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Abstract. Using noncommutative integration theory, we show why certain singular
behavior has been appearing in the dynamics of large quantum mechanical systems, and
how to isolate the singularities.

§ 0. Introduction

The aim of this paper is to propose a solution for certain difficulties
which arise when treating dynamics within the C*-algebra formalism.
The presence of these difficulties is evident from a phenomenon de-
scribed by Thirring and Wehrl [1] and then others [2-6] for certain
nonrelativistic quantum mechanical models. The phenomenon is that
for these models the dynamics cannot be represented by a group of
automorphisms of the C*-algebra of observables, at least as far as all
initial states are concerned. Rather, one finds that in different equi-
librium representations the dynamics is represented by different auto-
morphisms, and may even map the observables out into the von Neu-
mann algebra which they generate. The difficulty that this leads to is
that for a general initial state ρ and observable A, the time dependent
expectation value ρ(At) is not well defined.

The above phenomenon has been treated from one point of view
by Dubin and Sewell in [2], and to that extent one knows how to extend
the C*-algebra formalism to cope with equilibrium Green's functions
and the dynamics of initial states near thermal equilibrium. (For a dis-
cussion of the meaning of "near" see [7].) In this paper we will attack
the complementary problem of describing the time development of
initial states which are far from equilibrium.

We organize our argument as follows. In § ί we note that an analo-
gous problem occurs in classical mechanics, and we sketch the manner
in which it can be overcome. In the next two sections we use and extend
parts of Segal's noncommutative integration theory [8] to generalize
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the classical (abelian) solution to an abstract noncommutative domain,
and in § 4 we relate our results to a broad class of "limit models" of
physical interest, including the BCS model.

§ 1. Motivation from a Simple Classical Model

As we inferred in the introduction, even in classical mechanics time
development cannot generally be represented by automorphisms of the
C*-algebra of observables C(X) (the bounded continuous functions
on X, which is all or part of phase space), or equivalently by homeo-
morphisms of phase space. For infinite volume systems with reasonable
interactions this is one of the many consequences of Lanford's work
[9,10] where it is shown that, for certain initial states catastrophes
occur in finite time, thus preventing any global time evolution for these
states. However we need not resort to such difficult models for insight;
the C*- algebra formalism should be able to cope with the mundane
dynamical system of N (hard, frictionless) billiard balls on a (rectangular)
billiard table. In this model it is easy to see that whenever a ball hits
a wall, thereby reversing a component of its momentum, some observ-
able (i.e. bounded continuous function on phase space) is going to
become discontinuous. Therefore the dynamics cannot be represented
by automorphisms of the observables. But even more interesting is the
fact that there are some initial states for which there is no canonical time
evolution assignable at all. An example of this is the following. Assume
that at time zero three balls labeled 1, 2 and 3 are spatially arranged
so that each of the balls touches the other two, but no wall or other
ball. Assume that for small negative time, balls 2 and 3 are stationary
and that ball 1 has finite velocity directed towards the center of ball 2.
We claim that there is no canonical dynamics past time zero. To see
this, consider two slightly different initial configurations; one where
ball 3 is shifted a distance ε in such a way that ball 1 hits ball 2 without
touching ball 3, and another where ball 3 is shifted a distance ε in such
a way that ball 1 hits ball 3 before ball 2. As ε->0, the two different
situations lead to very different motions for positive time. In the first
case ball 3 remains stationary and in the second it obtains a finite
(not order ε) velocity. Clearly either motion is a possible assignment for
positive time of the evolution of the original configuration, possible in
the sense that it violates no physical principle. Fortunately however it
can be shown (with some work!) that the set of initial configurations
which, when evolved back or forward in time, never lead to such a
singular configuration has full measure (i.e. the complement is of measure
zero). Another feature of the model is that for each of these remaining
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(nonstationary) states there is a nonempty set of time of measure zero
(the moments when simple collisions take place) for which no meaningful
state is assignable, since the momentum of a colliding ball is ill-defined
at the moment of collision.

