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Abstract. Properties of the unitary operator implementing a general Bogoliubov
transformation on a system of fermions are examined. The nature of this operator (and that
of the transformed vacuum state) is exhibited for the case in which the operators appearing
in the "diagonal part of the transformation do not have an inverse. This case turns out
to be very different from either the case where the inverses exist or the case with Bogoliubov
transformations on systems of bosons. In particular, such transformations can be unitarily
implementable in the initial Fock-Hilbert space even though the new vacuum is orthogonal
to the initial vacuum. Particles are then created with certainty (i.e. probability 1) in the
initial vacuum state and even the new charge operator could be different from the initial one.

Introduction

In many problems where a quantized field is acted upon by an
external field, the differential equation of motion for the quantized field
operator valued distribution is linear and homogeneous. This is the case,
for example, when a Dirac electron-positron field, ψ(t, x), is modified
through minimal coupling with a classical electromagnetic field Λ(t, x)
according to

(- iy - d + m) ψ(t, x) = eγ A(t9 x) ψ(t, x).

In such problems, one is interested in knowing about the existence and
nature of the S-matrix or of the unitary time evolution operator at finite
times for the field operator variables or the one for the energy quanta
creation and annihilation operator variables. Thus one is led to examine
linear homogeneous relations, of the type described in Eq. (1.1) below1,
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1 We will study here explicitly theories with distinct particles and antiparticles. The
results for theories with only one kind of particle can be obtained in a similar fashion.
They will be mentioned at the end.
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between different creation and annihilation operators i.e. to examine
Bogoliubov transformations. (For more details on how exactly these
transformations come about in external field problems, see for example:
Part V of Friedrichs' book [1], Capri [2], Schroer, Seiler, and Swieca [3],
and Seiler [4].) Stated more precisely, one needs the answers to the
following questions: when is a Bogoliubov transformation unitarily
implementable in the Fock-Hilbert space determined by the action of the
untransformed creation operators on the untransformed vacuum? and
what is the nature (i.e. its expression in terms of untransformed operators
for example) of the unitary operator implementing such a transforma-
tion?

In the case of boson fields, the answers to these questions can be found
in the Sections 23, 24, 25 of the Part V of Friedrichs' book [1] and in
theorems proved in the articles by Shale [5] and Seiler [4]. The answer
to the first question is: there exists a unitary operator T, such that T1"
{all creation operators b\(ft} T= {all creation operators B\D^ which
are related to the b\ (ft according to Eq. (1.1)}, if and only if the operators
Λζ 's appearing in (1.1) are such that

(In particular, the condition ||M2||H.s. < oo is sufficient for the existence
of T) As for the unitary operator T, different forms for it are given by
Friedrichs. It is always such that the transformed vacuum state \φoy is

\φ0) = ηcxp- μadβbHa) (Mf1M2) (α, β) d

where |0> is the initial vacuum and η a finite normalization constant.
For theories with only one kind of particle, Eq. (1.1) is replaced by

JB(y) = Jdα Miίy, α) ft(α) + JdαM2(y, α) fe

and the necessary and sufficient condition for the existence of T is also
|| Mf1 M2||H.s. < °° The transformed vacuum is then

\φo> = ηexp- ldθLdu!tf{a) (M[x M2) (α, a!

For fermion fields, one remarks that it is usually not clear in the
literature on external field theory what conditions are necessary and
sufficient for the existence of a unitary operator implementing the
transformation. However, it was mentioned by Bongaarts [6] and
Seiler [4] that such conditions can be found in theorems by Shale and
Stinespring [7]. (We will explain these conditions below.) The lack of a
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precise result in the other treatments arises from the fact that it is possible
for the operators Mί and M$ appearing in (1.1) not to have an inverse
and this possibility has not been analyzed completely.

The fermion transformations, indeed, have the particularity that the
operators M1 and M% are not guaranteed, by only the relations (1.7) and
(1.9) below, to have an inverse. This was guaranted in the case of bosons
because a minus sign appeared in front of M2M} and M^Mξ in the
corresponding relations. Those transformations where M f 1 and (MJ)" 1

exist can be treated in a similar manner as in the boson case: this was
done by Friedrichs. He gave different forms for the corresponding unitary
operators and these are in fact of the same type as those for bosons.
The question of existence of the unitary operator in the general case was
completely settled by Shale and Stinespring, as mentioned already. The
result is: there exists a unitary operator T implementing a Bogoliubov
transformation [as (1.1) below] in the Fock-Hilbert space determined by
the untransformed operators and the untransformed vacuum if and only if
II^IIH.S. < 0 ° a n < l II-M3IIH.S. < 0 0 [M 2 and M3 being the operators
appearing in the off-diagonal part of (1.1).]

