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Abstract. We consider a class of infinite-range potentials for which phase transitions
are absent, and prove by the Ornstein-Friedman theorem, that they generate dynamical
systems that are Bernoulli flows in a generalized sense.

1. Introduction

A very interesting problem in Statistical Mechanics is the study of
the ergodic properties of measures which define the equilibrium states
of a gas in the thermodynamic limit. These measures are called infinite
volume Gibbs processes following a terminology due to Dobrushin [2].
It is well known that the set of these measures associated to an interac-
tion forms a convex set in the space M(K) (i.e. the translationally in-
variant probability measures on the space K of configurations of the
system) and that the extremal elements of this set are ergodic [7], with
respect to the group of spatial translations.

For one-dimensional lattice systems Ruelle proved in [3] that for
interactions Φ such that

11*111= Σ \Φ(S)\(dmmS)<+oo (1.1)

the thermodynamic limit of finite volume Gibbs processes exists, is an
infinite volume Gibbs process and is the only state in the above mentioned
convex set. From a physical point of view this means that phase transi-
tions are absent. Furthermore Ruelle proved that the Gibbs process is a
iC-system [11]. The ergodic properties of the process have been sub-
sequently studied by Gallavotti in [1]. He has shown that these processes
are Bernoulli schemes ([4, 10]). Gallavotti uses Ruelle's results to prove
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they are weak Bernoulli shifts and therefore, by the Ornstein-Friedman
theorem [4], they are Bernoulli shifts.

We shall use these methods to prove similar results for some one-
dimensional continuous Gibbs process with long range hard-core
interactions. This will prove the conjecture contained in [10].

2. Results

Let K be the family of subsets X C1R such that

x,x'eX,x*x'. (2.1)

It is easy to see that K is a compact space in the weakest topology for
which a net {Xa} of configurations converges to Xo if for any bounded
interval (α, β) with cc,βφX0 the configurations Xan(c<,, β) converge
pointwise to Xon(α,/?). Let C(K) be the space of continuous functions
over K with the uniform norm. If A is a bounded measurable region we
can integrate these functions with the measure

Σ-τί iχi J x - ( 2 2 )

n>0 n Δ
that is to say,

Σ-i

τμxι...dxnf({x1,...,xn}) (2.3)
Δ n^.0 ft Δ

where the integral is taken over allowed configurations. A state μ of the
system is a probability measure on K, that is a state on the algebra C(K).
We write for A e C(K)

μ(A) = J dX J A(X u Y) μA(X, d Y) (2.4)
Δ

and define μΔ by this formula.
A potential Φ is a real function on K such that
1. Φ{φ)=0.
2. Φ(X + x) = Φ(X) (translation invariance).
We shall denote by Tt the translation TtX = X + t,tslR.
Let 93 be the Banach space of continuous potentials Φ such that

|| Φ | | = sup Y |Φ(Γ)|<+oo (2.5)

XeK γnjR+*φ

YcX

where IR+ and ]R~ are non-negative and non-positive real numbers.
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Gallavotti and Miracle-Sole [6], studied interactions

Φ = Φn -f~ Φ (2.6)

where l e S and Φ o is a non-negative measurable finite-range pair
potential (i.e. Φ0(X) = Oif \X\ φ 2and Φ0({xi,x2}) = 0if \x, - x2\ >c0 >0).
They proved that only one equilibrium state exists in the thermodynamic
limit and that it is continuously differentiable w.r.t. the thermodynamic
potentials. So was reached the conclusion that for the above systems
phase transitions are absent.

This infinite equilibrium state can be characterized as follows, [7].
It is the only translationally invariant state μ such that for all bounded
regions A and all X C A

μΔ(X, dY) = fΔ{X, Y) μΔ(φ, dY) (2.7)

where fΔ is a conditional probability defined as

ro if x^YφK.j
exp[- X Φ(S)

SnXΦφ

if l u ί e K .
(2.8)

This state is the Gibbs process we study in this paper. Thus we have
defined a dynamical system, as the triple (K, μ, Tt) and our main result is

Theorem 1. The set of transformations {Tt} over K is a generalized
Bernoulli flow.

We give the definitions of the mentioned objects. A one-to-one
invertible measure-preserving transformation T is a generalized Ber-
noulli shift [8], if there is a subalgebra stf of the full measure algebra such
that Tι s$ are independent and generate it. If &£ has a continuous part
the entropy of T is infinite. Then by a generalized Bernoulli flow we
mean a flow {Tt} in which every transformation Tv tφ0, is a generalized
Bernoulli shift.

