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Abstract. It is proved that the free energy of a system of n-dimensional spins with Kac
type potential is equal, in the infinite range zero strength limit, to the free energy of the
corresponding Curie- Weiss system in which every spin interacts equally with every other
spin.

1. Introduction

In 1966 Lebowitz and Penrose [1] proved that the free energy of a
classical system of particles in v-dimensions with pair potential υ(v]
of Kac type,

(1.1)

approaches the van der Waals free energy with Maxwell construction
in the limit y->0+ (after the thermodynamic limit) provided the short
range repulsive (hard core) part of the potential q(r) and the long range
attractive part of the potential yvρ(yr) satisfied certain conditions
(stated in [1]).

It is not difficult, as suggested by Lebowitz and Penrose, to extend the
analysis to Ising ferromagnets (or equivalently, attractive lattice gases)
and show that the classical Curie- Weiss theory of magnetism can be
obtained from a y->0+ limit [2].

Here we consider the n- vector model, first introduced by Stanley [3],
composed of a set of N, π-dimensional spins

S^ίS^S^.^SJ, i=l ,2, . . . ,N (1.2)

occupying the vertices of a v-dimensional lattice, with norm

/ n \ l / 2\\Si\\ = (ΣS?* =n"2 ί1-3)
and with interaction energy

E=~ Σ QijSfSj-H ΣS;, (1.4)



54 C. J. Thompson and H. Silver

where Qtj is the coupling constant between the ith and th spins and H
is the external magnetic field.

The main interest in this class of models stems from the fact that as
special cases of (1.4) one has the Ising model (n = 1), the planar classical
Heisenberg model (n = 2\ the classical Heisenberg model (n = 3) and
the spherical model (n-»oo) [4, 5].

Our concern here is with the y->0+ limit (v and n fixed) of (1.4)
for a potential of Kac type

Qij = f Q ( y \ r t - r j \ ) , (1.5)

where rf is the position vector of the z'th lattice site. We will assume
throughout (in order to guarantee the existence of the thermodynamic
limit) that ^

flf(0,y) = y v Σρ(y | ϊ | ) , (1.6)
i

where the sum extends over the infinite lattice, exists for all y > 0. In
addition, we assume that ρf j ^ 0, that

(1.7)

exists (as a Riemann integral) and that ρ(r) is everywhere bounded.
The normalized partition function is defined by

Q»(β,y) = \Zχ(*,y)T* Zχ(β,i) (1.8)
where β = (kT)~\

ZN(β,y)= f-f exp(-βE)dS1...dSN9 (1.9)
, I I S ι l l = »1/2

and
ZN(0, y) = [2τf/2n("-l)/2/Γ(n/2)']N . (1.10)

The limiting free energy per spin ψ(β, γ) is defined by

logβNG8,y), (1.11),

and our aim here is to prove the following

Theorem. For a system of n-dimensional spins with interaction energy
(14) and with free energy ψ(β, y) defined by (1.11)

(1.12)

where Iμ(x) is the modified Bessel function of the first kind of order μ, η
is the solution of

which minimizes the right hand side of (1.12), and the potential ρ^^O)
(1.5) satisfies the conditions (1.6) and (1.7).
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For the special case n = 1, (1.12) reduces to the classical
Curie- Weiss free energy [2] (since I 1 / 2 ( x ) = (πx/2)~1/2 sinh x and
I- 1/2 (x) = (πx/2)~1/2 cosh x). For n > l , Silver ef al [6] have shown
that the limiting free energy per spin for a Curie- Weiss system of N,
^-dimensional spins (1.2) and (1.3) with interaction energy

£' = -4r- Σ SfSj-H ΣSt (1.14)
l ^ i < 7 ^ Λ 7 i = l

is given by (1.12) and (1.13).
A complete discussion of the thermodynamics and critical behavior

of (1.12) (which is the same as for the ordinary, n = l, Curie- Weiss
theory) can be found in [6].

To prove the theorem we obtain upper and lower bounds on the
free energy φ(β,γ) (1.11) and show that the two bounds coalesce to
give the stated result in the limit y->0+.

