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Abstract. We study the time evolution of a quantum-mechanical harmonic oscillator
in interaction with an infinite heat bath, which is supposed to be initially in the canonical
equilibrium at some temperature. We show that the oscillator relaxes from an arbitrary
initial state to its canonical state at the same temperature, and that in the weak coupling
limit the relaxation is Markovian, that is exponential. In contrast to earlier treatments of the
problem [4, 5], the results are obtained without assuming any particular special form for
the self-interaction of the heat bath. No use is made of coarse graining, finite memory
assumptions or randomly varying Hamiltonians.

1. Introduction

It is well known that for a finite heat bath it is not possible to prove
convergence to an equilibrium state in the limit ί->oo because of the
existence of Poincare recurrences [8, 11, 15]. However, for large systems
these recurrences become extremely infrequent and we can eliminate
them by passing to the limit of an infinite heat bath. Since the techniques
for passing from a finite heat bath to an infinite one are by now well
known [2, 5] we immediately consider the Hamiltonian given formally by

(1.1)
where

Ho = έ(f>2 + ωV) + i: £ P

2

n + £ am-nqmqn: (1.2)
n= — oo rn,n= — oo

and

#1= Σ yι.9»9 (°)
n= — oo

Here {pm, qm}^=-00 are the canonical coordinates of the infinite heat
bath and p, q are the canonical coordinates of the oscillator whose time
evolution we shall study. We suppose that α is a real symmetric sequence
such that for some δ > 0 ^

Σ kl^ | n | <oo. (1.4)
n= — oo

As in [5] we must also suppose that α is a positive definite sequence, but
we actually suppose slightly more, that

ρ(θ)= £ ane
inθ>0 (1.5)
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for all 0 ̂  θ ̂  2π. It is clear that ρ is a real analytic periodic function on
[0, 2π] with strictly positive minimum and maximum values. The
corresponding convolution operator on /2(Z), which we also denote
by α, is therefore positive, bounded and invertible. We put on γ the
initial hypotheses that y is real and

so that y defines an element of 12(Έ). We shall subsequently put further
regularity conditions on y. Since we are interested in the time evolution
of the system only for very small Λ, we shall feel free to add terms of
order λ2 to the Hamiltonian Hλ if convenient.

We outline the well-known procedure for realising Hλ as a self-
adjoint operator on Fock space [1, 14]. Let Jjf be the real test function
space -

A ^ώ? ττ> sτ\ l t C~ff\ (\ 7\
tXfc — Itv t^ty I \iLι) \ 1 ' /

and let 3F be the boson Fock space over Jfc. For fe ffl let α*(/) and
α(/) be the usual creation and annihilation operators in 3F so that

a(β) #*(/) — Λ*(/) a(d)= </> ^) 1 (1-8)

Let ^4A be the bounded positive operator on 3? given by the matrix

(1.9)

and let Hλ be the free Hamiltonian on 3F constructed from A\ on ffl.
Dropping temporarily the subscript λ, let

Φ,(f) = --JHt{a*(A-*f) + a(A-*f)} (1.10)

and

πt(g)=-fi-e?at{a*(A*g)-a(A*g)} (1.11)

so that
Φ,(f)πt(g)-πt(g)φt(f) = i(f,g > 1 . (1.12)

Elementary calculations give

Φ,(f) = - {β*[cosμ*t) A~*n + ia*[sin(A*t)A-*n}

(1-13)
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and

πt(g) = t) A*g}}

-4~ (a[cos(A*t)A*g'] - ia[sm(A*t)A*g~\} (1.14)

(1-15)

From these equations it follows that

(1.16)

and these equations are the justification for regarding //Λ as the rigorously
defined self-adjoint operator corresponding to Eqs. (l.ί)-{1.3).

If we define an operator #λ on 3f by the matrix

where

then

« +

v||2 0

(1.17)

(1.18)

(1.19)

0

Since we shall have mainly to use A\ rather than Aλ, instead of calculating
the complicated exact expression for A\ we now redefine

Aλ = B\ (1.20)

where Bλ is given by Eq. (1.17). This amounts to changing Aλ, and hence
Hλ, by a term of order A2, which we earlier stated we would regard as
permissible.

