(fe,ί)[27]:

^ + (Kή. (1,9)

When (q® - q®) tends to zero the cycle yL shrinks to nothing, so that

in the limit we are led to integrate the combination [H% + + — H^ + _

+ H ^ _ _ - H | _ + ] on the segment sL as shown on Fig. 8 b. More

precisely:

» IR3χS j L

• [H ( }(w)] x du

where the summation is easily checked to be meaningful in the sense of
distributions. Then in view of (19), we have proved Hf μ+(k) = Hf μ (k)
at any point k inside the common face of Sμ+ and Sμ_ and the edge of
the wedge theorem ensures analyticity inside a neighbourhood of the
convex hull of Sμ+ u S μ _ .

ii) In a second step, we remark that any two pseudocells of the
family {σμ, μ e Mλ} can always be connected by a finite chain of adjacent
pseudocells of the same family. In view of i), this entails the existence
of a function Hfλ analytic at all points lying in a neighbourhood of
3Γλr\ Vέ, except at those exceptional points which belong to several sub-
manifolds q°j = qQj. But these "edges" belong to the convex hull of the
analyticity domain of Hfλ and the tube theorem [10] allows to conclude.

This ends the proof of Proposition 13.
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