2. Upper Bound on the Free Energy

For simplicity we impose periodic (Born Von Karman) boundary
conditions on the potential (1.5) so that

Σ Qιj =

for all i = 1, 2, ..., N [in the limit ΛΓ-»oo, gN(09 y) approaches 0(0, y) (1.6)].
We write the interaction energy (1.4) as fei = 0)

£=-1/2 Σ Qίj(Si-mH)'(Sj-mH)-l/2mH £ Qtjfa + Sj)
U-i U-i (2<2)

ί,j=l i = l

where H is the unit vector in the direction of H and m will be fixed in a
moment to give (1.12) as an upper bound on lim φ(j8, 7).

y-Ό +

Using (2.1) and (2.2) the normalized partition function (1.8) can be
written as

f » . J exp[/?/2 £ QώSi-
\\Si\\=nW L i , j=l

L ϊ,;=ι
X Qtj(St-mβ) (Sj-mfif) (2.3)
=ι J/c
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where //H
Q$(β, γ, m) = Zc

N(β, y, m)/ZN(Q, y) , (2.4)

N 1 N

exp I — βm2NgN(0, y)/2 -f (βnιgN(0, y) + /?//) ̂  £ Sf ΓQ JSj

(2.5)

ί exp[(j8mflfN(0,y) + fOH S]dSf
| |=«1/2 /

and < >c denotes an average with respect to the distribution function

Pc

N(S1,...,SN)=f[pc(Si), (2.6)
i = l

pc(S) = exp [_(βmgN(0, y) + βH)H- S]/ J
i is i^w 1 / 2 lz v

• exp ί(βmgN(Q, y) + βH)H 5] dS.

Making use of Jensen's inequality «expX>^exp<^» and the fact
that the spins occur independently in P£ (2.6), (2.3) gives

Σ Qιj«Sι>c - ™ti] «S;>C - mH) . (2.8)
j = l J

To obtain the desired lower bound on QN(β,y) we choose, since
<Sί>c = <5>c is independent of /, and from (2.7) and (2.12) below, in
the direction of H,

mH = (Syc, (2.9)
so that

,m) (2.10)

To evaluate <5>c and Q^(β, y, m) we need the following results:

f exp(α 5)rf5-2π"/2π("-1)/2/n/2-1(π1/2 | |α||)/(n1/2 | |α||/2)"/2"1 (2.11)

and

(2.11) can be found in Appendix A Silver et al [6] and (2.12) follows

from (2.11) and the fact that - (x~α/α(x))- x"α/α+1(x).
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From the definitions of Q^(β, y, m) (2.4) and <S>C (2.9) we obtain
from (2.11) and (2.12) respectively,

Qc

N(β, y, m) = [7>/2)]w exp [ - βm2 NgN(0, y)/2]

(2.13)

and
m = (SycΉ

j Spc(S)dS\ H

Defining
η = mn-112, (2.15)

and allowing y to approach zero after N approaches infinity, η becomes
a solution of (1.13) and from (1.11), (2.10) and (2.13)

lim ψ(β,γ)= lim Urn (-^AΓMogQ^y))
y-0 + 7-0+ JV-oo O 16)

where ιpc(^) is the right hand side of (1.12).
This completes the derivation of the upper bound.

3. Lower Bound on the Free Energy

We begin by writting

NU, 7) = IZN(0, y)-] -^xp(-Nnfρ(Q) β/2) .

• f - f expLβ/2 f fQWrt-rjDSfSj + βH ΣsίfldSt (3.1)
! | S i l l = n 1 / 2 L i , j=l i = l J i = l

where a diagonal term (ί=j) has been added and subtracted from the
quadratic term, with ρ(0) chosen (sufficiently large) to make

