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Abstract. Let μ be the measure on &"(]Rd) corresponding to the Gaussian process with
mean zero and covariance (/, ( — A + I)"1 g) on ^(lRd). It is proven that the set

has μ measure one if α>0 and /?>-} and μ measure zero if α>0 and /?<i; here Δd_ί is
the Laplacian in any d— 1 dimensions when d> 1 and A0 = A.

§ 1. Introduction

Nelson [11] has shown that to every generalized stochastic process
φ over £f (IR )̂ satisfying the axioms of a Euclidean Markov field theory
there corresponds in a natural way a relativistic Boson field theory
satisfying the Wightman axioms. In particular, the Gaussian process of
mean zero with covariance <</>(/) φ(g)y = (f,( — A + i ) ~ l g ) corresponds
to the free Boson field of mass 1 in ^-dimensional space-time [12]. By
Minlos' theorem [6, 8] this "free process" can be realized on '̂0Rd), the
topological dual of the nuclear space ^(JR**). That is, there is a Borel
measure μ on Sf'QR!*) so that

for all fe£f(1Rd). In this realization, the free process itself is given by
the function φ(f)'.q-+(q,fy for q G £f '.

The processes corresponding to interacting Boson theories are usually
constructed by taking limits of non-Gaussian perturbations of the
"free measure" μ (see, for example, [10]). The properties of the free
measure play an important role in this procedure [4, 7]. Thus it seems
useful to study the free process in order to gain insight into and develop
analytic tools for the more complicated interacting processes.

In this paper we investigate the support properties of μ by elementary
methods. The point is that &" is an unnecessarily large space in which to
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realize the free process. A space not much larger than the dual Jf+ι
of the Hubert space Jf _ 1 should suffice. Here J α̂ is the Hubert space
completion of ̂ (E )̂ in the norm ||/||^α - ||Pα/|| where P = (-A + 1)̂ .
Let P1 = ( - Δd_ i + I)1 and Q = (2 + x2)^ where Ad- 1 is the Laplacian in
any d — 1 variables. The result of this paper says that the set

S = Pi'2 ~ 1 +«Qd/2(\ogQ)β L2(IRd)

has μ measure 1 for any α > 0 and β > \ and that this result is globally
sharp in the sense that S has μ measure 0 for any α > 0 and β< \. In the
case d= 1, all the statements in this paper involving Pί should be inter-
preted with Px replaced by P. By "measurable" we always mean measur-
able with respect to the smallest σ-algebra containing the cylinder sets.
One can see that S is measurable as follows: Let T be a bijective
continuous map of y(lRd) onto itself and let {hn} be an orthonormal
basis for L2(lRd) with hn e ^(IRd). Then q = T*f, feL2(Rd)9ti and only if
q(T-ίhn) = (f,hn) satisfies:

N

Now if GN(q) = Σ\q(T~1hn)\2, then GN is measurable for each N so
G = limsupGN is measurable. Thus T*L2(1Rd) is a measurable subset of

The local measure one result, i.e. the fact that locally the "paths"
are almost surely in Pf2~1+αL2, is a special case of recent work of
Cannon [2], Cannon also remarks that the local result is sharp in the
sense that Pd

ί

/2~1L2 is a set of measure zero. Global and local results
for the free process, expressed in terms of lim sup properties (rather than
L2 properties), have been obtained by Colella and Lanford [3].

Acknowledgements. Conversations and correspondence with John Cannon and
Oscar Lanford originally stimulated our interest in the subject. We also wish to thank
Bill Paris and Barry Simon for useful conversations.

Note added in Proof. After submission of the manuscript, the authors learned from
O. E. Lanford, III, that he has an easier generalization of the same result which relies
only on the Gaussian nature of the process and does not use the Kolmogorov three series
theorem or directly the asymptotic independence.