In summary, the dynamics of the billiard ball model has two
noteworthy features. First, there is a set of initial states of measure zero
for which no canonical, global, time evolution is attributable. And
second, for each of the remaining initial states there is a set of time of
measure zero for which no canonical evolved state is assignable. For
these reasons, it is advantageous to represent the dynamics of this
system by a one parameter group of automorphisms of L^{X,dx) so
that problems on sets of measure zero are automatically taken care of.
But not only is it convenient to work this way; the main point of this
section is that such an algebraic description still has within it essentially
all the information of the more intuitive description (i.e. the evolution
of the points in phase space), and that this information can be retrieved
from the algebraic formalism. We will now sketch how this retrieval can
be effected for the billiard ball model; some further comments will be
made in § 4.

First we note that the evolution {ft\teJR] of each observable / in
C(X) can be considered an element of L^fJR.L^X, dx), dt\ the equiv-
alence classes of L^X.dx)-valued, essentially bounded dί-measurable
functions on 1R, which is isomorphic to L^pRxX, dt xdx) from §1.22
of [11]. Then all that is needed is elementary measure theory (Theo-
rem 12.21 i) of [12]) to see that we can choose a representative of/ (. }( )
and, evaluating it at almost every x in X obtain a function / ( . } (x)
in Loo(lR). The essential uniqueness of this procedure, whereby we
reconstruct the physical data {ft(x) | almost every x e l , ίelR}, is then
not hard to prove.

In summary, if the time evolution is represented by a group of auto-
morphisms of LO0(X, dx\ one can reformulate the information in the
useful form of time dependent expectation values, but only for almost
every initial state and for these only for almost every instant of time.
In the next two sections we generalize this procedure to the non-
commutative domain.

§ 2. Mathematical Preliminaries

The terminology of this section is that of SakaΓs book [11].
Throughout this section, M and N will be fixed countably decomposable

W*- algebras and μ (resp.v) will be a semifinite (resp. finite) faithful
normal trace on M+ (resp. N+). We assume that v is normalized to
one on the unit I of N. A (resp. B) will denote a fixed C*-algebra which
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is dense in M (resp. N) when the latter is equipped with its s*-topology,
and contains the unit. For a general C*-algebra D, SD represents the
set of states on Zλ We will denote the algebraic tensor product of
C*-algebras C and D [with elements of the form Σci®di) by C Q D

\ i I

and the C*-tensor product by C®Ό. We will denote the J/F*-tensor
product of two W*-algebras Q and R by Q®R.

Let C and D be two C*-algebras. It is well known (and follows
easily e.g. from 1.22.1 of [11]) that given a state ρ on D, the map

defined by

Σ
i i

is linear and a contraction. It can therefore be uniquely extended by
continuity to a map

ρ\eeC®D-+[_e\{ρ)eC (1)

which remains a linear contraction. Note that for φ in Sc, ρ in SD

and e in C®D,

<P®ρ(e) = φ(M(ρ))

where φ ® ρ is the obvious state (1.22.1 of [11]) on C(x)D. If further-
more C and D are VF*-algebras and_ φ (resp. ρ) is injhe predual C*
(resp. D J , then by the definition of C® D, φ(x)ρ is in (C® D),,,. Therefore
for ρ in D^ the map in (1) extends uniquely to a normal contraction

[>](ρ)eC (1')

which for φ in C^ satisfies

(2)

The maps in (1) and (Γ) will play a central role in the remainder of this
paper, and in a sense our technical results can be viewed as a procedure
for extending these maps in a canonical way.

We begin by recalling some definitions introduced in [13]. A set
S Q SB is said to contain v-almost every state, or to be of full v-measure,
if there exists a sequence {Pn} of projections Pn in N such that

a) {Pn} is increasing,

c) S2S({Pn})= U {normal states ρ of N\suρpρgPn},
n

where the ρ are considered as states on B and the closure is in the
w*-topology of SB. A sequence {Pn} of projections in N satisfying a)
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and b) is called an exhaustion, and a set S Q SB is said to be of v-measure
zero if its complement in SB is of full v-measure. For the connection
with usual terminology see the Appendix and [13].