Our own contribution in the present note consists in giving explicit
expressions for the transformed vacuum state and for the unitary operator
implementing the transformation when M1 and M$ do not have an
inverse (these are the transformations which we refer to as "strong"
transformations).

The method used to find such expressions yields, at the same time, an
alternative proof (by construction) of the above-mentioned result con-
cerning the existence conditions. We will proceed as follows.

We first explain the notation which we will use; it is essentially the
one used in the external field problem where the Fermi particles and
antiparticles are different. The transformation (1.1) will be considered
to be a general transformation of the type encountered in such problems.

We then prove that the conditions | |M 2 | |H.S. <oo and | | M 3 | | H S > < 00
are necessary for the existence, in the initial Fock-Hilbert space, of a
vacuum state annihilated by all the transformed annihilation operators.
The existence of such a state is certainly necessary for the two sets of
creation and annihilation operators (transformed and untransformed)
to be unitarily related. The above conditions on M2 and M3 are therefore
necessary conditions for the unitarity implementability of the Bogoliubov
transformation (1.1).

Supposing that these conditions are satisfied, we then decompose the
general transformation in a product of simpler transformations. The
properties of the unitary operator, in the general case, are thus made
evident. It will be constructed easily with the help of the results given
by Friedrichs for the case of "weak" transformations.
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1. Definition

We consider transformations of the type

B(γ) = JdαM^y, α) b(a) + SdβM2{y, β) d\β)

DHλ) = $docM3(λ, α) b(α) + $dβM4(λ, β) d\β)

where the four infinite sets of indices {α}, {/?}, {y}, and {λ} are not
necessarily the same and each one can be discrete or continuous or have
both continuous and discrete elements. Integrals, like

Jdα, mean Jdα + £
(over continuous α's) α

(over discrete α's)

In Eq. (1.1), b(oc) and d*(β) are operators such that with their adjoints
they satisfy the anticommutation relations

{fc(α), tf(ot)} = δ^ {d(β\ d\β')} = δββ. (1.2)

with all other anticommutators vanishing. It is understood that for
continuous values of the indices, these are operator-valued distribu-
tions i.e. they are well defined operators only when smeared with a
square integrable function of the index.

They are defined on the Hubert space Jf consisting of states

\Ψ>= Σ Σ γ^ίd^dβmyfm(an;βJK;βmy (1.3)

such that

<Ψ\Ψ>= Σ Σ ld*ndβm\ψ">»(zn;βj2<oo (1.4)
11=0 m=0

and where by definition

K',βm> = l^ i , cc2,...9otn;βl9β2, . , β m >

and the vacuum state |0> is such that

b((ή\0) = 0^a d(β)\O} = O-^β. (1.6)

We will use the notation

α \
-y-l = ( α 1 , α 2 , . . . , α ι _ 1 , α ί + 1 , . . . , α n ) .
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The anticommutation relations of the operators B, D will be of the
same type as for the operators b, d when the following relations hold
between the M,'s:

J 8 ) = 5 y / (1.7 a)

α) Mξ(λ\ α) + \dβM^ β) M*(λf

9 β) = δλλ, (1.7b)

y, α) M*(Λ, α) + jdβM2(y, β) M*(Λ, β) = 0. (1.7c)

By demanding that the transformation (1.1) had an inverse and using
the relations (1.7) together with the similar relations for the inverse
transformation, we can see that the inverse is the adjoint of the trans-
formation (1.1), i.e.

y, α) B(y) + \dλM*{λ, α) D\λ)

d\β) = \dyM*{y, β) B(y) + \dλM*(A, β) D\λ)
with

I y , α) Mf (y, α') + jdλM3(λ, α) M*μ, α') = <Sαα, (1.9a)

, β') = δββ, (1.9 b)

) = 0. (1.9c)
It is easily seen that the requirements (1.7) and (1.9) are meaningful

if and only if the Λ^ 's are all integral kernels of transformations of square
integrable functions of the indices into other square integrable functions.
This is also sufficient for the B,B\D,D^ to be well defined operator
valued distributions on all Jtf.

2. Necessary Conditions for Existence of a New Vacuum

We want to examine under what conditions a state \φo}EJ^ will
exist such that

{y)\Φo> y and D(λ)\φo} = 0^-λ. (2.1)
Writing

^ (2-2)

and using B(y) as given in Eq. (1.1), we obtain that the following relations
between the ψnm's must exist in order for B(y) \φ0} to be null.