§ 2. Sets of Measure One

We begin by stating Minlos' Theorem [6, 8] for the case of Gaussian
processes. The topological dual of a nuclear space E will be denoted by £*
and the natural pairing between E and E* by < • > ' ) • The superscript *
always indicates the dual space with respect to this pairing.
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Theorem (Mίnlos). Let ( , )o and ( , * )ι be continuous scalar
products on a nuclear space E such that \\ f \\ 0 ̂  c \\ f \\ 1 for some constant c
and all feE. Let H0 and H1 denote the Hilbert space completions of E
with respect to || ||0 and \\-\\i. Suppose that the natural injection Hί-^H0

is a Hilbert- Schmidt operator. Then H* is a set of measure one for the
Gaussian process φ(f)( •) = < ,/) over E with covariance (φ(f)φ(g)y

= (/,ff)o

To say that the natural injection Hί-^H0 is Hubert-Schmidt is
equivalent to saying that there is a Hubert-Schmidt operator T on H0

such that HI is the set THQ with norm \\f\\i = \ \ T ~ l f \ \ Q . It is convenient
to consider the following Hubert-Schmidt operator (P, Pl5 β are defined
i n § l ) :

Lemma I. Define f = P~1P^aQβ1 where Qβ = Qd/2\ogβQ. Then
f is Hilbert-Schmidt on L2(IRd) if and only if α > d/2 - 1 and β>^.

We defer the proof until the end of this section. The lemma is a
special case of the general principle that an operator on L2(ϊ&d) is Hilbert-
Schmidt if it consists of slightly more than d/2 powers of each of P'1

and β"1. Applying Minlos' Theorem we thus obtain:

Theorem 1. For any α > d/2 - 1 and β > %, S = PfQβtfQR*) is a set of
measure one for the Gaussian process over y(lRd) with covariance
(/.(-j + iΓ'ί/).

Remark. When d = 1, we take S = PaQβL
2 (see the discussion following

the proof).
Proof. Since P is a unitary map of L2(lRd) into JfL^ an operator T

on ^f_! will be Hilbert-Schmidt if and only if f = P~1TP is Hilbert-
Schmidt on L2. Thus by Lemma 1, T = Pϊ"Qβ

1P~l is Hilbert-Schmidt
on Jf_ l β According to Minlos' Theorem, Hf is a set of μ measure one,
where H, = T^_, with norm \\f\\, = \\T^f\\^ = ||β,P?/||. That is,
Hf is the completion of ̂  in the norm \\Qβ

 1P1

 α/||, whose elements
we denote by S = PfQβL

2. Π
An examination of the proofs of Lemma 1 and Theorem 1 reveals

that there is considerable flexibility in the choice of H1 . For instance the
conclusion of Theorem 1 holds equally as well for the sets

where α>d/2— 1, β>i, y>2 The stronger statements (involving P!
rather than P) show that it is sufficient to smooth in only d — 1 variables
in order that the paths be locally in L2 almost surely.

Proof of Lemma ί. The kernel of the integral operator f is T(x, y)
= h(x — y) g(y) where
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and h is the Fourier transform of
d-l \ - α / 2

where without loss of generality we have chosen Δd_ 1 to be the Laplacian
in the first d — 1 variables. Thus by the Plancherel Theorem the Hubert-
Schmidt norm of f(x,y) is equal to \\h\\ \\g\\.

It remains to verify that h e L2 and g e I2 if and only if α > d/2 — 1
and β > \ respectively. Changing to spherical coordinates in lRd~ l we have

which is finite if and only if α > d/2 — 1.
Similarly, by changing to polar coordinates in

which is finite if and only if β > \ as can be seen by the change of variable
r = es. Π

§ 3. Sets of Measure Zero

In the last section we proved that if α > d/2 - 1 then S = P%QβL
2(Rd)

is a set of measure one for the Gaussian process over ί^(IRd) with co-
variance (/, (-Δ + i ) ~ ί g ) when β>^ In this section we prove that S is
contained in a set of measure zero when β<%. This amounts to the same
thing as showing that for β <^, QβL

2(ΪRd) is contained in a set of measure
zero for the Gaussian process φ^ over e9^(lRd) with covariance

<Φ1(/)Φι(0)> = (/,0)1=(/^Γ2αί'"20). (3.1)

The idea of the proof is simple: namely, we shall find a sequence of
functions gn e £^(18?) which are orthogonal in the inner product ( , )1 so
that the random variables ψn = \φi(gn)\ are independent and which are
chosen so that

f°r all

Σ Eψc

n = oo

where E denotes expectation with respect to the underlying measure
μ1 for the process φl9 and ψc is the truncation ψc = ψ or 0 according as
\ψ\ < c or \ψ\ ̂  c. We can then conclude by the Kolmogorov Three
Series Theorem [9] that the set QβL

2 is a set of μ1 measure zero. The
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difficulty which arises in this argument is that the natural choices for the
gn, namely functions whose supports move out to infinity, are not
orthogonal since (#n,#m)ιΦθ even though gn and gm have disjoint
supports. However (gn9 g^^ goes exponentially to zero as the supports
of gn and gm separate, and we use this familiar exponential decay [7]
to modify the "natural" gn by Gram-Schmidt orthogonalization.