We come now to the thermodynamic aspects of the model. Again
dropping explicit reference to λ, we let the Weyl operators be

C7(/, flf) - exp[i00(/) + iπ0(flf)] (1.21)
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so that for all /, g e Jjf, U(f, g) is a well-defined unitary operator
[1,2, 14]. The canonical equilibrium state of the system at the inverse
temperature β is given by specifying its expectation values for the Weyl
operators. If H had discrete spectrum we could write

E,(f, g) = tr [[/(/, g} *-'»]/&[*-'«] (1.22)

from which can be deduced [2]

(1.23)

In our case H does not have discrete spectrum but we can define Eβ

directly by Eq. (1.23). This amounts to changing from the Fock space
representation of the CCR's to another representation [2], but we shall
not need to consider this new representation explicitly.

Identifying any xeIR with the element x00 of Jf , the dynamics of
the oscillator is given in the Heisenberg picture by

α, {l/(x, y)} = M{eiHt U(x, y} e~iHt} (1.24)

where, as in [4], M is the operation of taking the expectation with respect
to the canonical equilibrium state at the inverse temperature β, of all ex-
pressions involving the field operators of the heat bath. This corresponds
to the assumption that the oscillator is initially in an arbitrary state
while the heat bath is initially in its thermal equilibrium state. Letting
P : 2tf -> Jf7 be the projection

(1.25)

we obtain from [4] the explicit formulae

Lemma 1.1. For all x, y e 1R and all t ̂  0

ίx, y)} = U(xt9 yt) exp[- r,/4] (1.26)
where

xt=P{cos(A±t) x-A* sm(A^t) y} , (1.27)

yt = P{A-*sm(A*t)x+cos(A*t)y}9 (1.28)

rt = (A--coth(βA±/2) ξt, ξty + <Λ*coth(/L4*/2) ηt, ηt> , (1.29)

ξt = (1 - P) {cos(A*t) x-A* sin(A>t) y} , (1.30)

ηt = (1 - P) {A~* sm(A^t) x + cos(^ί) y} . (1.31)

We are interested in studying the approach to equilibrium of the
oscillator for a small coupling constant. This means that we must find
asymptotic forms for xλtt,yλit and rλt in the limit as ί->oo and /l->0.
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The order in which these two limits must be taken is critical and the
correct sense in determined by the subsequent analysis.

2. Estimates of Some Decay Functions

It is clear from Lemma 1.1 that the main problem consists of giving
a detailed analysis of the spectral properties of the self-adjoint operator
Bλ on jjfς . This section is devoted to examining (eΪBλt v9 f> in the limit
ί->αo and Λ,-»0, where v is the element 100 of J^c. The operator Bλ

is identifiable with the Hamiltonian of a (somewhat generalised) Wigner-
Weiskopf atom and the form of the limit has been found in several
particular cases in the literature [3, 15]. We, however, need to repeat the
calculations with more care since we are concerned to obtain estimates
of the rate of convergence to the limit which are uniform with respect to
time. The reader interested only in the results may proceed immediately
from here to the statement of Theorem 2.5.

By taking Fourier transforms we may represent Bλ by the matrix

acting on
(2.2)

where /τeL2(-π, π) is the Fourier transform of vεl2(Έ) and ρ is the
operator of multiplication by the function defined in Eq. (1.5). Now if
ρ were merely continuous then as an operator it could have pure point
spectrum (if ρ had an interval of constancy) or even singular continuous
spectrum. The purpose of the rather strong condition (1.4) is to ensure
that ρ has only absolutely continuous spectrum, as will be seen below.

