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Abstract. Any conformal or projective structure on a manifold .# defines a natural
boundary d.#. For Minkowski space these coincide with null infinity as defined by Penrose
and projective infinity as defined by Eardley and Sachs, respectively.

§ 1. Introduction

The b-boundary construction [ 1, 2] is a device to attach to any space-
time ¥"* a boundary 8,7 4, which is intrinsically defined by the Lorentz
metric of ¥"*. In this paper it will be shown that a similar construction
is possible for a conformal or projective structure on a manifold. Thus one
gets for any space time two boundaries 9,74, 0,7 "* which are determined
by the conformal and projective structures of ¥7#.

It turns out that the conformal boundary of Minkowski space
determined by this method is .# as defined by Penrose [3], together with
the points I, I°, I'*. In the projective case one finds that the boundary
of Minkowski space is the same as projective infinity defined recently
by Eardly and Sachs [4, 5]. Therefore we get as well a new definition
of 4 and future projective infinity, as at the same time a genuine
generalisation, because the boundaries are defined for any space.

Therefore it is within this framework a well defined question for
example whether the null generators of #* of an asymptotically simple
space-time ¥"* have a past end point in d,%* or not.

Hopefully this method will lead to some new insight into the structure
of asymptotically simple spaces near I° and I*.

The mathematical background — which will not be used in this paper —
is the theory of prolongations of G-structures. If one considers all metrics
compatible with a given conformal structure, then their connections
define a reduction of the frame bundle of the frame bundle. It turns out
that on this bundle there exists a parallelisation, determined intrinsically
by the conformal structure. Hence one gets a positive definite metric,
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forms the Cauchy completion to obtain a boundary of the bundle, and
projects this boundary down to get the boundary of the base space.
The interpretation of boundary points in terms of the space-time is more
complicated than in the case of the b-boundary. Roughly speaking it is
the following: A curve x(4), 0< A< 1 which is inextensible in ¥"* ter-
minates at a point of d,7"* if a metric g exists in the conformal class such
that 1) the Ricci tensor of g vanishes on x(1) for 4, <A< 1, 2) the
generalised affine length [2] of x(1), 4,<A< 1, calculated with the
connection of ¢ is finite.

The plan of the paper is the following: In Section 2 the definition of
the conformal boundary is developed. Section 3 contains the proof that
for Minkowski space 0,7"*=.#uUl~ UI°UI*. The interpretation of
boundary points is given in Section 4. Finally there are some remarks
on the projective case in Section 5. Appendix 3 contains a geometrical
proof that the conformal group of motions of the Einstein Universe is
a covering group of 0(4, 2).

§ 2. Definition of the Conformal Boundary of a Space-Time

In this section it will be shown that a conformal structure on a
manifold .# defines in a natural way two principal bundles over ./
and a parallelisation on one of these, which then will be used to define
a boundary of ./ in perfect analogy to the b-boundary [1]. The general
mathematical background is the theory of prolongations of G-structures
as developed in [6,7]. The essential geometrical ideas, however, were
already known to Cartan like nearly anything in local Differential
Geometry.

In the treatment given here, the general theory of prolongations will
not be used in the hope that a more direct treatment will be better
understandable to Relativists.

Let .#* be a manifold. A conformal structure € on .#* is defined
as an equivalence class of Lorentz metrics defined by the relation g~ g
if §= e*°g, where o is any real-valued function on .#. Let us write g € €
for a metric in the conformal class. A Lorentz metric defines a reduction
of the frame bundle £ (.#) to the bundle of orthonormal frames. In the
same way, a conformal structure € gives a reduction of ¥ (.#) defined by
all frames which are orthonormal for some metric g € . This bundle is
denoted by #(#) ! and its structure group is

€0:={alac %4, R), naé, al)= c2n(g, E)} (2.1)

! One can define € as a reduction of £ (.#) with structure group € 0.
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when 7 is a metric of Lorentz signature on the vector space #*. Clearly
%0 is the direct product of the Lorentz group and £, the group of
positive real numbers under multiplication.

Hence ue 2(#) is a frame (e,) at a point x e.# which is ortho-
normal relative to some g € . Any other frame at x which is in 2 (#)
is then given by &, = e,aj with at e € 0.

In the following 2 () will always be considered as a subset of &£ (/).

Choose g € €. Then g determines uniquely a torsion free connection I”
on Z (). Denote by {H,} the collection of horizontal subspaces de-
fining I', and by B; the standard horizontal fields, [8, 1], which are
defined by

(B)u€H,, my(B),=e; if u=(e). (22)

A metric g determines uniquely a horizontal subspace at any point of
ZL(M). In contrast to this we get from a conformal structure a whole
collection of horizontal subspaces at any point.