Proposition I. Given an element a of M(g)N, let {an} be any_sequence
with an in M®N such that an-^>a in the s*-topology of M®N. Then

there exists an exhaustion {Pj} QN and a subsequence {anj such that for
every fixed j , [αΠk] (ρ) ̂ ^ [α] (ρ) in the σ-topology of M, uniformly in

normal states ρ of N such that suppρ Q Pj.

Proof Let {φm} be a countable, norm-dense subset of the normal
states of M (which exists from Chapter I, §3, Proposition 1 of [14]
and V.5.1. of [15]). By analogy with the map in (Γ), we can define for
each normal state φ of M and α in M(χ)iV, an element φ\_a~\ of N
such that

for all normal states ρ of N. From Theorem 14 of [8] we know that in
the faithful standard representation of M defined by μ, every state in M^
is a vector state, which readily implies that

Therefore from Corollary 13.1 of [8], and [13], there exists a sub-
sequence {anj of {an} and an exhaustion {Pj} Q N such that for every
fixed m and j

Ψm(lank - a] (ρ)) = ρ(φm \_ank - a]) ^ 0

uniformly in normal states ρ of N for which suppρ QPjm And since the
\\ank\\ (and therefore the | | [ α n j (ρ)||) are uniformly bounded by the Uni-
form Boundedness theorem, the proposition easily follows.

Definition I. Given a in M®N, there exists from Chapter I, § 3, cor.

to Proposition 1 of [14] a sequence {an} with an in Ά(g)B such that

an ~zτ£a i n t r i e s*-topology of M(χ)N. Using Proposition I, we assign

the values {[α] (ρ)|ρe S({Pn})} where

[a] (ρ) - σ-lim σ-lim [α ] (ρα) - σ-lim σ-lim [anj (ρα)
<x k k a

= σ-lim [α] (ρα) = σ-lim [α ] (ρ)
k
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and {ρα} is any net of normal states of N such that suppρα Q Pj for some
fixed;, and as states on B ρα->ρ in the w*-topology. It is clear that this
assignment is "essentially" unique, i.e. that it is independent, up to
v-measure zero, of the approximations {an} of a and {ρα} of ρ which are
used.

We will extend Definition I somewhat using

Proposition II. Given a sequence {an} with an in M®N, there exists
a set SQ SB of full v-measure and an assignment by means of Definition I
of {[αj (ρ) I ρ e S} for all n. If {an} is Cauchy in norm, then {[αj (ρ)} Q M
is Cauchy in norm for every ρ in S.

Proof It is clear from Theorem 6 of [8] and Proposition I that there
exists a set S of full v-measure for which we can simultaneously assign
values {[fr] (ρ)|ρ e S} for the countable set of fe's of the form b = an or
b = an — am. It is also clear from the proof of Proposition I that for all
ρ in S

II [flj to) - [ a j to) II = II K - aj (ρ) II S II an - am ||

which proves the proposition.

Definition II. Given a norm-separable subset H of M®N, choose
a countable norm-dense subset H' of H. Then from Propositions I and II
and Definition I, there exists a subset S of SB of full v-measure and an
assignment of values {[α] (ρ)\ρeS, ae H} which is "essentially" unique,
i.e. independent, up to v-measure zero, of the choice of H' or any other
choice in the procedure.

§ 3. Application to Abstract Dynamics

We now apply the above machinery to the following abstract
dynamical situation, using all the notation and assumptions of § 2 and
also the assumption that B is norm-separable. Let Ω be either TL or 1R
as a topological group, and assume that we are given a group homo-
morphism