1 m . .
J j IV/> j) Ψ V «? rm) I / Z-( V ' 2\n Vi)

V ί = 1 (2.3)
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for n = 1,2,..., m = 1, 2,..., a} being any one of the απ and

jdα 7 .M 1(7 ?α 7 .)φ" 0(απ;-) = 0 for n = l , 2 , . .

Similarly, D(Λ,)|0O> = 0 leads to

1
Σ

,.n— 1 m— 1

(2.4)

(2.5)

for w = 1, 2,..., m = 1,2,..., βj being any one of the βm and

( - ; / J J = 0 for m = l , 2 , . . . . (2.6)

We can find immediately a necessary condition for the Eqs. (2.3) and
(2.5) to have square integrable solutions \pnm. [Square integrability of
ψnm for each n and m being required by relation (1.4).]

From the Eq. (1.9), we have

(2.7)

(2.8)jdy\jdβM2(y,β)ψ(β)\2S$dβ\ψ(β)\2 .

Eq. (2.7) implies that ψnm can be square integrable only if the right hand
side of (2.3) is square integrable, i.e. we need

J ι
<OO .

This is

1 da.

mn j
\M2(y,βi)\2

i=ί

ψ
, / ι - l m - l

Σ
i * /'

J n

and supposing that i/;""1 '""1 was non-zero and square integrable;
because of Eq. (2.8), the second integral above is finite so that in fact we
need the first term to be finite, i.e.

μ7dβ\M2(γ,β)\2<oo. (2.9)
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Repeating the same argument with Eq. (2.5), we can see that we need also

$dλda\M3(λ,(x)\2<oo. (2.10)

3. Properties of the Operators Mi

Let us now suppose that the necessary conditions found in the
preceding section are satisfied. We will examine some of the properties
of the operators Mt.

i) The kernel (Mξ M3) = \dλM%(λ, oί) M3(λ, α) is a non-null hermitian
L2 kernel. It therefore has a spectral decomposition

3-(M*M3) («',«) = £ - 3 - X3M) *n

3(«)* (3.1)
11=1 Λn

where (Λ*, Xn

3) is the characteristic system defined by

\da(Mf M3) (a', α) * » = -L X? («'). (3.2)
/ln

The Eq. (1.9a) implies ί/Λ3

n = ί-WM^^f and Eq. (3.2): ί/Λξ
= | |M3XW

3 | |2 so that 0 ^ 1/Λ^ l. Since

00 / 1 \2

\dada'\(M*M3)(a\oc)\2= X - ^ <oo
n = l \ Λn I

and since each characteristic value in this sequence is included a number
of times equal to its rank, there is necessarily only a finite number of
different Xn

3's corresponding to a same given Λ%. In particular, we shall
call JV the number of eigenfunctions with eigenvalue 1. We will choose
the labels of the basis {X3} such that these correspond to n = 1,2,..., N.
From (1.9 a) it is easy to see that also

< for n= 1,2, ...,iV. (3.3)

ii) Similarly

(M3*M3)(A',A)= f -Jj-W)*-^)* (3-4)
Λn = 1

and there is a finite number of A\ which are equal to 1. By (1.7 b), XX(X)
is such that

jdλ(M* M3) (λr, λ) X\λ) = X\λ) (3.5)

if and only if

jdλM4(λ, β) X\λ) = O^β. (3.6)
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We shall now show that there are N such functions. We do this by
showing that such functions can be obtained from the X*, n = 1, 2,..., N
and vice versa.

For each one of the Xw

3(α), n = 1, 2,..., ΛΓ, the function

is easily seen to be non-zero. Such functions are orthogonal to each
other; this follows from (3.2) where A\ = 1 and the orthogonality of the
Jζf's. Each such function, because of (1.9 c) is such that

jdλM4(λ, β) [f dαAίJίA, α) X » * ] = - JdyM2(y, β) [JrfαMf (y,α) X » * ]

and this is null by Eq. (3.3). For each Xπ

3(α), n= 1,2, ...,iV, there is
then a

# (λ) = ίjdaM3(λ, α) X«3(α)]* (3.7)

such that this satisfies (3.6) or equivalently (3.5).
In turn the functions Xπ

3(α), n=ί,2,...,N are related to X*,
n = l , 2 , . . . , N as:

A, α) X M W . (3.8)

iii) We shall need also the spectral decomposition of

(M2 Mξ) (β\ β) = \dy M2(γ, β') Mξ(v, β)

which is

(M2M$)(β',β)- £
n= 1

with 0 ^ ί/A2 ^ 1 and we call M ( <
which correspond to A2 = 1. We have

j dβM*(λ,β)XHβ) = 0^.