We begin by introducing some terminology. | | will denote the
usual norm on ]Rd while | |x will denote the norm \x\^ = |xj H ----- h \xd\
The symbol n = (nl9 ...9nd) will always denote a d- tuple of integers,
i.e. neTLd. We order such d-tuples by starting with 0 = (0, 0, ...,0), then
ordering the n so that \n\^ = 1, then the n so that \n\i = 2 and so forth;

K-
n~ denotes the predecessor of n. Thus the summation symbol £ is

n = 0

unambiguous. Throughout this section χ denotes a fixed C£ function with
support in the d-cube of side length one with centre at the origin normaliz-
ed so that H χ l l i = 1. Letting K be a large positive integer (to be chosen
later) we set

Notice that for all n9 ||χJι and ||χj (the L2-norm) are constant. Finally,
we define χn to be the unnormalized Gram-Schmidt orthogonalization

of χπ, where χ0 = Γ
n~

Xn = Xn~ 2^ Cj Xj '
7 = 0

The following two lemmas (proven at the end of the section) tell us how to
choose K.

Lemma 2. Given any a > 0, we can choose K so large that

for all m and n.

Lemma 3. For a small enough, there are constants e>Q and D
(independent of n andj) so that

(a) IILII2^2.
(b) Σ \cnj\^D.

n>j

Theorem 2. // α > d/2 - 1 and β < \ then S = PϊQβL
2(]Rd) is contained

in a set of measure zero for the Gaussian process over 5^(IRd) with covariance

Remark. Again, when d=l9 we replace P1 by P in the theorem.
Proof. As mentioned above it is sufficient to show that QβL

2(]^d) is a
set of measure zero for the Gaussian process with covariance (3.1). We
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define

τn = (2 + n2)d/4[log(2+n2)]3/4-W2.

Now we choose K large enough so that the conclusion of Lemma 3
holds and define

γ

n Jnτn n 1 "

Let qεQβL2^), i.e. q = (2 + x2)d/4 {\og(2+x2J]βf(x) where/is in L2(lRd).
In the following calculation c denotes various universal constants
(independent of ri) and Π« denotes the d-cube of side length one with
centre at n. Now

VM^mm ln~ I ̂  dyynτn j=o

^—ίj \fiy)M\dy+ Σ k"l .f \f(y)xj(y)\dy
"n lϋn j=0 DJ

_

Thus,

—
n 7 = 0

The first term on the right is less than infinity since <—>e/2 by the

proof of Lemma 1 and // J |/|2 dyγ\e£2 since the Πn are disjoint.
l\Dn 4 / J

To handle the second term we rewrite it:

^ cD Σ — ( J I/I2 dή* (by Lemma 3)

<oo,

by the same reasoning as above. Thus,

Σv»(β)<oo for all
n

On the other hand, for each n, φι(gn) is a Gaussian random variable
of mean zero and covariance

\\Xn\\l

γnτn
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by Lemma 3 [Part (a)]. Since the φ^(g^ are Gaussian and orthogonal
they are independent and thus so are the ψn. Now

for n large enough since σπ-»0. .
By the proof of Lemma 1, £ - = oo so we conclude that

Thus, by the Kolmogorov three series theorem [9], the set of q e

so that £ ψn(q) < oo has measure zero. Since we have already shown this
n

inequality for q e QβL
2(lRd) the proof is finished. Π

It remains to prove Lemmas 2 and 3.
Proof of Lemma 2. If y>0, the operator P~γ acts by convolution

with a distribution ky d which is the Fourier transform of (1 +p2)~y/2.
By [5],

where Kv is the modified Bessel function. Thus k7)d is C°° except possibly
at x = Q and its behaviour at zero and infinity is given by (see, for
instance, [1]):