Since ρ is real analytic there exists a partition

— π = α0 < al < < an = π

such that ρ is strictly monotone in each interval [αr_1? αr] with non-zero
derivative in the interior of each interval. If br = ρ(ar)* we define a
unitary equivalence „

, r=l

V(φ)={ψryr,ί (2.3)
where

ψλy) = φ(x)W(x)Γ* (2.4)

for α r_ ! < x < ar and y = ρ(x)*. It is clear that if

V(Q*φ) = {ηr} r,1 (2.5)
then

rir(y)=yψ,(y) (2.6)
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for all y and all r. Using V to identify

^c
we obtain

( )

where β acts on Σ 0 1? (ί)r _!,[>,.) as the usual multiplication operator

(βw)(x) = xι/V(x) (2.9)
and

/c = K(ω + ρ*Γ ' y 6 Σ θ L2(*V- ! A) . (2.10)
r = l

We now impose our final hypotheses on the model. The first is a
regularity condition, that {/cr}"=1 be C00 functions of compact support
(this is actually unnecessarily strong). The more physically significant
hypothesis is that ω should be one of the range of frequencies of the heat
bath and that the interaction should couple the oscillator to that
frequency. Specifically we assume that for some r

br_ί<ω<br and fcr(ω)φO. (2.11)

This assumption is in contrast to that of Friedrichs in his treatment of
the otherwise similar Lee model [6], where he supposes ω lies outside
the spectrum of Q.

Lemma 2.1. If λ is sufficiently small then Bλ has no pure point spectrum.

Proof. Suppose Bλ(x ®ψ) = α(x 0 ψ) for some α e 1R. Then
n

ωx + λΣ <yr,kry = ax, (2.12)
r = l

aιpr. (2.13)

If x = 0 then ψ = 0, and otherwise we may normalise by taking x = 1. Then

(β-α)W=-λk, (2.14)

and the solubility conditions are that

(β-αΓ^e L2^ A) (2.15)
and

>/(α) = 0 (2.16)
where n

r = 1 f ,1,,- (117)

Σ \kr(S

= ω-z-λ2 f ̂  ds.
Λ, s-z
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Since the kr are all continuous the first condition is equivalent to α φ S
where n

r=l

is the support of k. Now η(z) is the sum of ω — z and the Hubert transform
n

of Σ \kr\
2 Since this second function is C°° of compact support its

Hubert transform is uniformly bounded on the entire complex plane
and analytic with a cut along S. Let

A— sup
zeC

ί
Σ IM

-ds
S — Z

Since ω e int^) there is a constant B > 0 such that

(ω - J5, ω + B) ς S .

Then if α ξ S and |/l| < (B/A)*

(2.18)

(2.19)

(2.20)

so if |A| < (B/A)^, Bλ has no eigenvalue.
It can be proved under similar hypotheses that Bλ has no singular

continuous spectrum. We need however a sharper result.

Lemma 2.2. There are constants K,λ0>Q such that if \λ\ ̂  λ0 then

\(e~iBλt v, vy\ ̂  min(l, K/λ2t) . (2.21)

Proof. We note that for Imz > 0

because of the formula [7]

= η(zΓ1
i -λ(Q-z)~lk

(2.22)

(2.23)

-λ(Q-zΓ1k

which is certainly valid for all Imz Φ 0. Taking the limit as y JO we get

00

j (e~iBλtυ, vyeίxtdt= -Mφc + iO)"1 (2.24)
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so that decay properties of (e lBλtv,v) can be deduced by Fourier
analysis from smoothness properties of η. For y > 0 and t > 0

2π _
so

Therefore
2πί _•"

2πί _J

f

η'(x

(2.25)

(2.26)

(2.27)

We make estimates of the integrand which are uniform with respect to
y > 0. We rewrite

= ω-z-λ

= ω-z-ίλ2

i \kr(s)\2e
r = l

duds

where

h(«)= ί Σ IMs)!2^'5"^. (2.29)
-oo r=l

Since fer are C°° functions of compact support, h lies in the Schwartz
space £f. Therefore oo

\η'(z)\^l+λ2$u\h(u)\du

provided A is small enough, say |A| ̂  A t .
We estimate η(x + iy) differently depending on whether (x — ώ) is

small or not. If |x - ω| ̂  2^A2 then by Eqs. (2.17) and (2.18)

\η(z)\^\ω-x\-λ2A

On the other hand for all Imz > 0

ds
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n

Now X |/cr(ω)|2>0 by (2.11), so there exist C,<5>0 such that if
r=ί

\x-ω\< 2δ then ^^2 > c _ (233)

r = l

If now we define λ0 > 0 so that λ0 ^ λ^ and 2Aλ%^δ then for all A,z such
that \λ\^λ0,Q<y<δ and |x - ω| < δ

