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Abstract. The generating functional of the cyclic representation of the canonical
commutation relations for the equilibrium state of the free Boson gas is calculated, using
a method due to Kac, as the thermodynamic limit of the grand canonical generating
functional. The relation to the work of Araki and Woods is discussed.

§ 1. Introduction

We compute the generating functional of the cyclic representation
of the canonical commutation relations corresponding to the equilibrium
state of the free Boson gas. We use a method suggested by Kac [1] in his
rigorous derivation of the London-Placzek formula for the pair distribu-
tion function, to obtain the thermodynamic limit of the grand canonical
ensemble. This method enables us to treat a range of boundary con-
ditions and to display their effect on the generating functional.

In § 2 we review the results about representations of the CCR which
we shall require, and in § 3 we describe the procedure for passing to the
thermodynamic limit and state as Theorem 1 our main result which
describes the limiting form of the generating functional. A special case
of our result has been announced by Weiringa [2]. As a step towards the
proof of Theorem 1 we need to establish the existence of condensation;
the essential result is stated as Theorem 2. In § 4 we sketch some applica-
tions of these results before proving them in § 5. We discuss the relation
with the work of Araki and Woods [3] in § 6 where we construct the
cyclic representation of the CCRs corresponding to the generating
functional described in Theorem 1, and discuss some of its properties.

We are deeply indebted to Professor M. Kac for showing us his derivation of the
London-Placzek formula before publication. We are grateful to Dr. E. B. Davies for many
stimulating discussions.
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§ 2. Representations of the CCR

Let M be a complex pre-Hilbert space with inner product < v >
A representation of the CCR over M on a Hubert space Jf is a map
h^W(h) of M into the group ^ ( J f ) of unitary operators on jf satis-
fying

W(hx) W(h2) = ω{hl9 h2) W{h, + h2)
where

and such that for each heM the map λ\->W(λh) of 1R into °ll(#e) is
strongly continuous. The continuity condition ensures, via Stone's
theorem, the existence of self-adjoint operators R(h) such that

and the map h\->R(h) is real-linear. Using the R(h) we construct annihila-
tion and creation operators

ψ*(h) = 2-1/2{R(h)-iR(ίh)} .

To each cyclic representation {W, Jf, Ω} of the CCR with cyclic vector
Ω there corresponds a generating functional μ:M-+<£ given by

μ(h)=<kΩ, W(h)Ω>.

It has shown by Araki [12] and Segal [13] that a functional μ : M - » C
is the generating functional of a cyclic representation of the CCR if and
only if it satisfies the following conditions:

(ii) for each heM the map λ\-»μ(λh) is continuous,
(iii) for each finite set of complex numbers cl9...9cn and elements

hi9...,hnoϊM

Let si be a positive quadratic form defined on a domain Ά(sί) which
is dense in a Hilbert-space Jf. It follows from the above result that the
functional

μ(h) = μF(h) exp { - \ s/fa, h2)} (2.1)

defined on Ά(si) is the generating functional of a cyclic representation
of the CCR, where
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is the generating functional of the Fock-Cook representation
It is straightforward to verify that for such μ we have

(2.2)

, h2) + Λ/(Λ4, h,) jtf(h3, h2),

where we write <C> for <Ω, CΩ} where Ω is the cyclic vector of the
representation determined by μ.

We have not assumed that the quadratic form si is closable, but when
si is closed we can say more. In this case there exists a positive operator
A whose domain 3)(A) coincides with Ά(si) on which

s/(hl9h2)=<Ahl9Ah2y.
Putting

T={i + 2Aψ2

we have
2){T) = 9{A)

and
μ(λ) = exp{-i | |ΓΛ| | 2}.