Γθ(|xΓd) if y<d

as |x|-+0, fcyfd(x) = |θ(log|x|) if γ = d

10(1) if y>d
I γ-d-ί

as |x|->oo, kγtd(x) = 0\\x\ 2 e~

Therefore fc2,d is integrable near zero and

I(^~2XJ Wl = lί fe2,,(x - y) χ(y - Kn) dy\

where c will denote various constants independent of x, m, and n and
where we have used the relation [x^ ̂  |/d |x|.
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Similarly we have

(3.3)

where x = (xί, ...,xd_ ̂  and χ is the characteristic function of [— j, £|.
By the triangle inequality

\xd-Knd\

so that by (3.2) and (3.3)
|"~^ l l/2l/a" f £-(l*-K"lι + l*-κ™l

R^-1

• J χ(xd - Kmd) e-lxd-K

This proves Lemma 2. Π
To prove Lemma 3 we first establish a preliminary lemma which

expresses the fact that if the components of a matrix A decay exponentially
away from the diagonal then the same is true of A'1, independently
of the size of A :

Lemma 4. Let S be a finite subset ofΈd and let A be a matrix indexed
by S which satisfies Au=i and

\Aij\^1-^ (3 4)
where a > 0. Then there are constants a1 and b (independent of the number
of points N in S) such that for a ̂  α1?

\AΓji\^b(4adf-j^. (3.5)

Proof. It is sufficient to prove the lemma if S is a rectangular array
of adjacent points in Zd. For if not, simply embed S in such a rectangle
S and extend A to a matrix A indexed by -S by A = A®I, i.e. Ai — A^
if iJeS and Aij = δij otherwise. Then A satisfies (3.4) and so A"1

satisfies (3.5). But A~ί=A'1®I so that A'1 also satisfies (3.5).
To prove the lemma in this case, we introduce another matrix R

also indexed by S defined by jR^ = 1 if \i —j\1 = 1 and R^ = 0 otherwise.
Rk has the following properties :

(Λ% = 0 if fe<|i-j|1, (3.6)

(Λ%^1 if fc = |i-7'li, (3.7)

(R%^(2d)k for all i,j,k. (3.8)

These properties follow immediately from the interpretation of (#% as
the number of ways of joining i and; by lines of length k that are formed
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by segments of length 1 connecting points of S. Let \\A\] denote the norm of
the matrix A corresponding to the supremum norm for vectors, i.e.,
|| A || = max Σ \Atj . Then also \\Rk\\ ^ (2d)k since each row of jR contains

at most 2d ones. ^
Now consider the matrix B = I-aR. For α < (2d)~ \ B~ ^ = Σ (aR)k

o
converges in norm and therefore componentwise. Since R has non-
negative elements, it follows from (3.7) that

(B-%^aV-^. (3.9)

We now estimate A'1 by means of the Neumann series A"1

= Σ (i- Aϊk From (3 4) k follows that

fc = 0 oo

| | /-A| |gα X αl-' .
ιι = 0

Thus for a sufficiently small (independently of N) the Neumann series
converges so oo

iμ-%1^ Σ \((i-Af)tj\
k=0 (3.10)

oo ^ /

<; X p-1-/)^,
k = 0

oo

by (3.4) and (3.9). The series Σ (B'1 -I)k converges for a sufficiently
fc = 0

small (independently of N). In fact,
oo

£ (β-1-/)* = (2/-B-1)-1

1 (3.11)

which converges for 4αd< 1. Thus if z φ j we conclude from (3.6), (3.8),
(3. 10) and (3. 11) that

IM"%^i Σ K(2^)%l
*= | i -7 l i

^i Σ (4^)k

where b is independent of N. Π
Proof of Lemma 3. Define Aίj = (χί, χ^ and choose K large enough

by Lemma 2 so that \A^\ ^ α'1"-7'1 where a ̂  αx with α! given by Lemma 4.
The coefficients c" are determined by the equations
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That is, cΛ = μii)-1α(") where ? = (<$, ..., <£-), ̂  = (A0n, ...,An- „) and
An is the matrix {At j} where ίj = 0, . . ., n .By Lemma 4

l^| ̂  Σ (^d)1-7'-'1^1*""11. (3.12)

Thus

^ const α

where the constant is independent of n. This proves Part (a) of Lemma 3
for a sufficiently small. Similarly from (3.12)

where D is independent of j. This proves part (b) of Lemma 3. Π
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