What is the relation between H,, H,? If H, is defined by g € ¢, H, by
e??g, then the relation between the Christoffel symbols in a local co-
ordinate system is [9]

I-'i(klzl—’ilk','é%qk"f‘éllco-[i_’gikglso'|s~ (2.3

From this and the expression for B; in coordinates [2, 10] one finds
immediately

Bj= B, — (8'3 + 046 — §u§°G ) EF . (2.4)

Here E*,’( denote the standard vertical vector fields in £ (#) and 6, i,
are functions defined on £ () in the following way: if g(X, Y) is a tensor
field on ., then §;,(u) is defined by §;,(u) = g(X;, X,) if u=(X;). Hence
6x(w), Jix(w) are just the components of do and g in the frame u. (This
convention will be used for any tensor field on .#.) In particular §;; §*
is constant on Z (), i.e. for conformal frames; more precisely §;,§'*
=nun'"s where n;, is diagonal (—1, 1, 1, 1) as well as n'*. Therefore we
find that at u,e?(#) the preferred class of horizontal subspaces is
spanned by

(B = (B)yy — (84 by + 8 by — 1y b) Ef . (2.5)
The vertical fields E,, o= 1, ..., 7 in P(./) are given by (k< )
M} =Ef—nn*E.,  OLE=Ef, (2.6)

since the Lie algebra of 0 is spanned by the Lie algebra E¥—n, n*E!
of the Lorentz group and 8 (E¥ is the matrix with 1 in the k-th row and
I-th column and O at all other entries).
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Now we realise that a conformal structure defines a collection of
frames of P (). At uoeP (M) these frames are given by (2.5), (2.6)
with b, € #*.

With the abbreviation

Six(b):= diby + dibi — nyn'* b, 2.7
any two of the preferred frames at u,, are related by a linear transformation

B;— B} — Sh(b) E,

. (2.8)
E,—E,.

These transformations form an abelian vector group isomorphic to R,

We now come to our 2™ bundle. Considering the frame bundle of
P (M) we realise that a conformal structure defines, via the preferred sub-
spaces on 2 (/), a reduction of & (2(A)) which we denote by 2}(2).
The structure group of 21(2) is #*. [The fact that the frames (2.5), (2.6)
really form a reduction of #(#) follows easily because a connection I
of a metric g €% defines a cross section A:2P(M)— L (P(M)).] Denote
by n! the projection n':2Y(P)—>P(M).

Let us recapitulate the interpretation of a point z, € 2!. It describes
a point u, = n'(z,) € # (M) and a horizontal subspace H,, which belongs
to the distribution of horizontal subspaces of a connection of a metric
gevb.

Another way of saying the same thing is this: z, e 2' determines
uniquely (and is determined by) an equivalence class of metrics in €
which satisfy g’ = e*°g and ¢(x,) = 0, (do) (x,) = 0, where x, = (1> ?) ().

Or still another version: z, € 2! determines a frame u,=n'(z,) at
Xo=7(uy) and a connection at x.

The essential point is that there exists a parallelisation on (%)
which is uniquely determined by the conformal structure on ..

We just repeat in a certain sense what we did before. 21(2) is a
principle bundle over Z and we ask whether we can find preferred com-
plements to the fibres.

Pick an arbitrary point z, € 2' and consider all g €% such that the
cross sections Z —2' defined by their connections pass through z,.
These cross sections are given by the fields

(B = (B, — (3}x+ 0461 — nuu' 51 E (29)
hence are determined by u— 6j,(4) and the fields b*?a. The condition that

all sections pass through the same point z, is given by 6j,(uo) = by if
uo=n'(z,). We can without loss of generality assume that b,=0. Two



Conformal and Projective Infinity 77

such sections determine the same complement H,, to the fibres in 2!
if and only if
(Bi)u00-|k=(Bi)uo&|/k’ Ea&|k=Ea5'|'k (210)

holds. Now & (u,) = 0 implies (E*a&| o) (o) =0, and by the very definition
of the covariant derivative it follows that

(B Gise = (01 0) (t40) (2.11)

where the covariant derivative is performed with the connection
determined by (By),,.

Therefore we find that there is a 1 — 1 relation between o}, (1) and
a certain class of horizontal subspaces H, .

Take now one of the sections u— &, () and the corresponding
fields B;. Then

[B;, Bi]= — K5, EL (2.12)

where R}, are the components of the Riemann tensor in the frame u
of the metric defining the connection given by B;.
Clearly [B;, B;],, depends only on H, , the tangent space of the
section §),(u). Can we find a unique H, by imposing conditions on Rj;;?
The Riemann tensor R};, of a Lorentz metric decomposes uniquely
into the conformal tensor C;;;, and terms determined by the Ricci tensor
R;; [11]. More precisely
Rii= Ciix+ Siix (2.13)

where S35 is uniquely determined by the Ricci tensor and C;;; is the same
for all metrics e*?g.