λ2C. (2.34)

Therefore if |A| ̂  A0, 0 < y < δ and ί ̂  0

\\e f, f>|^ wCK + iy) dx (2.35)
πt .QO

by Eqs. (2.27) and (2.30),

_ eyt

 f , , βyί

f 4χ-2dx+ — 4Aλ2(λ2Q
~ πt 2 Λ 2 πt

by Eqs. (2.31) and (2.34),

But the left-hand side of the inequality is independent of y so letting

Vl° WC gCt \{e-iB^v,vy\^K/λ2t. (2.37)

The other part of (2.21) is trivial.
For completeness we use the result to prove

Lemma 2.3. // |A| < A0 then Bλ has no singular continuous spectrum.

Proof. Let L be the closed subspace of Jjf generated by

Then L is invariant under Bλ and υ,keL. If g is the positive definite
function

g(t) = <€-'**' v,υy (2.38)

then by Eq. (2.21), 0eL2(lR), so by Bochner's theorem and PlanchereΓs
theorem, g is the Fourier transform of an absolutely continuous measure.
Therefore Bλ has absolutely continuous measure. Therefore B has
absolutely continuous spectrum within L. In L1, Bλ = J50, which within
L1 has only absolutely continuous spectrum since veL.
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The importance of Lemma 2.2 is that it shows that the relevant
quantity in determining the rate of convergence to zero of (eiBλtv,vy
as t -> oo for small λ is the combination

= λ2t. (2.39)

This re-scaled time has already appeared in many contexts in non-
equilibrium statistical mechanics [3, 8, 12]. If we now define

t^eiB^vyvy (2.40)

where t and τ are related as above then Lemma 2.2 gives the estimate

|Φμ,τ)|^min{l,K/τ} (2.41)
for all r^O and \λ\^λΌ.

Lemma 2.4. There exists a constant c = a + ίb with a > 0 such that

) = e-cτ (2.42)

uniformly for τ in any interval [0, τ0].

Proof. The method is to expand Φ(λ, t) as a perturbation series in λ.

so that
By [10] Bλ = BQ + λA. (2.44)

(2.45)

s = 0 u = 0

the series converging in norm for all finite t. Therefore

Φ(λ,τ)=i+iλ J e iωt(eiBo(t s^AeiB°sυ,vy ds (2.46)
s

+ (U)2

s = 0 u = 0

One easily sees that the odd terms contribute nothing to the series and
that oo

where *αt)= Σ (iA)2"/,(t) (2-47)
wiicic π = 0

/π(t)= I I 2| 1

e-'»«e'
ω(|-ω<e'β("-tϊ)fc,fc>-

ί l = 0 ί2 = 0 ί2n = 0

...gί»(r2»-2-« ϊ.-,)< βίC(«2.-l-«2j f c > f c > eί«.« Ϊ B d t ι _ - > d ί 2 B (2.48)

1 d l 2 n - l

= ί ί ί Λ(t 1-
ί l = 0 ί2 = 0 ί2n = 0
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where
h(s) = e-iω*(e?Qsk9ky (2.49)

so that by our regularity assumptions on fc, h lies in Schwarz space £f.
Now 4(0) = 0 and

dl (ti * t2n~l

-j^-= ί ί h(t-t2)h(t3-t4)...h(t2n_ί-t2n)dt2...dt2n

d °^ = ° (2.50)

From this it follows that

'»(') = ί T ' 'l ί '" '<»')- Hi -ίi ----- ί/Mίi)- (2.51)
ί ι=0 r2 = 0 tn = 0

since the latter expression satisfies the same relations. This may be
rewritten as

ί,W= J - K,(ί1...ί (1)Λ(ίι)...A(ίB)dίι...Λ1, (2-52)
W ! ί l = = 0 ίM = 0

where

- - " . . . t
(153)otherwise.