Chaiken [4] has considered generating functionals of this form following
the construction introduced by Araki and Woods [3]. Let Ji be the
closure of the range of A and let J be a conjugation of Jf which commutes
with A. Then define W(h) on f(^)®f(Ji) by

W(h)= WF{{\ + A2Yl2h)® WF(AJh) (2.4)

where /(Jίf), #{Jί) are the Fock spaces over Jf and Jί respectively.
Then <Ω,^(/i)Ω> = exp{-i||Γ/z||2} for he@(T)9 where Ω=ΩF(S)ΩF

is cyclic for W. This representation is a factor, it is irreducible if and only
if A = 0. It is unitarily equivalent to a direct sum of Fock-Cook representa-
tions if and only if A is Hilbert-Schmidt.

A generating functional determines a state of the C*-algebra of the
CCR (see Manuceau [5]); those determined by generating functionals
of the form (2.1) are quasi-free (Manuceau and Verbeure [6]) and in-
variant under the gauge transformations h\->elΆh.

§ 3. The Thermodynamic Limit of the Grand Canonical State

Let A1 be a bounded region in 1R3 having unit volume, and which is
star-shaped with respect to some interior point which we choose as
origin. We shall require the boundary dA1 to satisfy a regularity con-
dition (see § 5). For each L > 0 let AL be the region

AL={xE]R3:L~ίxeA1}
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and put JίTL = L2(ΛL). Then ΛLQΛL' and J^LgJίTU9 whenever L^E.
Take HL to be the self-adjoint operator on JfL determined by — \ A in

ΛL and the boundary condition — h aφ = 0 on dΛL where -^— is the
on dn

directional derivative in the direction of the outward normal n to dΛL.
Let JVL be the number operator on the Fock space </pfL) and let H[
be the operator on β{2tfj) induced by HL on jfL. For each L we consider
the grand canonical density operator

q t = e x P ί - β(Ή - / ^ I / t r a c e [exp {- β(H[ - μNL)U

on /(JfL). Using standard results about Fock space we can show that
the generating functional

μL

βJh) = trace [_tf,zWF{h)~\

defined for h e JfL is given by

μLβ,M = μF(h) exp {- \ s/jfjh, h)}

where
^z(Kh)=(Kz(eβH--z)-1h} (3.1)

where β= 1/kT is the inverse temperature and z=eβμ is the fugacity.
We wish to determine the limit as L-> oo of stf^z when the mean density
ρ is held fixed.

Let {φfy be an orthonormal set of eigenvectors of HL corresponding
to the eigenvalues E\ which are assumed ordered so that ^^E\<E\
<,E\ ^ then {φ\} is a basis for 2tfL and φ\ is given in terms of
Φk = Φlby

φϊ(x) = L-*'2φk(L-1x), (3.2)
and

Ei = lΓ2Ek. (3.3)

The number operator NL is given by

NL= Σ Ψ*(ΦΪ)Ψ(ΦΪ)
k=l

and the number of particles in the kth level is given by the operator

Using (2.2) and (3.1) we have
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and

We require <iVL> to have the value QL? where ρ"is the mean density.
This determines z as a function of L through the constraint

'-irZ-?Ήϋ- (3-4)

Our objective is to find

μβte(h)= \im μL

βiZ{L)(h)
L-* oo

for h in some dense subset of L2(1R3). It is sufficient to determine

s/βj{h,h)= lim J * £ I ( L ) ( M ) ,
L—*• oo

then
t 5(λ, h)}.

We interpret μβfg(h) as the generating functional for a representation
of the CCR for an infinite free Boson gas with mean density ρ. Let ga

be the function defined on the interval [0,1] by

00 zn

« = i n

and let ρc be the critical density defined by

Let ® be the space of C0 0 functions on R 3 having compact support.

Theorem 1. The quadratic form s0βiQ is given on 3) by

ρ<ρc,

+ <hJίh>, ρ ^ ρ c ?

where ζ is the unique root of the equation

ρ = (2πβΓ3>2g3/2(ζ)

and
(fzh)(x)= UMx-y\\)h{y)dy (3.6)

. , 1R3

with
312 Σ e-*™^.. (3.7)

n

A necessary preliminary to the proof of this theorem is the determina-
tion of the asymptotic behaviour of the solution z(L) of the mean density
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Eq. (3.4) for large values of L, or of the solution ζ(L) of the transformed
equation

where
C(L) = z(L)exp(-j8£ί), Ά

L

k=E\-E\,
so that

Since <M£> must be positive and finite for all k we require Org£(L)< 1.
The properties of ζ(L) are given by the following:

\ ζί]Λ
Theorem 2. For ρ< ρc, —j- - — — — ->0 and ζ(L)-^ζ where ζ is the

L 1 — ς(^)
root of the equation

1 ζ(L)

ί-ζ(L)
- ρc and

§ 4. Applications

(i) Macroscopic occupation of the ground state.
From Theorem 2 we see that L~3<n^>, the density of particles in the

ground state, satisfies

- • 0 , Q<ρc>

L~3ζ(L)
while L~ 3 <^> = —ηr-z—-~— -^0 for all values of ρ when k> 1 since

η^ = (Ek — E1)/L2. Thus we have proved that condensation into the
ground state occurs when the mean density ρ exceeds ρc.

(ii) Off-diagonal long-range order.
Applying (2.1) to the generating functional μβ> 5 we have <φ*(^i) ψ(n2)}

= &tβ>-Q{h2, hi). Let <φ*(x) ψ(y)} denote the kernel of the quadratic form
Λ A ) so that

j ψ(h2)} = J Λ^x) <φ*(x) V(y)> Λ2(y) rfx dy.
IR3xIR3



Free Boson Gas

Then using (3.5) we have

From the definition (3.7) of fz we see that as ||x — j ; | | -»oo

-Qc)\Φ i(0)\\ Q^Qo

which is the behaviour characterizing condensation, according to Penrose
and Onsager [7]. However the limiting value of <φ*(x) ψ(y)} above the
critical density depends on the boundary conditions through the value
of the ground-state wave-function at the origin. In the circumstances
described in this paper φ^O) is never zero but this happens in the case
of the gas in a rotating container; then there is macroscopic occupation
of the ground state but no off-diagonal long-range order.

(iii) The two-particle reduced density matrix
Kac [1] has given a rigorous proof of the London-Placzek formula

for the pair distribution function. For this he requires the two-particle
reduced density matrix.

This can be read off from (2.3) and (3.5):

<Ψ*(χ1)ψ*(χ2)ψ(yi)ψ(y2)>

§ 5. Proof of the Theorems

First we sketch a proof of the theorems and state the estimates which
are required to clinch matters. The main idea is due to Kac [1]. The
Green's function for the heat equation in Λ1 is given by

G(x,y;t)= Σ

For small t "the effect of the boundary is not felt" (see Kac [1]) and we
expect

(5.1)
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Putting x = y and integrating over A1 we get

since the volume of A1 is one. Using the explicit dependence of E^ and
φl on L and interchanging the order of summation we have

where

SL(s) = L~3 £ £>-"£= e^ί* IT 3

k=ί

for large L, so that

Now g3 / 2 is continuous on [0,1] and increases monotonically to a
maximum 2.612... at f = 1. For ρ < ρ c there is a unique ζ satisfying

For ρ ^ ρc w^ have to go back to the series (3.8). The first term dominates
as z(L) gets close to eβE^ and so we remove it and define

k = 2

and prove

Lemma 1. Let fL(ζ)= £ ζnS'L(nβ). Then fL(ζ)^(2πβΓ3l2g3/2(ζ)
n=ί

uniformly in [0, 1] so that if

HmC(L)=£oe[0,l]
then

Using this we are able to prove Theorem 2.
To prove Theorem 1 we define

Σ
k = 2

and
TL(s)=KφL

l9hy\2+TL(s),
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for h in the Schwartz space Q) and L>Lo where Lo is chosen so that the
support of h is contained in ΛL°. Putting

K(s)= f W)h(y)exp{-\\x-y\\2/2s}dxdy
IR 3 xIR 3

we use (5.1) to prove

Lemma 2. Suppose that lim ζ(L)=ζ0 e [0,1].
L->oo

00 00

lim Σζ(L)nT[(nβ) = (2πβΓ3/2 Σ
L - > 0 ° n = ί n = l

In proving the lemmas we need the following estimates. Let Gc(x, y; t)
= G(x, y ή- (2πί)~ 3 / 2 exp{ - ||x - y|| 2/2ί} where G(x, y;ί)is the Green's
function for the heat equation

^ = - ± A ψ in Λ1 (5.2)

subject to the boundary condition

dip

dn
= O on dΛ1.