Now we fix ίeIR and T=Tt. In conformity with this choice of ί,
we define

Γt(r) = {xeJR:tr^x<t(r + ί} reΈ (2.9)

a n d for

Λ'CΛ, w i t h y 4 = ( / 1 , . . . , i | y l | ) 5 i , e Z for ; = 1, . . . , | Λ |

AA.tΛ{t) = {XeK:XnΓtw-ι(r) = φ if reΛ\Λ>
and XnΓt\M-,(r)*φ if re A'}

where \A\ is the number of elements of A. For every A the sets
{AΛΛ.,A'cA} form a partition of K and we shall denote it by PΛ.
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In particular by Pn we mean the partition PA with A — {0, ...,n — 1}.
Each partition PΛ with the translation T generate an algebra sίA

^Λ= \liTPA (2.11)
- oo

that is the completion of the smallest algebra containing all the sets in
TιPΛ, ieΈ. In particular we have

sίn= \J TP{n). (2.12)
— oo

The key result is the

Theorem 2. The dynamical system (K, s$n, μ, T) is a Bernoulli scheme.

The proof of this result is an adaptation of the Ornstein-Friedman
proof for Markov processes [4]. If we assume Theorem 2 and denote by
(K, stfy μ, T) our original dynamical system, it is easy to realize that

jf=υΛs/Λ=vns/n. (2.13)

Then to prove that

Theorem 3. The dynamical system (K, s/, μ, T) is a generalized
Bernoulli scheme with an infinite entropy.

We need a "limit theorem" due to Ornstein and contained in [8].

Theorem 4. // T is a 1 — 1 invertible measure preserving transforma-
tion on a field si that is increasing union of T-invariant subfields srf{ and
if T is a Bernoulli shift on each s^t then it is a generalized Bernoulli shift
on si.

In our case we have by Eq. (2.12) that the si{ are invariant and by
Theorem 2 that T is a Bernoulli shift on si{. Now Eq. (2.13) and the
"limit theorem" tell us that T is a generalized Bernoulli shift. Further one
can explicitely check that its entropy is actually infinite and so we have
Theorem 3. Since the above arguments are independent of the particular
choice of ί, also Theorem 1 is proved.

An extension of the results of this paper which exclude the hard-core
condition can probably be carried out for the class of Gibbs processes
associated with superstable potentials [9]. This is based on the conjec-
tured possibility of the extension to this class of the results of Refs. [3]
and [6].

3. Proofs

In this section we give the proof of Theorem 2 of Section 1, and
show that the entropy of the abstract dynamical system (X, si, μ, Tt)
is actually infinite for every t.
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A. Proof of Theorem 2

Our proof is analogous to the one for the lattice case [1]. Particular
care is to be paid to the presence of the finite range, positive and possibly
unbounded potential Φo, see Eq. (2.6). We fix t > 0 and the partition of 1R,
{Γt{r)}. Let A = (0,..., m — 1), then the corresponding partition Pm is by
definition a generator for (K, jtfm, μ, T), where μ is our Gibbs process
associated with Φ. We show that Pm is also weakly Bernoulli and therefore
the thesis is proved. We remember the generating partition Pm is weakly
Bernoulli if for every ε > 0 there exists Nε>0 such that for ml,m2>0

mi n — nt2

the partitions \JiT
ιPm and \Jt TlPm are ε-independent, as soon as

0 n

n — mί>Nε.Ύo write down this condition we use the following notations

Λ1=(0, . . . , ^ - 1 ) ; Λ 2 =(0, . . . , m w 2 - l ) , (3.1)

fΛi(Λ') = μ(AΛuA.(mt))9 Λ'CΛi9 i = 1,2, (3.2)

ή (3.3)

Therefore fΛι(Λ'), fΛ2{Λ'\ fΛlu(Λ2 + >τm)(Λ') are the Gibbs measures of the
corresponding atoms of the partitions

mi ni2 lm\ \ /n + m2

\fiTPm

f \Jiτ
ipm, [\Jiτ

ipm V V Γ
0 0 \ 0 / \ n

and the weak Bernoulli condition can be written as follows

Σ \LM + nuM\uA'2)-fASA\)fA2(Al

2)\<&. (3.4)
ΛΊcΛi

Λ'2CΛ2 + nm

Eq. (3.4) must hold asn — rn1>Nε independently of mι and m2. The proof
of Eq. (3.4) is completely analogous to that of Eq. (1.8) of [1], for the
lattice case. Instead of the Ruelle's theorem [3], we use its extension
to the hard-core case as carried out in [6]. The only modification occurs
in Lemma 1 and 2 and Theorem 2 of [1], which in fact hold with the
additional requirement that n is sufficiently large so that nt>c0 the
range of the potential.