We also have

(M2Mf)(y',γ)= Y

1 v2ίRι )χm

oo) the number c
for these, from(l

λ for n

^ γ4/

= 1,2,.

')Xn(yY

(3.9)

rf orthogonal
,9 b):

..,N. (3,

(3.

A?

.10)

11)

where the first M X,f's correspond to A* = 1 and they satisfy

jrfyMf(y,α)jς4(y) = θΛ-α for π = 1, 2,..., M . (3.12)

They are related to the X2's n = 1,2,..., M according to:

n=i,29...,M (3.13)
n(y)

and

\ ) X ^ y ) γ n=t,2,...9M. (3.14)
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4. The Unitary Operator

i) In order to see more clearly what happens in the transformation
(1.1), we decompose it in a product of simpler transformations. We shall
consider here the effect of the transformation on the following smeared
creation and annihilation operators:

bn = JdaX>)*&(a) d\ = $dβXn

2(β) dHβ)

We recall that the functions X^(λ\ X2(β), X?{<ή, Jζf(y) form bases in
L2(λ), L2(β), L2(α), L2(y) respectively. Clearly, a complete description of
the transformation can be obtained by examining its effect on the
operators bn,dn,Bn, Dn for all values of the index n labelling the elements
of any arbitrary bases in L2(λ\ L2(β), L2(α), L2(y). In particular, it is
obvious that \φ0} is such that

B(y)\φo) = 0^y and

if and only if

and

when n labels bases in L2(y) and L2(λ).
The inverse relations to (4.1) are

00

b(a)= Σ X?(u)K
« = i « = i ( 4 2 )

β(y)= Σ x"
n= 1 n = 1

Because of the properties of the functions X^ which we have described
in Section 3), one can see that the Bogoliubov transformation (1.1) is in
fact:

Bn = dl for n = l , 2 , . . . ,M Dί = b« for n=l,2, . . . ,JV (4.3)

00

f 4 4^

nt _ V ί/yi M Y3 ) h -i-ίY1 MY2 Wt 1

n= 1

for w'= 1,2,..., oo .

The Eq. (4.4) itself is a Bogoliubov transformation between the two
sets of operators bn = bN+n, dn = dM+n n= 1,2,..., oo, and Bn = BM+n,
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Dn = DN+n n=ί,2, ...,oo. The kernels M1(n\ή) = (X^[+n/,M1X^+n) and
MA(n\nY = (Xlί+n, M2X^+n) do not have any non-zero homogeneous
solutions associated with them as is easily deduced from the properties
of the X"s. (4.4) is therefore a "weak" Bogoliubov transformation.

ii) Let us now look more particularly at "weak" Bogoliubov trans-
formations. We recall that the unitary operators implementing such trans-
formations are known (for the form used below, see Section 24 of the
Part V of Friedrichs' book [1]). They can be written, for example, as

b*Fld* (4.5)

where expressions like e~b Fld stand for

expl- £ Σ K>FM
{ n ' = l n = l

and η = exp 1/2 (Trace F2 + Trace F3) has finite norm.
The Ff's are given by

(^-J?2)(n,m) = M1(n,m)
(4.6)

(e-F*)(n,m)=lM4(n,m)r;

F^n, m) is the solution of

f M1(n\n)Fί(n,m)=-M2(n',n)
n= 1

and F4(n,m) of

£ M^ri, n) F4(m, ή) = - M3(m, n). (4.7)
n'=l

iii) In the case of the general transformation (4.3), (4.4), we can then
define a unitary operator To such that

•* 0 ^N + n M) ~ **M + n

t -v^i=l,2,. . . ,oo (4.8)

and
nb.T^b, for i = l , 2 , . . . , N ,

T j ^ T o ^ ^ for f = l , 2 , . . . , M .

That is: To implements the "weak" Bogoliubov transformation (4.4)
so that it exists as we saw in the previous section. It does not contain the
operator variables not entering in (4.4) because of the requirement (4.9).
It can be written in the form (4.5) for example, where the operators (b, d)
are bn, dn; n = 1,2,... and the AίJ's are the Λζ 's.
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It is easy to check that the unitary operator

U = jexp - i(M + N) π £ [ftj bn + ά\ d j J (<& - dM)...

{4Λ0)
... ( 4 - d2) (4 - dx) Π - bN) (bl - b2) (b\ - bj

commutes with bN+n and dM+n for n= 1,2,..., oo and

WbiU = Di for ί=l,2,. . . , iV, UήfdiU = Bί for i = 1,2,..., M. (4.11)

The unitary operator

T = T 0 [ / = I 7 T 0

will then transform the creation and annihilation operators as

dnT = Bn n=l,2,...,M TUnT = Dn n = M+ 1,..., oo .