Then, provided the boundary is sufficiently regular, for each Γ < o o
there exists a constant c(T) such that

)

μχp{-l2

y/2t} (5.3)

for all t < Γ, where /y is the minimum distance of y from dΛ1. Furthermore
there exist constants a and b such that for k sufficiently large

Ek>bk112 (5.4)
and for all

xeA\ \φk(x)\SaEk. (5.5)

These can be extracted from Arima [8] and Mizohata and Arima [9].
See also Pule [11].

We first prove the Lemmas. We prove the harder of the two, Lemma 2,
and indicate how the proof can be modified to prove Lemma 1.

Proof of Lemma 2. We first prove that for each T < oo there exists a
constant c(T) such that for all n < TL2/β we have

(5.6)

Using the estimates (5.4, 5) we have for k sufficiently large
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so that

is absolutely and uniformly convergent for x, y in ΛL. Define K : J f L

by

(Kg)(x)= J GL(x,y;

Then

ί £

(5.7)

since the uniform convergence allows us to integrate term by term,
and so GL is the Green's function of the heat Eq. (5.2).

Using the estimate (4.3), for GL

C defined by

(5.8)

we have

L ' L' L2

c(T)

{nβ)3/2

where

δ= inf d(y/L,dΛ')= inf d(y,dΛ/) = d(ΛLo/L,dΛf).
yeΛLo yeΛLo/L

Choosing L^ 2L 0, δ ^ d(Λί/2, dΛ1) > 0, so that

Using uniformity of convergence in x and y of (4.9) we have

= e"βEi/L2K(nβ) + enβEίlL21 h(x) h(y) G^(x, y; nβ) dx dy

so that

\TL(nβ) - K(nβ)\ ^ \K(nβ)\ (e"βE>>L2 - 1) + n

For n

and hence

/ 2 e T E i c \ T )

I nβE \ 1 / 4 e T E l - i
have e"^IL1 - 1 ^ [^L\ τ i μ and

\K(nβ)\ί(2πβnΓ3l2\h(0)\2,
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To prove the Lemma it is enough to prove that given ε > 0 there exists
L such that for all L > L

D OO

A ϊ = l « = 1

00

since by uniform convergence Σ CnK(nβ) is continuous on [0,1]. Since,
n=l

as a function of n, rc5/4 exp( — βnE/L2) is monotonic decreasing for
nβEL"2 > 51A we have n5/4Ti(nβ) is non-increasing for βnη2L'2 > 5/4.
Put T= 5/Aη2~

1 + 1 in (5.6), and let N = N(L) be the largest integer not
greater than ( Γ - ί)L2/β, then for n < N(L) + 1 the results (5.6) holds and

N(L)+ί>(T-ί)L2/β =
5I2

Aβη2

so that n5 / 4 T[(nβ) is non-increasing for all n > N(L). Now

X ζ"T[(nβ)- £ ζ"K(nβ)
n=ί

IΠ

N(L)

K(nβ)+ Σ\TL(nβ)-K(nβ)\.= Σ TL(nβ)+
n = N(L)+ί

But φiix) is continuous at x = 0, being an eigenfunction of an elliptic
operator, so that

J h(x)dx=φ1(O)h(O). (5.9)
3

Thus there is a constant D(h) such that \{φ\,K)\2<D(h)L~3 for L
sufficiently large to that

Now

c"(T)

βL

(Γ-l)D(fc)

\hφ)\2 g5lΛi) (2πβ 312
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Similarly II can be made arbitrarily small by choosing L sufficiently
large, and the proof of Lemma 2 is complete.