Hence the brackets [ B;, B;],,, will all define the same conformal tensor,
but different Ricci tensors depending on a}; 4 (4)-

A direct calculation (or consultation of [9, 11]) gives the following
relation between the Ricci tensors of g = e*°g and g (n=4)

Rix=Rix+ 20y; jx — 20y, 0 + 9ir.9"°(0}, s+ 20},0)5) » (2.14)
or, if we consider the corresponding functions on £

=

Ry =Ry + 201 % — 261: G+ Gix G (G s + 263,61,) - (2.15)

Hence there exists always ), (o) such that I:i,-k(uo)= 0.
This relation now implies that there exists a unique H, such that
[B. Biluo= — Chinluo) E; . (2.16)

Hence we find a uniquely determined distribution of horizontal sub-
spaces H, on 2*(%).
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Let us reformulate the way in which H,  is fixed in terms of .# and
metrics of the conformal class: Let x, € .# and g € % be arbitrary. Then
there exist a conformal factor e*° such that o(x,)=0, 0jk(x0) =0,
R;i(x0)= 0 where R;, is the Ricci tensor of e2?g; any two such conformal
factors o, ¢’ satisfy a;(xo) = 0{; (o) (in any coordinate system).

From the distribution of horizontal subspaces one immediately
obtains a parallelisation: . .

Choose a basis A™ e #* and denote by A™ the corresponding vector
fields tangent to the fibres in 2*(2).

For any z € 2* we define vector fields Z; and Z, by the condition:

(Z)., Z,).€H,, (2.17)
and

niZ;=(B), if z=(B,E,),,

. . (2.18)
nyZ,=(E,), if z=(B,E,),.

Clearly fi’", Z;, Z, define a parallelisation on #' which can be used to

define a positive definite metric on 2! which is determined by the con-

formal structure € on /.

The Cauchy completion of 2! gives the boundary points for 2!, and
the problem which remains to be solved is how to project the boundary
down to .#. This can be achieved in the following way.

21(#) was defined as a bundle over 2 with projection n! : 2#! — 2.
2 is a bundle over .# with projection 7 :% — .#. We can however also
consider 2! as a bundle over .# with projection won': P! — . #, and it
turns out that 2! is in fact a principle bundle over .#. To show this we
have to define a group action on 2* such that the orbits are (z°n')™* (x)
for x € /. The conformal group acts on 2 (.#) on the right. Let R, : (M)
—P (M) be such a map for a€€0. Then R, induces a transformation
21— P! by the differential of R, :

Ry : TP)— T, w(P) - (2.19)

Let H, be a point of 2!; then the horizontal subspace (R,), H, defines
again a point of 2, because there exists a metric connection I' on P
such that H, is a horizontal subspace of I' and therefore (R,), H,= H, €I,
which implies that it is in 2. Therefore we have an action of ¥ on 2!
which is free. {n Appendix 1 it will be proved that this action of (¢ and
the action of * make 2" into a principle bundle over ./. It will further-
more turn out that A™, Z, are the fundamental vertical fields.

Denote by % the structure group of 2 (.#). Then it will be proved in
Appendix 2 that R, : ' > 2" is uniformly continuous with respect to the
distance d(z, z') defined by the positive definite metric on 2.
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Therefore the action R,:2'—2' can be uniquely extended to the
Cauchy completion R,: 2" —>2" [12]. _

We define 4 := .4 L3,/ as the quotient space /% = : ./ with the
usual topology.

In the next section it will be shown that J,.# #+ @ for the conformal
structure defined by Minkowski space and, it turns out that ,.# = ¥
ultul~ul®. )

In [15] a construction is given which assigns to any space-time a
collection of boundary points which depends only on the causal
structure. This boundary is in general different from the one constructed
above because the boundary is not empty for the causal structure of the
Einstein universe, whereas the conformal bundle boundary of the Ein-
stein universe is empty (Lemma 3, § 3).

§ 3. The Conformal Bundle Boundary of Minkowski Space
Consider the Einstein universe &%, a space-time whose metric is
—dt* +dX*(3), teR (3.1)

where dX?(3) is the metric of a unit 3-sphere. As shown by Penrose in
several places [3, 13], there exists an open submanifold .#* of &* which
is conformally isometric to Minkowski space. .#* can be described in the
following way: Choose a point I° € &* arbitrarily. Then the future light
cone # * and the past light cone .# ~ of I° refocus again at points I, 1.
M * is the set of points in &* which can be joined to I° without inter-
secting £t U~ UITUI™ and starting at I° in a spacelike direction.