N

Σ yv@(y\rί ~~ rj\) $i ' Sj positive definite.
U=ι

We can then use the following elementary generalization of a well
known identity [7],

exp (#2 £ QiJSi'S\=(2nΓNn/2(ΌQtρΓn/2 (3.2)
\ i.7 = l /

oo / N N \ N

J .- jexp -1/2
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which is valid for any positive definite symmetric matrix ρ = (ρ )̂ and
real n-dimensional vectors Sί9 to write

ftv(A 7) = [ZN(0, rXΓ1 exp(- Nnf ρ(0) β/2) (2πΓN"<2

• ί-ί Y\dst ] -ίΓμx,

e x p - l / 2 (ρ-%XΓX;.+
\ U=l i = l

Interchanging orders of integration we then obtain

QN(β, 7) = ίΓ(n/2)-]N exp(-Nnfρ(0) β/2) (2πΓNn/2

Γ JV

-1/2 £ (ρ-%Xj ^+l/
-oo 1 = 1 L ί,j = l

A ™
n

where use has been made of (2.11) and in anticipation of the next step

/ N \we have added and subtracted a term £ ||^||2/2z in the exponent.
\i = l /

To obtain an upper bound for QN(β, y) we first increase the right
hand side of (3.4) by replacing ||/?1/2X/ + /?H|| by the larger quantity
βl/2 \\Xt\\ + βH (this follows from the fact that 7μ(|α|)/|α|μ is an increasing
function of |α|) and then maximize each term in the resulting product
in (3.4) separately for each i. The maximum occurs for ||Xf ]| = X a solution
of

X/z = (βnY<2 In/2(n^2(β^2X + βH))/In/2 - , (n^2(β^2X + βH)) . (3.5)

The remaining integral in (3.4) can then be performed immediately
to give

QN(β, y) ̂  [_Γ(n/2}-\N exp(-Nnyvρ(0) β/2) [Det(/ - ρ/z)] '"/2 (3.6)

where η is defined by

η = Xz~1(βnΓ1'2

The manipulation leading to (3.6) obviously requires the matrix
/ — ρ/z to be positive definite, which will certainly be the case if z is
greater than the maximum eigenvalue of ρ. For N = mv spins located
on the vertices of a regular v-dimensional hypercubic lattice the eigen-
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values of ρ are given by

A(k) = f Σ Q(y I I 'ID exp(2πifc ϊ/m) (3.8)
i

where the sum extends over all lattice vectors /, including / = 0. Since
the / = 0 term is immaterial for sufficiently small γ (ρ(0), of order unity,
was chosen to make all λ(k) > 0) and the maximum eigenvalue is A(0)
(since we are assuming all ρ(Jf)^O), the results (3.6) and (3.7) are valid
as long as, from (2.1),

z > f Σ e ( r l l f l l ) = 0N(0,y). (3.9)
( Φ O

Now since ρ is a Toeplitz matrix, Szego's theorem [8] gives

/ v(z,)0=limΛr 1logDet(/-ρ/z)
"^ (3.10)

= (2π)-"2f Jlog(l-0(e,y)/z)d*0
δ

where, noting (3.8),

It follows then from (3.6) that

ψ(β, γ)=- im (NβΓ1 log ew(& 7)

Λ-ι, » / 2 - « * « m~-^ log— - — ^ ^ (3.12)

for all
z>ff(0,y) . (3.13)

Taking the limit z->g(0, γ)+ in (3.7) and (3.12), η becomes η given by
(1.13) in the limit y->0+, the first two terms in (3.12) become ψc(β)
(2.16) [the right hand side of (1.12)] and since ρ(0) is of order unity

lim ψ(β, γ) ̂  ψc(β) + lim n(2βΓ ' /v(ff(0, γ), γ) . (3.14)

In view of the upper bound (2.16), the theorem will be proved once
we have shown that the second term in (3.14) is zero.

Consider first the case v = 1. From (3.11) we have

g(θ,γ) = 2γ Σ £?(?/) cos /<9 (3.15)
1=1

which can be approximated arbitrarily closely for small γ by

G(0, y) = 2 J ρ(X) cos(ΘX/γ) dX . (3.16)
δ
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Since we are assuming that ρ(X) is bounded for 0^ X< oo and that
00

J ρ(X) dX exists (as a Riemann integral), G(θ, y) and hence g(θ, y)
b
approach zero as y->0+ by the Riemann-Lebesgue lemma, for all
ε^θ<2π and (arbitrarily small) £>0. It follows almost immediately
from (3.10) that /ι(g(0, y), y) also approaches zero as y-»0+.

The case of arbitrary v is a straightforward generalization of the
above argument.
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