The proof of Lemma 1 is similar, with the estimate (5.6) replaced by

\SL(nβ)-(2πnβy3/2\^n-5/4L-ί/2c2(T) for n<TL2/β,

which is proved as follows:
From (5.3) we have that for each T<oo there exists c(T) < oo such that

^ - f e'ιll2tdx

ΊT) X

^ r r \ x for some X<oo
* b

c'(τ) u-^di < cΛT)

Using the uniformity of the convergence of (5.7) and (5.8) we have

Σ 2 J GL(x,x;nβ)dx
k = l A1-

= (2πnβ)-3l2enβEιlL2 + L

Thus

\SL(nβ)- (2πnβ)-3/2\ ^(2πnβ)'312

J \(jί(XjX;n

Gl\x,x; dx

Proof of Theorem 2. For ζ(L) e [0, 1)

Σ e 4 ( ί(L) = Σ τ
The terms on the right hand side are positive and the series on the left
hand side converges because of the estimate (5.4), so we may interchange
the order of summation and get
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and we have

Γ~3 ΠΓ)
i-ζ(L) +f^L)) = Q (5 1 0 )

which implies that fL{ζ{L)) < ρ.
Now consider case (a): ρ<ρc. Then there exists an ε > 0 such that

ρ + ε<ρc and by Lemma 1 there is an Lo such that for all L>L0

Let ζε be the unique root of (2πβy3/2g3/2(ζε) = ρ-\- ε. Then since g3/2

is monotonic increasing

and
ΠT)ι

<K =

Then L~3ζ(L) (i - ζiL))-1 <IT3K^>0 as L->oo. We wish to prove that
Hm C(L)=C where ρ = (2πβΓ3>2 g3,2(Q. But \g3,2{ζ(L))-g3l2(Q\

= 103/2(0)1 \ζ(L) - ζ\ for some θ e [0,1) and g'3/2(θ) S 1 so that

\ζ(L)-ζ\ £ (2πβ)312 \(2πβΓ3l2g3/2(ζ(L))-ρ\

S(2πβ)3<2 {\fL(ζ(L))-Q\ + \fL(ζ(L))-(2nβ-3'2g3l2(ζ(L))\}

ζ(2πβ)3/2(L-3K + ε).

Case (b): ρ~^ρc.

Given ε > 0 choose δ such that

2δ<ρc-(2πβΓ3/2g3l2(i-ε).

Then there exists an Lo such that for all L> Lo

l - ( l - ε )
and

fL(ί-ε)<(2πβΓ3l2g3l2(ί-ε) + δ,

so that

l - ( l - ε )

Thus
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L~3z
But zh> — h fL(z) is monotonic increasing, so that

1 — z

l > C ( L ) > l - ε for all L > L 0 ,
and so

But

so by Lemma 2

Proof of Theorem 1. We can write

00 00

00 00

= Σ C" Σ e-^\(φlK>\2= Σ C"ΓL(n/O.

Using Lemma 2 and (5.9) we have

L—*• oo

00

n=l

00

= Σ CnK(nβ), Q<QC

The series

/z(ll*-jΊI) = (2πiSΓ3/2 £ n-3l2znexp{-\\x-y\\2/2nβ}
n = 1

converges uniformly in x and y and so we can put

Σ znK{nβ)=(hJzK).
n=l

This completes the proof of Theorem 1.
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§ 6. Construction of the Representations

It can be shown that

where
ρz(k

so that (3.5) can be re-written

where z satisfies

ρ = f ρz{k)dk.

It is clear that our result agrees with that obtained by Araki and Woods [3]
for ρ < ρc but for ρ ̂  ρc they have

^I(Λ) = μF(h) exp { - ί <Λ, & /2>} J0((2ρ0)
1/2

where

The relation between the two can be seen by putting φ1(0)=\

corresp

identity

(corresponding to the boundary condition —— = 0) and using the

exp(- \ φ | 2 ) = If J0((2ί)1/2 \x\)e-"s —
Ό s

μβ,-a(h)= Sμffi(
0

where

K(ρ; ρ) = (ρ- ρ^'1 exp{ - ( ρ - ρc)/(ρ - ρc)} , ρ > ρc,
(6.2)