Applying the results of § 2, the bundle 2*(£*) together with a positive
definite metric exists over &%, and the open subbundle (mon')~! (/%)
is clearly isometric to 2!(.#*), the bundle over Minkowski space. We
will now prove the following

Theorem. The conformal boundary of Minkowski space is
Frog ultulull.
To show this we need several Lemmas.
Lemma 1. If &: .4/ — ./ is a conformal isometry, then ® induces a

diffeomorphism &' : P* P! leaving the parallelisation invariant. If
@' (zo) = z, then ® is the identity on J .

_ Proof. Any diffeomorphism @ :.# —.# induces a diffeomorphism
@: L (M)—>ZL (M), defined in the following way: if u is the frame (e,)
at x then @(u) is the frame (. e,) at @(x). If @ is a conformal isometry,
® maps #(M), the bundle of conformal frames, into itself.
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Now d3,~ being a difffomorphism 2 — 2, induces again a diffeo-
morphism @1 : #(P)— L (P).

Let I be the connection of any g € ¢ and H, its distribution of hori-
zontal subspaces. Then @, H,=: Hj,, is the distribution of horizontal
subspaces of the connection of the metric ®*g = ¢??g, as @ is a conformal
isometry. Hence Hg, is a horizontal subspace of the preferred class in
P (M) and this implies that @, maps PYP) onto itself.

Finally we have to show that &' leaves the parallelisation defined
on 2! invariant. Let z, be any point in 2! and ge ¥ a metric with
vanishing Ricci tensor Ric at xy:= (n°n')(z,). Then I', the connection
defined by g, defines a cross-section in 2!(#) which is tangent to H,,,
the preferred subspace. Let Ric be the Ricci tensor of ®*g; then Ric
=¢* Ric and therefore Ric(x,)=0 implies Ric(®(x,))=0. Hence the
connection of ®* g defines a section in 2! which is tangent to the preferred
Hj: ). Because the section of @*g is the image of the section of g, this
implies that ¢! leaves the preferred subspace H, invariant.

From this we get immediately that ¢1Z =Z, 45 Z,=Z,. Finally
®L A" = A™ follows because &' commutes w1th the action of #* on the
fibres in 2.

As ¢! leaves the parallelisation on #' invariant it follows that
@1(zo)=2zo=P' =id, and therefore using the definition of &' we get
& =id.

Remark. Lemma 1 implies in particular that the dimension of the
group of conformal isometries of a space-time is at most 15 because
dim2! (M *) = 15.

Next we need

Lemma 2. The conformal structure of the Einstein universe is invariant
under a 15-parameter group of conformal motions acting transitively.

This is proved in [14]. A more geometrical proof is given in Appen-
dix 3.

This lemma shows that the conformal structure of the Einstein
universe is for conformal structures what Minkowski space is for Lorentz
metrics; it is conformally flat, has maximal conformal symmetry, and is
simply connected.

Lemma 3. The conformal boundary of the Einstein universe is empty.

Proof. This is now an immediate consequence of Lemma 1, 2. The
space 2*(&?) together with the metric defined by the parallelisation is
a positive definite homogeneous space, hence complete.

Let us now prove the theorem. Lemma 3 implies that any curve of
finite length without endpoint in 2 (.#*)C 2 (&%) projects on a curve
in &* which has an endpoint on 0.4, the boundary of ./#* relative to
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&*. Clearly two curves in .#* defining the same boundary point in 9,.4*,
the conformal boundary, define also the same point in d,..4*. It remains
to show that there are no two different points x, X in 8,.#* which are
identified in Jgs.#/*. From the way .#* is imbedded in &%, one can
however see that this is impossible. (Remember that near 1°, ./#* is the
outside part of a light cone.)

§ 4. Interpretation of Boundary Points

In Section 2 it was shown how to attach a boundary to any con-
formal structure. How can we describe such boundaries in terms of the
space-time manifold?

On the manifold 2!, considered as a bundle over 2, a unique
distribution of horizontal subspaces H, is defined. Using the parallelisa-
tion on #' we can also define a unique horizontal subspace H, if we
consider 2! as a boundle over .#. The subspace H, is defined as the
subspace spanned by the fields Z;, defined in § 2.

With the help of H, we can define lifts of vector fields and curves
from 4 to @1(// ). There is however an essential difference between the
distribution H and a connection in the principle bundle 2* (/%) The
distribution H, is not invariant under the structure group, as it is shown
in Appendix 2.