α : t e £2->αω e {*-automorphisms of N}

which is continuous in the sense that for every a in iV, the map

is continuous when N is in its cr-topology. Let A be the C*-algebra C(Ω)
of bounded, complex valued, continuous functions on Ω, let μ be Haar
measure on Ω, and let M be L^Ω, μ). Using 2.9.3 and 2.9.4 of [11] and
elementary measure theory, it is easy to see that A, M and μ satisfy all
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our assumptions. From 1.22.3 of [11] we know that there is a natural
^-algebraic isomorphism between C(Ω, B\ the C*-algebra of B-valued
continuous functions on Ω, and A®B. And from L22.13 of [11] we
know that there is a natural W^-isomorphism between L^Ω, N, μ) and
M ® JV, where LO0(Ω, N, μ) is the space of equivalence classes of N-valued
essentially bounded functions f onΩ which are measurable in the sense
that for each ρ in N%, the map

/ : ί e Ω - ρ ( / ( ί ) )

is μ-measurable. To keep the notation from becoming (even) more
cumbersome, we promote these last two isomorphisms to identities.

It is now rather clear how we propose to use our machinery. _For
each b in B, we identify α(#)(b) with its equivalence class in M®N.
In this way we obtain a norm-separable subset {ot{'] (b)\beB} of M®N.
Then from Definition II there exists a subset S of SB of full v-measure
and an essentially unique assignment of values

{[α(-)(&)](ρ)eL00(O,//)|66B, ρeS}.

If necessary we could, for each ρ in 5, choose a representative of
[α ( ' } (ft)] (ρ) so as to get a bona fide function on ί2, but this is unneces-
sary for most purposes.

This is the procedure that we referred to in § 0 and § 1. We emphasize
that it naturally displays the two features which we extracted from the
billiard ball model; it assigns a time development only to v-almost
every initial state, and to these states it assigns a time development
only up to sets of time of μ-measure zero. Thus it allows for the pos-
sibility of singular behavior on a set of initial states of v-measure zero
and for the other states on a set of time of μ-measure zero.

§ 4. Limit Models

In this section we implicitly define a class of physical models which
we call limit models, apply our procedure as in § 3, and discuss the
justification of our method. We use the same notation and assumptions
as in § 3. We again assume that B, which we interpret as an algebra of
observables, be norm-separable. In practice N will then be the von Neu-
mann algebra generated by the GNS representation πv of B with respect
to the (faithful tracial) state v of B. We assume given a sequence of
approximate evolutions, i.e. a sequence an of group homomorphisms

αn:ίeΩ->αJ,0G {^-automorphisms of B}
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such that

ρ(a(^(b)) is continuous in t for all b in B and ρ in N^ . (3)

For each b in B, o^](b) is s*-Cauchy in N for μ-a.e. ί in Ω . (4)

Some examples will be given below. Now considering a{

n

 ] (b) to be
in M®N we first show that it is s*-Cauchy in M®N. Given φ in
M^QN^Q(M^N)itί of the form φ = Σφi®ρh we have

i

ψ{\^{b)-<^{b)\2}

= Σ ί ft{l«i° (6) - «ί? Φ)\2} Ψι(t) dμ(t) (5)
ί

where we have used (2). Now since for each i, Qi{\o$ (b) — off (b)\2} is
uniformly bounded in t and has limit zero as m, n-> oo for μ-a.e. ί, from
Lebesgue's Dominated Convergence theorem the RHS of (5) has limit
zero as m, n—> oo. Clearly this extends to all φ e(M®N)%, proving our
assertion. We define α(

CX)

) (b) to be the s*-limit of a{

n

] (b) in M®N. (Note
that we do not assume that α(

w

} (b) comes from an automorphism of N
as in § 3.) And now we proceed just as in § 3, assigning an evolution
[α(

00

) (bj] (ρ) for each b in B and v-almost every ρ in SB. This is our general
procedure.

At this point we want to compare our procedure with another
possible way of obtaining time dependent expectation values for limit
models. Namely, we could assign ρ(bt) = \imρ(oί{^ (b)) whenever this

n

limit exists. We show that both methods must agree for v-almost every
initial state as follows. From Proposition I we may assume that we
used ^(tyeMQN in our procedure, thus assigning σ-lim[μ{

n^(b)] (ρ).