B. Proof of Theorem 3

There is only to prove that the entropy * of T is infinite. As in the
previous section we consider the partitions Pm. Then we find a lower

1 We recall some well known definitions. If P is a partition and T a measure preserving
•one-to-one invertible transformation

H(P) = - X μ(Pύ log/i(P,), PteP,

H(T, P)=\imn~ίH[\J V
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bound for H(T,Pm), the entropy of the transformation T relative to the
partition Pm [4]. This bound involves the classical entropy Sc [12],
which is known to be finite [5], and another term depending on the
basic interval length t/m as logί/m. Therefore the entropy H(T, Pm) is an
unbounded function of m and so the Kolmogorov-Sinai entropy
H(T) = supH(T,PΛ) is infinite. We first recall the definition of the

Λ

classical entropy for the interval (0, L)

SL= - f dXΩL{X)\ogΩL(X) (3.5)
K(0,L)

and ΩL(X) is related to μL(X, dY) as

ΩL(X)=\μL{X,dY).

We fix m, put L — mnt and compare SL with H l\fι VPm . We consider
\o /

the atoms of \ft VF",
o

AΛiΛ,(nt), Λ=(0, . . . , π w - l ) , /l'C/1 (3.6)

and the corresponding averages of ΩL(X), namely

ΩL{Λ') = lCΛ{Λ')Tι ί dXΩL(X), (3.7)
AΛ,Λ'nK(0,L)

CΛ(Λ')= ί dX. (3.8)
^4yi,yl'nX(0,L)

Then we have

fΛ{Λ')=CΛ{Λ>)ΩL{A') (3.9)

The basic inequality we use in this proof is then the following,

j dX ΩL(X)\ogΩL(X)^ X CΛ{Λ')ΩL(Λ')logΩL(Λ'). (3.10)
K(0,L) Λ'CΛ

Eq. (3.10) is a consequence of

where f = {b — a)'1 \dxj\x) which follows directly from the convexity
a

of the function ί -• ί log ί.
Now we rewrite Eq. (3.10) introducing the classical entropy SL via

Eq. (3.5) and the Kolmogorov-Sinai entropy by Eq. (3.9) [4]. Then we
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have

where

Σ fΛ(Λ')logCΛ(Λ') (3.11)
0 / Λ'CΛ

H (\/f TPm) = - X /ΛΛ') log/ΛΛ').
\ 0 / Λ'cΛ

Now we point out the dependence on m of CΛ(Λ'\ with the following
upper bound

CΛ(Λ')^{t/m)lΛ'ιl\ m>t. (3.12)

We perform the limit for n-»oo in Eq. (3.11) and obtain

Sc = lim L" ' SL S t~ι H(T, Pm) + b \ogrn~11, (3.13)
L-> oo

Σ /^μ'Jίnί)" 1 !^' !- (3-14)
"^°° Λ'CΛ

It remains to prove that b > 0. We make extensive use of some results
contained in [6] and we collect them in the

Theorem. There exists a function heC(K+) and a measure v on
C{K+) such that

j dXf{ol)(X,Y)A(XuY + l)
κ(o,i) ΛeC(K + )

-$dv(Y)h(Y)=ί

• J dv(Y) h(Y) A(Y) = j dμ(Y) A(Y) A e C(K+)

where μ is our Gibbs process, and P is the corresponding pressure. The
function f(OtL) was defined in Eq. (2.8).

Using these results we have

XΛΛ'(Y)\Λ'\
Λ'CΛ

= (nt)'1jdv(Y) I dXexp(-LP)h{XκjY)fιOtL)(X,Y)
K(0,L)

= (nίΓ1exp(-LP)Jdv(y) J dX h(X<jY)~f{Q,L)(X,Y) (3.15)
K(O.L) a/»

where — λ is the coefficient of the one-body potential. So we have

144 ( 3 1 6 )4r^p(LP)4vP-dλ dλ

The positivity of b can then be checked using Eqs. (37), (34) of Ref. [6].
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Finally we mention that it can be proved a stronger result about the
asymptotic behaviour of H(T, Pm), actually
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