Therefore H, defines no connection and — as we will see later — not
any curve x(4), 0 < A £ 1 has a horizontal lift z(1), 0 < 4 < 1. It may happen
that a lift is only defined for 0< A< A< 1.

The following theorem shows that the points of 0,.# are determined
by horizontal curves in 2 ().

Theorem. Let z(J) be an inextensible curve of finite length in P* (M),
0=< A< 1. Then there exists a horizontal curve w(d), 0<A<1 of finite
length contained in the fibres through z(A).

Proof. The proof is the complete analog of the corresponding
statement for the b-boundary [1]. Therefore it will only be outlined:

Let p:=n'on be the projection 2*(#)— /. The parallelisations
on 2!(M) and the bundle over the Einstein universe 2'(£*) can be
used to imbed p~*(p(z(4))), i.e. the submanifold of all fibres through z(4),
isometrically into 2!(£*). Because #'(6*) is complete, the image of
z(4) has an end point in 2'(6*) and a horizontal curve in 2(&%) of
finite length contained in the image of p~*(p(z(4))) exists. Going back
to p~*(p(z(%))) one gets the horizontal curve of finite length because by
the construction of the imbedding horizontal vectors are mapped onto
horizontal ones.
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The theorem above shows that we have to understand the meaning
of a horizontal curve in 2 () to get an interpretation for the points of
0.4 . Locally this is given by the following

Lemma. Let z(A) be a horizontal curve 0 < A< 1. Then there exists
for any A, €[0, 1] an ¢ and a metric g in the conformal class whose Ricci
tensor vanishes on p(z(1)), —e+ Ao < A< Ao+ ¢, such that z(2) is given by
H, ;) where H is the distribution of horizontal subspaces of the canonical
connection of g,and u(2) = n*(z(2)). The length of z(1), —e+ Ag< A< Ao+ &
is the generalised affine length [2] of x(4) calculated in the frame given

by u(4).

Proof. Let ¢ be determined by the condition that x(4)= p(z(4)) is a
properly imbedded curve [6] for the e-interval around . (This implies
that there exists a coordinate system in which this part of x(4) is a co-
ordinate line.)

If ¢’ is an arbitrary metric in the conformal class then the condition
that g=e?°g’ has vanishing Ricci tensor is that

1
20} = _R§k+20-|i0-lk_g§k(alro-{r_?RI> 4.1)

holds along x(4). (Covariant derivatives and moving of indices with ¢'.)
Along x(7) this implies

1
2014 = ~ R + 20,008~ g # (0,07~ G R). (42

This is an ordinary 1. order differential equation for by(4):= o},(x(4))
along the curve x(4). Let b (1) be the solution with b,(1,) determined
by the condition that B; — S%, (b(o) E¥ fixes z(4,). A solution to these
initial values exists in a certain interval around 1,. Having determined
b.(A) we try to find a function ¢ such that

op(X(D)=b(D), o (x(A) = Ari(2) (4.3)

where A, is determined by (4.1) with o, = b,. Because b, satisfies (4.2)
and x(4) is properly imbedded one checks easily that ¢ satisfying (4.3)
exists (in fact one gets many solutions). Then by the very construction
of ¢ the metric e??¢’ has vanishing Ricci tensor along the piece of x(4)
we are considering.

Let f:2—2P' be the section corresponding to the connection
determined by g=e*°g’. Then this section is tangent to H, for any
z € p~*(x(4)) which is contained in the section. Let u(4), u(do) = n'(z(4o))
be the horizontal lift of x(1) into () defined by the connection of g.
Then the curve Z(4) defined by H,,,,, H, being the horizontal subspace in
P (M) of the connection of g, is clearly contained in the section f'; hence
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Z(J)eH, ;. Now nl(((}))=u(d) and u(})eH,,, implies (1) eH,,,
hence Z(4) is horizontal. By the construction of Z(4), Z(1,) = z(4,). Hence
the uniqueness of horizontal lifts implies z(4) = Z(4). To verify the state-
ment about the length of z(4) suppose

N=d)Z;, 4.4)
then by the definition of the metric on #*

L= [(Z()?)FdA.
Now .
nii=u=0oB,

where B; are the standard horizontal fields of the connection of g and
this implies that L is the length of x(4) calculated in a frame which is
parallel in the metric g. This completes the proof.

If z(4) is a horizontal curve such that p(z(4)) is properly imbedded
then the theorem above implies that we can find a conformal factor e*°
such that the Ricci tensor vanishes at all points of x(4). In general however
this may not be possible. Take as an example a case in which x(4) is a
closed null geodesic.