Substituting back into Eq. (2.47) gives

Φ(λ, τ) = f -̂ - J ί «,(»! - - . O Λ(ί 0 . - . h(tn) at,... dtn . (2.54)
n = 0 n 0 0

Since 0 ̂  Kf rg 1, if 0 ̂  τ ̂  τ0 the series is uniformly dominated by

n = 0 fl \0

Moreover since
lim Kt(tl...tn)= 1 (2.56)
ί-»00

the individual terms of Eq. (2.54) converge as λ->0 for fixed τ. Therefore
the series of Eq. (2.54) converges uniformly for 0 ̂  τ :§ τ0 with sum

oo / _yι /oo \n

Σ . ί h(s)ds) =e~cτ (2.57)
n =o n- \ o /

where

c= ί Λ(s)<fc (2.58)
o
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From its definition

J eixs\kr(x)\2 dx

-°° (2.59)

— oo r= 1

Therefore h e ίf and h( — s) = h(s) for all s. Hence, writing c = a + ib,

α = i J h(s)ds

(2.60)

~ Σ IMω)f

which is strictly positive by Eq. (2.1 1).
It is very significant that the convergence in the above lemma is not

just uniform on each finite interval [0, τ0], but uniform on the entire
interval [0, oo). We choose to state the result without explicit reference
to the re-scaled time.

Theorem 2.5. Given ε > 0 there exists λε > 0 such that if \λ\ < λε then
for all 0 ̂  t < oo

\(eίA*tv,vy-eiωt-cλ2t\<ε. (2.61)

Proof. We have to prove that

= e-cτ (2.62)

uniformly for 0^τ<oo. Given ε>0, there exists Λ,0,τ0>0 such that
if |λ| < λ0 and τ ̂  τ0 then

|Φμ,τ)|<ε/2 (2.63)
and

\e-cτ\<ε/2 (2.64)

by Eq. (2.41). By Lemma 2.4 there exists λε ̂  λ0 such that if 0 ̂  τ ̂  τ0 and
|A| < λε then

)-έΓc τ |<ε. (2.65)

Putting these together gives the result that if |A| < λε then

for all 0<τ<oo.
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3. Approach to Equilibrium

We use the estimates of Section 2 to study the time evolution of the
harmonic oscillator in interaction with the heat bath. The first theorem
we obtain was proved for a particular special heat bath in [5].

Theorem 3.1. The harmonic oscillator converges from an arbitrary
initial state to an equilibrium state which, in the weak coupling limit, is its
canonical state at the inverse temperature β.

Proof. The canonical state φβ of the oscillator at the inverse
temperature β is given in terms of the expectations of the Weyl operators by

= tr [L/(x, y) exp {- β(p2 + ω2 42)/z}]/tr [exp {- β(p2 + ω2 g2)/2}]

= exP[-Sβ(x,>;)/4] (3.1)

where
sβ(x, y) = ω~1x2 coth(βω/2) + ωy2 coth(βω/2). (3.2)

Calculating first in the Heisenberg picture, it is sufficient by Lemma 1.1
to show that if ε > 0 there are constants λε9 τε > 0 such that if \λ\ < λε and
τ ̂  τε then

\xλ,t\<ε' > \yλ,t\<£Ί \rλ,t~sβ\<£- (3-3)

By Lemma 1.1 and Lemma 2.2 if |A| < λ0

|xλ>ί| = |<cos(^|ί) v, vy — (A\ sin(Ajt) v, vy\

I v, vy - ω<sin(v4f 0 v, vy + <sin(>φ)(ω - Aj) v, t;>|

<ε

provided λ is small enough and τ is large enough. yλ >t is dealt with
similarly.