The vacuum |φo> (i.e. the new zero particle state) is then simply

4... 4 73 |o> i

— e x p
ΊO n' =

where Ff(n, m) is the unique solution of

£ (Λί,M1AB

3)F1>,m)=-(A?,M2A2)
n = N + l

•ΛΛW' = M + l , M + 2, ...,oo and m = M+ 1,M + 2, ...,oo

and ^ 0 is the finite normalization constant corresponding to ̂  in Eq. (4.5).

5. Conclusion

We examine what it would mean if such "strong" Bogoliubov trans-
formations happened in the description of dynamical systems.

Let us consider a quantum mechanical system where operators
b, b\ d, df are associated with particles at some time tγ (which could be
finite or — oo) and B, B\ D, D f are associated with the same particles at a
later time t2 (finite or + oo); this, according to an equation of motion
like (1.1) in the Heisenberg representation. We suppose that the Bogo-
liubov transformation is a "strong" transformation and is unitarily
implementable.

i) The vacuum at time t2 is orthogonal to the vacuum at time tγ.
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This obviously would "complicate" a calculation of \0}t2(=\φ0})
through a perturbation series (in powers of the coupling constant for
example) which would start from 10)^ (= |0». The same remark evidently
holds about a calculation of the unitary operator implementing the
Bogoliubov transformation (which is a time evolution operator U(t, t')
or the iS-matrix if ^ is — oo and ί2 is +00) through a series starting with /.

ii) There are states of the system in which particles and antiparticles
will be created with probability 1.

If the system is in the state |0>ίl? there are no particles present initially.
To see what this state represents at time ί2, we observe that the state
with zero particles at this time is |0>ί2. The state T0|0>ί2 is one in which
there is a non-zero probability of finding pairs of particles and anti-
particles created by B]d+n and D\ί + n n= 1,2,..., 00. The state |0>(1,
which is

|0X, = T|0>(2 = Bl...B\B\Dl...D\ To|0>ί2,

is then a state in which M particles and N antiparticles have been created
and in which there is a non-zero probability of finding also pairs of
particles and antiparticles.

If, on the other hand, the system is in the state |0>ί2;

initially there are N particles and M antiparticles plus possibly some
particle-antiparticle pairs. After the interaction, there are no particles
present.

iii) If the particles and antiparticles are assigned a different charge, the
total charge is not conserved unless N = M.

The charge operator at the different times is:

Λ n = ί

and
Q(t2) = eΣ {BlBH-DlDH}.

n= 1

By examining the action of these operators on any one of the two Fock
bases (obtained by the action of b\ df on |0>tl or of # f , Df on |0>ί2), one
can see that they are related as

It is easy to see that the results obtained apply also to the case of one
operator variable transformations like

B(γ) = idaM.iy, a) 6(α) + JdαM2(y, α) b\a).



On the Nature of "Strong" Bogoliubov Transformations for Fermions 71

In terms of smeared operators defined similarly as in the case discussed

here, this transformation reduces to

Bn = bl n = l , 2 , . . . , M

and an ordinary Bogoliubov transformation between the other BM+n's

and bM+n's. The unitary operator relating then has the form T=T0U

where To is the usual one for the "weak" transformation and

U = jexp - iMπ £ b\ b\ (fcj, - bM)... (b\ - b2) (b\ - bx).
I n=X J

It is to be remarked that for a Bogoliubov transformation on a system

of bosons or for a "weak" transformation with fermions, N and M above

are always null. What we have described in i), ii), and iii) would then

never happen in these cases.

We finally note that Akhiezer and Berestetsky have indicated (in

the discussion at the end of Section § 17 of their book [8]) that external

electromagnetic field theory could predict creation (or annihilation) of

single electrons or positrons. This would happen when one does not

restrict appropriately the strength of the potential which he switches on.

F o r strong potentials, what gives rise to this is that some positive

(negative) energy wave functions are transformed completely by the

o n u m b e r evolution operator into negative (positive) energy wave func-

tions. This can be prevented by demanding a condit ion like \(ψ,ey°yΛψ)\

< (φ, \γ°(iγ d + m)\ ψ)jv-ψ for example. (This is the condition which leads

to Z ^ 87 for the C o u l o m b potential Ze/r; this is discussed in the Chap-

ters V and VI of Kato ' s book [9].)

It would be interesting to examine other existing external field

theories to see how a similar "weakness" condition comes in.
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