From the theorem, however, we learn that the conformal factor is
only important on the curve, more precisely its gradient. Therefore, in
general, one has to proceed in the following way to calculate a horizontal
lift and its length:

Let x(4) be an arbitrary curve 0 £ 1< 1. Choose any metric g in the
conformal class and solve

ZV_iblz ——R,kxk+2b,bkxk—g,kxk(b,,br— %R) (45)

for certain initial values b,(0). Then we get a 1-form b,(4) defined on
x(4) for 0L A <A,(£1). The non-linearity of (4.5) is the reason that b,(4)
is not necessarily defined for 0< A< 1. Once b(4) is determined, we

propagate a frame X;—— along x(4) by the equation

0
dxi
dl

where I}, determines the connection of g. Then the frames X! ——

+ (La(x (D) + Su(b,(V)) X¢x' =0

0
a i
and b, determine a horizontal lift. To get the length of the lift one has to
calculate the length of x(4) in frame X,.

Finally an example: Let us calculate some horizontal lifts of a time
like geodesic in Minkowski space. Let t(4)= /4, 1 £ 1< 00, x"=0 be the
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geodesic. If we now parallel propagate a frame with the flat connection
we get a horizontal lift of infinite length.

We can however find a conformal factor ¢2° with ¢(t) such that e*“n
has vanishing Ricci tensor along the geodesic. Equation (4.4) implies
for a(t)

26 =2(6)* — (6)? @.5)
which has the general solution, for ¢(0) =0,
Loda . -2

For ¢> —1 o(t) is defined for 1 £ A< co and given by ¢ =1In(1+c)~ 2
For the metric e?°y the curve t(A)= A, x* =0 is still a geodesic whose
length is
0 o0 1
= [ eWdi= 2di= —— . 4.7
& _Ee _dl _[(/l+c) di H_c<oo 4.7
Hence we have constructed lifts of finite length. We also realise that for
c¢— —1 the length of the lifts tends to infinity. One also derives easily
from (4.6) that for c< — 1 the conformal fact ¢ is only defined for 1 £ A< 4,
and that the corresponding lifts have infinite length.

§ 5. Projective Boundary

Two torsionfree linear connections I', I are called projectively
equivalent if any geodesic of I" can be parametrised such that it becomes
a geodesic of I". An equivalence class & of projectively equivalent
connection is a projective structure. If I', I € 2, then in local coordinates
it holds [9]

I =T} +diby+ &b, (5.1)
where b, dx* is a 1-form. The relation (5.1) implies
B=B,— (8ib, + 6Lb) EX . (52)

Comparing this with (2.4) in the conformal case, we realize that way in
which the horizontal subspaces (in £ (#)) are related is quite similar.
One proceeds by defining 2! as in the conformal case and gets again a
horizontal subspace by the condition that the Ricci tensor vanishes.
Hence there is again a parallelisation on 2! and we get a projective
boundary of .Z*.

The sphere %4, with its natural projective structure, is the unique
space admitting the maximal group of projective motions. The projective
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imbedding of Minkowski space into &* shows that the projective
boundary of Minkowski space is &3, hence the same as projective
infinity defined by Eardley and Sachs [4, 5].

Appendix 1

Let 21(2) be the bundle with fibre #*. A point z € 21(#) is a frame
at u=m,(z) given by

(B;— Sk(b)EL),, bed*. (A1)

The group #* acts on 2! on the right: u— R, u, where R u is the frame
(ce %%
(B; — SH(b)ER), — (SO EL), = (B — Sklb+ O Ef),. (A1)

We defined an action of €0 on 2! in the following way. Any ae %0

defines a map R, : Z(M)— P (M). (R,), induces a map on the horizontal

subspaces which maps 2'(2) into itself. Denote this map by R, : 2! - 2.
It will now be proved that

R,°R,°R,R,=R,°R, (A1.3)

holds. This implies that 2* and the action of €0 via R, generate a
Lie-transformation group ¢ on 2!.

Clearly this action of the group is free, and the orbits are (z° z*) ™ * (x),
x€. /. The local triviality of 2*(#) and 2 () implies that 2! is a
principle bundle over .# with group 4. If we consider 2! as a bundle
over ./ we denote it by 2 (4).

Let us now prove (A 1.3).