But from §21, Ex. (3) of [17], since ρ(a{^ (b)) converges for μ-almost
every ί, its equivalence class [α^(b)] (ρ) converges in the s*-topology,
and the two limits obviously are in the same equivalence class, which
furthermore must coincide with c r - l i m ^ 0 (b)] (ρ).

k

We summarize the results of this section in

Proposition III. Let B be a norm-separable C*-algebra with unit,
let v be a faithful tracial state on B and let N be πv(B)". Let Ω be the
topological group Έ or IR (interpreted as time) with Haar measure μ, and
let {an} be a sequence of approximate evolutions of B, as defined above.
Then there exists a set S of states on B, of full v-measure, and a natural
definition, for all ρ in S and b in B, of "limiting time dependent expectation
values" [oc{£(b)] (ρ), which as functions of te Ω are in ̂ ^(Ω, μ) and which
coincide, for v-a.e. ρ and μ-a.e. ί, with any limits of ρ(a{^(b)) which
might exist.
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Although it takes a surprising amount of work to give a complete
proof, it can be shown that the billard ball model of § 1 can be con-
sidered a limit model, where the hard wall "potentials" are approxi-
mated by any of a general class of sequences of bona fide potentials.
It is useful however to look at the model this way, since then one can
even see where the singularities come in. One can easily choose a se-
quence of approximating potentials which behave properly for the "nice"
initial states but which will not yield any limit for positive time for the
explicit initial state that we discussed in § 1. In other words the singular
initial states are too sensitive to the specific approximate evolutions
which are used. A similar situation holds for the singular set in time.

Another example of a limit model, aside from the lattice-spin models
for which our procedure is unnecessary, is the BCS model [1]; our
Condition (4) is proven in [16].

§ 5. Conclusion

Using noncommutative integration theory, we have shown how to
extend the C*-algebra formalism so as to cope with a larger class of
dynamical models than has so far proved manageable, including the
BCS model. It is hoped that a large class of continuous nonrelativistic
Fermion models, such as those discussed in [5] for example, will also
yield to our method. If so, it would be of interest to generalize our
method so as to include Bose systems and dynamical models of mixed
species, for which our assumption of a finite trace may be too strong.

Appendix

As justification for our terminology of sets of full measure, we include
the following lemma. (This lemma should have been included in [13],
as well as the remark that in [13] if 91 is abelian then α maps pure
(i.e. multiplicative) states to pure states.)

Lemma. Assume that B is an abelian C*-algebra, s*-dense in the
W*-algebra N, and containing the unit. Let v be a faithful normal finite
trace on N. Clearly we may assume that B = C(X\ N = L^X, v), where X
is compact Hausdorff and v = a finite regular Borel measure on X. Then
if SQSB is a set of full v-measure in the sense of § 2, S contains v-almost
every pure state of B in the usual sense.

Proof Let {Xj} Q N be an exhaustion such that S 2 S({Xj}). Let X- be
a characteristic function in the equivalence class X7, for the set Ej Q X.
We now show that, for every j , v-almost every point in Ej (and therefore
of (J Ej and therefore of X) is in S. In fact, for each j let Fj be the set of
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points x in £ 7 for which there exists an open subset of X which con-
tains x but only intersects Ej in a set of v-measure zero. Let Gj = Ej\Fj.
First we show that Gj Q S. Given g in B, y in G7 and ε > 0, there exists
an open subset Oγ of X, containing y and such that \g(x) — g(y)\ < ε for
all x in O r Let /ι be the characteristic function of OynEj and
f = h/v(OynEj). Defining the states:

δy: aeB->a(y), ρf : aeB-+ f fadv,

we have

which proves that GjQS. It only remains to show that v(f}) = 0. Since
F, is clearly measurable, and v is regular, it suffices to show that v(7) = 0
for all compact subsets Y of Fj. But for each point y in such a 7, there
exists an open subset Oy of X such that v(0 yn Y) = 0. Since 7 is compact
there exists a finite subcover of Y using such Oy% which implies that
v(F) = 0, and which completes the proof.
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