= 0, ^

But this is just the expression discovered by Kac [1] for the probability
distribution of the density in the thermodynamic limit of the grand
canonical ensemble corresponding to mean density ρ so that, by fixing
the density in the ground state, Araki and Woods obtained the correct
generating functional given that the density in the ground state is ρo

Since the first draft of this paper was written Cannon [14] has proved that
the Araki-Woods state is the thermodynamic limit of the canonical state.
In discussing the grand canonical generating functional we shall con-
centrate on the case ρ ̂  ρc since for ρ < ρc it is the same as the canonical
which has been treated exhaustively (see Araki and Woods [3] and
Hugenholtz [10]).
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The onset of off-diagonal long range order corresponds to the
quadratic form jtfβ^ becoming non-closable, because of the term
(Q —Qc)\Φi(®)\2 \hφ)\2' For this reason the generating functional μβ-
is not of the form

exp{-ί | |77z | | 2 }

and in fact is not a factor, and we cannot use Chaiken's results [4]. To
obtain a representation having μβ - as generating functional with ρ > ρc,
let Jf0 be L2(lR2,K(r;ρ)drdθ/2π). Define W0(z) on J T 0 for all
z = p + iq e C by

W0(p + iq) g(r9 θ) = exp{i21/2(r - ρc)
1 / 2 (p cosθ + g sinθ)} g{r9 θ).

Let Ωo be the element of jf0 which is identically equal to 1, then
{WOίJfo,Ωo} is a cyclic representation of the abelian group C with
generating functional

μo(z)= J f
b b

We have obtained μβ,-Q{h) for ft in the Schwartz space ^ but it can be
extended to larger spaces of test-functions and it is convenient to use
the maximal extension which is to the domain Ά(sίβt £ of the quadratic
form. This is the intersection of the domains of the singular part |ft(0)|2

and the closed part <ft,/ift>. The domain of the singular part is L^IR3)
nL2 (IR3) and this is contained in the domain of the closed part since for

J J ρ1(fc)dfc=||Λ||?ρc<oo.
IR3 IR3

Let W1 be the representation (2.4) with Λ = f^/2 restricted to Ur\L2

and put W(h)=Wί(h)®Wo(h(0)) and Ω = Ω 1 ® β 0 . We have to check
that Ω is cyclic for W. Since Ωx is cyclic for W1 and Ωo is cyclic for Wo

it is enough to show that for all ft e L1 n L2, z e C,

W1(h)Ω1®Wo(z)ΩoeV{W(g)Ω:gsL1nL2} .

Now for all heϋnL2 and zeC there exists a sequence {ft̂ e
such that ||ΛJ->0and

hn(0)->z-h(0) as n-^oo.
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Then

W(hn) W(h)Ω= W1(/jn + /i)*Γ ( ί / 2 ) I m<' 1" '1>Ω1(x) Wo(hn(O) + h(0))Ωo

and

|| W1(h)Ω1 ® W0(z)Ω0 - W(hn) W(h)Ω\\2

1 ~ /
exp< — — (hn, QΛ hS) — — Im (hn, K)

1 2 2
= 2-2μF(hn)Re

-̂ •0 as π^cx) .

As in the case of the Araki-Woods representation, we can express this
representation as a direct integral of factor representations

W^h) Qxp{i21/2(r-ρc)
112 (p cosθ + q sinθ)} ,

where

which are not gauge-invariant.
The generating functional μβ >ρ is translation-invariant both above

and below the critical density, but above critical it does not have the
cluster property:

lim \μβrρ(hx + g)e-W2>**<**.9> _ μ ( Λ χ ) μ

INI-*00

for some h,gel}nL2, while below the critical density it has the property
since the corresponding representation is a factor. When we consider
time translations we see the advantage of taking L1 CΛI} as the space of
test-functions. The space 2) is not invariant under the group of time
translations corresponding to free-particle evolution h-^>ht where
ht(k) = e'itm2/2 h(k), but L1 π L 2 is. Then μβi -ρ on L1 nL 2 is time-translation
invariant and has the KMS property.
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