Since Aλ-^A0 in norm as λ-»0, and A0 is invertible, A^ coth(j8^J/2)
converges in norm to Ao*coth(βA$/2) as λ->0 by [13]. Moreover P
commutes with A0 and

/2) v, vy=ω±l coth(βωβ) . (3.5)

Using these facts and writing

u = cos(^fί) x-A\ sm(A\t) y (3.6)

x + cos(,φ) y (3.7)
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we find that

rλtt = 04ί* cothOMt/2) (1 - P) u, (1 - P) w>

+ <4t coth(M/2) (1 - P) ϋ, (1 - P) ι?>

- * coth(βAτ/2) u, u) + <4l coth(Mt/2) υ, u> (3.8)

coth(/L4*/2) x, *> + <^I coth(M/2) y,

ΐx2 coth(βω/2) + ωy2 coth(j8ω/2)
2-ω'1 coth()8ω/2) {x2<cosμf ί) ϋ, ι?>

- 2xyω<cos(^|ί) ϋ, ι?> <sin(^f ί) ι;, ϋ> 4-y2ω2<sin(ylf ί) v, t;>2}

- ω coth(jβω/2) (ω"2x2<sinμf ί) v, t;>2

this estimate being uniform with respect to τ. The required limiting
property of rλt follows.

We finally transform to the Schrodinger picture in the same manner
as in [4]. Let ψ be an arbitrary initial state of the harmonic oscillator
and let the corresponding state at time ί ̂  0 be ψt, so that

<φ,, l/(x, y)y = <φ, *t,t{V(x, y)}> - (3.10)
Then

= lim <φ, C7(xΛ>ί, yA>ί)> exp [ -
A-0,A2r-oo

= <φ,L7(0,0)>

= exp[-s/J/4]

We can similarly follow the approach to equilibrium in the weak
coupling limit. Since the diffusion becomes slower as A-»0 this must be
done using the re-scaled time τ. Also because of the "fast" oscillation
term in Eq. (2.61) we must compare the time evolution with the free
evolution by changing to the interaction representation - as in scattering
theory [10]. The following theorem is an exact analogue of Lemma 2.3
of [4]. However it is a result of much greater scope since only regularity
conditions are imposed on the heat bath interactions whereas in [4]
we were confined to a particular special heat bath.
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Theorem 3.2. If τ = λ2t then for each τ ̂  0

lim e-iHotaλ>t{U(x,y)} eίHot = U(x(τ\y(τ}) exp[- r(τ)/4] (3.12)

where

y(τ) = - e~aτω~l sm(bτ) x + e~aτ cos(fcτ) y, (3.14)

r^) - {ω~1 x2 cothOβω/2) + ωy2 coth(βω/2)} {1 - e~2aτ} . (3.15)

Proof. As in [4]

ic, y)} eiH°< = U(uλtt9 vλ,t) exp[- rM/4] (3.16)
where

uλ,t = xλ,t cos(ωί) + yλ,t
ω sin(ωί) , (3.17)

vλtt= —xλ tω~l sin(ωί) + yA tcos(ωt). (3.18)
Therefore

= lim{ω"ix<cos(^fί)t;,t;>-ωir};<sin(^fί)ι;,ί;> (3.19)
Λ~* 0

" v, t;

by Eqs. (1.27), (1.28) and (2.42). Separating real and imaginary parts gives
the expressions for x(t) and y(τ\ That for r(τ) can be obtained immediately
from Eq. (3.9).

The above result can be interpreted in terms of the theory of Markov
semigroups.

Theorem 3.3. // we define

Jτ{U(x, y)} = U(x(τ\ yω) exp [- r(τ)/4] (3.20)

then for all σ, τ ̂  0
yσyτ{U(x,y)} = yσ+τ{U(x,y)}. (3.21)

Proof. Writing z = ω~^x 4- ίω*y we have shown that

z(t) = z(Γcτ (3.22)
and

r^ = coth(^ω/2)|z|2(l-β-2-)

= coth()8ω/2){|z|2-|zW|2}.

The semigroup property follows immediately from these two equations.
We make some comments on this last theorem. It was shown in [5]

that for a finite coupling constant A, and for the corresponding classical
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problem, there is an essentially unique heat bath for which the induced
diffusion of the oscillator is Markovian. The quantum mechanical
analogue of this particular heat bath does not induce Markovian diffusion
on the oscillator, and indeed there is no sensible quantum mechanical
heat bath (of this type) which, for finite A, induces Markovian diffusion
on the oscillator. What we have shown is that nevertheless in the weak
coupling limit one does obtain Markovian diffusion for every heat bath
of this type.
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