Take any z,e€2' and choose a connection I' such that H, for
uo=m,(zo) defines z,. Then H,, is spanned by (B)),,, where B; are the
standard horizontal fields of I'. By the definition of R,, we get that

(A1.4)
is spanned by (B,),, .- From the definition of R, acting

A

Ra(ZO) = (Ra)*Hzo = H

uoa *

The subspace H,
on 2! one finds

oa

(R.°R,) (20) = (B)yya — Stilc,) (E)

To find the subspace defining (R, > R, R,) (z,) we apply (R,), and use
the transformation properties

(Ry)yB;=a;" "B, (R,),Ef=alEtq 1", (A1.6)

(AL5)

uga *

Hence we obtain

(R, o R.oR,) (20) = 4} *(B)oaw — Silc)a¥ Exa;™ 1. (A1)
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Finally we apply R... To do this we have to take into account that the
i-th vector in (A 1.7) does not project onto the i-th vector of the frame
ugaa'. This is however true for the vectors

(Bugaa — i Shi(c,) a¥ Eta; =17, (A1.8)
Applying R, we now get
(Re >Ry o R.°R,) (20) = (B))ypuw — i’ @ Sti(c)a;~ 1V EX
— SI(c)ES.

Using St(c)= 8tcy + 0k c; —nun'sc, and the fact that a¥ € €0, one finds
by a short calculation that (A 1.9) can be written as

(A19)

(ReoR, o R.2R,) (20) = (Bupaw —Shularic;+ c)EL.  (A1.10)
Comparing this expression with (A 1.5) we get
(Re°Ry°R.°R,) (20)=(Re°R,) (20) (At.11)

where

d'=ad, c=alc;+c,. (A1.12)
As a’, ¢" are independent of z,, (A1.11) holds for any z,, and (A1.11)
implies (A 1.3). We realise furthermore that ¢ is a semi-direct product
of €0 and #*, where €0 acts as a group of automorphisms on %#*.

Appendix 2

In Section 2a parallelisation Z;, Z,, A™ was defined on 2!. In this
appendix it will be shown how these fields transform under the action
of the group ¢ defined in Appendix 1.

Lemma 1. Let M, be the basis of €0 defined in § 2, (2.9). Let M, be
the corresponding vector field on P!, defined by the action of €0 on 2*.
Then it holds Z,= M,.

Proof. Let z, be any point in 2*(2). Then there exists g €% such
that: 1) the Ricci tensor vanishes at (7o n')(zo) =: x,, and 2) the cross-
section f:2—2! defined by the connection of g passes through z,.
This implies that the section f is tangent to the horizontal subspace H,
for all points projecting onto x° under 7~ 7',

The element M, € €0 generates a 1-parameter subgroup a(t) of € 0.
By the very definition of M, Ea it follows that E*a(uo), uy=mn'(zo) is
tangent of the curve R, u, at t=0 and M,(z,) is tangent to ﬁamzo at
t=0. R, 2o is contained in the Section f, is horizontal and projects
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onto R,,u,. This implies Z,= M,, using the definition of Z,. Knowing
that A*"', Za,=J\Za are the fundamental vector field tangent to the fibres
in 2() one has the following transformation property [8]:
If g is any element of ¢, and R, the corresponding transformation on
PL(M), then
(Rp),A™=(ad(g~ ) A™)*,

. . . (A2.1)
(Rp) M, =(ad(g™ ) M,)*,
where ad is the adjoint representation of ¢.
The transformation properties of Z; are given by
Lemma 2. Fora=(al)e¥%0, c=(c,) e R* we have
R).Zi=(a"YZ,,
( a)* (a )1 ko> . (A22)

(R)yZi=Zi+ PUOZy+ (= CiC+ 3 Mime, ) A™.

Proof. Choose a point z, € 2' and construct a section f as in the
beginning of the proof of Lemma 1. Then (Ra)*ZiiZO €T, .(P") is again
contained in the horizontal subspace H, .

Suppose

RsZileo= 0 Zu+ BiZ.)za- (A23)

Projecting onto £ we find
B,=oka]B,+ pE,, (A24)

and this implies of = (a~ )%, p2=0.
The vector (R,),, (Z,),, is not horizontal because it is contained in the
section R, < f in 22!, which is not defined by a metric connection. Suppose

(RO (Z)zy= A Zi+ BiZ.+ 11 A™ (A2:5)
Projecting onto £ we get
B, = o(B, — S}, () EN) + BIE,.
Hence . )
a=0f, Sifc)Ei=pE,. (A26)

Clearly f5f depends only on ¢, and not on z,.

It remains to show that y;, in (A 2.5) also depends only on c,.

Let us first calculate a cross-section & which passes through H, ..
Such a section is given by the connection of a metric e*°g such that the
Ricci tensor of e*?g vanishes at x, and &;(uo) = ¢, holds.

Then (Z;+ p{ Z,),,. is tangent to h and (R,), (Z,),, is tangent to R, f.

The two sections R, f, h define a map ¢ : 2 — #* by

(Rc Of) (u) = R(p(u) ° h(u) . (A 27)
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If u(t) is a curve in 2, (R, f) (u(t)), h(u(z)) the image curve in the sections,
then the tangent vectors are related by
(Reo f) (0) = h(u(0)) + @,u(ul0)) A™. (A238)
In the case we are considering ¢(u) is g*iven by u— —§,,(w) +c,.
Hence the tangent of the curve in #* is

d . .
. =7 (2O @@)=o 4" (A2.9)
Using
d . s

=7 (Z O @O)==i(0)5, (A2.10)

where G, is considered as function on 2, one finds easily, taking u(t)
to be tangent to B; 5 .

Yim= (= B0 )u = (=0 1 )us - (A2.11)

The conformal factor ¢ was determined by the condition &,(u,) = ¢, and
the vanishing of the Ricci tensor of e*°g. From this we find

(m)uo =CCi— % NyiCs c. (A 2. 12)
Therefore we get finally
Vin= _cicm—}'%nimcsCS (A213)
which completes the proof of the lemma.

We found that, applying R,, R, to the parallelisation, the new fields
are linear combinations of the old with coefficient constant on 2!, where
the coefficients depend on ¢, a. This implies as it was shown in [1] that
the map R is uniformly continuous with respect to the distance defined

by the metric in which the parallelisation is orthonormal. This is the
property we used in Section 2.

Appendix 3

In [14], Kuiper shows that the Einstein universe admits a 15-
parameter group of global conformal motions. A more geometrical
derivation of this result is given here.

Consider #”" as a vector space with a non degenerate scalar product

o= 5 wr- 3o (A3.)

Let O(p, q) be the orthogonal group which keeps g invariant. Let 4~ be
the submanifold of £" defined by
N = {(x% Y| Z(x*)? — Z(t%* =0, (x* t4)+ 0} . (A3.2)

The manifold 4" is the analog of the light cone of a Lorentz metric.
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Define an equivalence relation on #" by x'~X if x'= A%, A>0.
Then %"/~ , i.e. the space of directions, is diffecomorphic to "~ 1. (#"/ ~
is a double covering of the projective space 2" 1.)

Let 2 be the image of A" in #"/~ under the projection 7 : " — X"/ ~.
Since O(p, q) maps isotropic lines in 4" into isotropic lines we get an
action of O(p, q) on 2 by

A:=moAden™, Ae0(p,q). (A3.3)

Clearly A— A is an isomorphism 2.

The metric g on #£" induces a degenerate metric on .#". Let # be the
group of linear transformation x'—Ax’, 1>0. Then J# consists of
conformal transformations of g, whose restrictions to 4" are diffeo-
morphisms with 7o h=r.

It will now be shown that the degenerate metric induced by g on A~
defines a conformal structure on 2 of signature (p— 1, ¢ —1).

Let X be a tangent vector at a point € 2 and X,, Y, two tangent
vectors of A" atu, ve n:l(oc) projecting onto X. What is the relation
between g(X,, X,), g(¥,, Y,)?

As X, Y, project on the same vector under 7, there is h € & such that

h,X,=Y,+L (A3.4)

where L is tangent to the null generator of A" through v. Recalling that
is a conformal transformation for g we find

29X, X)=g(Y, V). (A3.5)

Hence a unique conformal structure is induced on 2, and this conformal
structure is invariant under the action of O(p, q) given by A, because 4
is an isometry of g.

Let us describe a metric in the conformal structure on 2 explicitely:
If we define r? = X(x%?, o%:= X(t*)?, the metric g can be written on a
part of Z" as
g=dr*+ P A2~ )~ do* —0*d3*q— 1) 7

where dX?(m) denotes the metric of an unit m-sphere &™. 4" is the sub-
manifold g% =r* >0 and the degenerate metric induced on A is

rAd2*(p—1)—d2*(g—1)). (A3.7)

(A3.6)

(0, r are always positive on 4"). The points »= const define a section
through .4/, hence the conformal structure on 2, which has the topology

2 Provided p=1,g=tandp+g=3.
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FP~Lx #171 can be represented by the metric dX2(p — 1) — dZ%(q — 1).
It is therefore conformally flat.

Finally let us consider the case p=4, g=2. Then 2= 93 x %" and
the conformal structure is given by the Lorentz metric

dz3(3) —dz2(1) (A3.8)

which admits @(4,2) as a global group of conformal transformations.
If we pass to the universal covering space of &> x ! together with the
induced metric and the induced transformations we get the Einstein
universe on which a covering group of 0(4, 2) acts.

Remark. 1f one uses 2"~ ! instead of #"/~ one also gets a conformal
structure invariant under O(p, q). In the case p=4, g=2, this is com-
pactified Minkowski space which also has the topology %3 x %!, and
the space 2 considered above is a double covering of compactified
Minkowski space.
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