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Abstract. We show that at low temperature an Ising spin system with antiferromagnetic
interaction in a small enough external magnetic field has only one translationally invariant
state.

Introduction

We consider an Ising antiferromagnet with nearest neighbour
interaction in a finite box A on a two-dimensional lattice Z? i.e. at each
point x; of the lattice there is a spin o, = + 1. The conditional probability
of a spin-configuration {¢} in A for a given boundary configuration z
is proportional e ##4(@ where

H,(g)=J Z (aiaj+1)—h20i+J > (oy7;+1) 0.1)
& IR
j¢A

7; belongs to the first external layer, J is pair interaction, 4 is an external
magnetic field, f is the reciprocal temperature. A boundary condition
for the system in the box A is specified by giving a probability distribution
P,(z) for the boundary configuration z.

An (equilibrium) state of the infinite system is defined to be a family
of correlation functions {a, ;, for the finite subset S of Z>, obtained as

suitable thermodynamical limit of

<68>A‘,,,,,’PAE< I1 O'x,> with SCA and
A,h, B, Py

x, €S

O)anppa= Z Py(@)<0s) a4, p.nz
T
i.e. of spin-correlation functions for a sequence of finite boxes with some
boundary condition P,.

* Permanent address: Francesco di Liberto Istituto di Fisica Teorica dell’Universita
Mostra d’Oltremare pad. 19 — Napoli — Italy.
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The study of the limiting properties of {as) 4 . ,, for ferromagnetic
interaction has been done so far using Griffith’s inequalities as an
essential tool. In the antiferromagnetic case such inequalities (or their
generalizations [1]) do not seem useful to us.

Our method will be rather different and will consist in expressing
the spin correlation functions in terms of ‘outer contours correlation
functions’.

In Sec.I we will use only ‘closed” boundary conditions: P,(z)=ZX,
defined by putting T = +1(—1) for all spin in even (odd) sites; X, the
reversed condition.

For any given spin configuration {g} in A we draw all the unit
segments which separate nearest neighbours with equal spin; we find
then a set of compatible! self-avoiding lines, ie. closed contours?
Among the contours associated to {g} we call ‘outer’ those which
can be connected to the boundary of A by a broken line without crossing
other contours.

Then we define equations for outer contours correlation functions in
an external magnetic field, for antiferromagnetic interaction. The
equations are similar to the ones used by Minlos and Sinai [3] in the
ferromagnetic case with non-zero field, but they are different in some
essential aspect, in such a way that an argument of Dobruschin [6]
for the existence of the antiferromagnetic phases can be used to estimate
the magnitude of the kernel of the equations.

In Sec. 2 we prove the uniqueness of the translation invariant state
for B large enough and h fixed and small.

The proof follows the outline of [2] but in a different context.

Section 1: Outer Contours Correlation Functions Equations
for the Ising Antiferromagnet in an External Field

Let A4 be a rectangular box in a two dimensional lattice Z2 with
closed condition X; or ¥,. By (0.1) the energy of the configuration {c}
to which is associated a set of closed contours {y} is

Hy(@)=2J ) [yl —h(N*—=N") (L1
v
where
[yl = length of y

N* =number of spins + in {g} .

! Two different contours are compatible if they have in common at most corners.
2 For a much more extended discussion of this point see [5].
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Fig. 1

Moreover, if {g} in A has X ={I';, I, ... I,} as a set of outer contours,
(1.1) can be written:

Hyl@)=2J 3 I[+2J ) Y Pl=h(N*=N") (1.2)

eX Irexycr

where y CI' means that the enclosed regions 6(y), 0(I') are such that
0(y) CB(I') (see Figure)

Using the equivalence relation between “lattice gas” and spin system
(cfr. [8]) we are able to find the geometrical identity:

(N*=N7)= Y (" =3I0)+ 3 % (" —3WvD = 3(04" =314 (1.3)

I'eX IreX ycr
where

|4} =length of the boundary I',
IT,/* number of spins t = +1 along I',
|-|* = length of the subset of segments of the contour (-)
which separate pairs of positive nearest neighbours.

The last term in (1.3) is a constant which depends only on the region A.
So inserting (1.3) in (1,2) we find:

H,(g) = FZX[IFI (2J—hn(I)) + ZF vl (2J— hf?(V))J+ const.(4) (1.4)
where
A 1

_ < <
ol 3 and 2:17(v)=

—

n(y) 5
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Notice that 5(y) depends also on I' and on the number of contours
which contain y. We will always take into account this dependence
only implicitly, in order not to burden the notation.

We shall now write down explicit expressions for outer contour
correlation functions and then, derive the equations for such functions
by a slight (but, for our purposes, crucial) modification of the method
of Minlos and Sinai.

Let 2,(X) be the probability for a spin configuration in A for which
the outer contours are I';, I, ... [,.

We can write:

exp (= ¥ Q=D LOX) o (15

_ reX =
Z4X)= Z(A) T Z()
where Z(A)= ) exp (—ﬂ Y r@eJ- hn(I“))) {(6(X)) is the partition
X IeX

function for A and

LO(X) = IT 2. apfﬁ lecJ—hqu (1.6)

i=1 [} ye{r}
0(y)CO(Ty)
vali=¢

The correlation function for the set X is precisely by definition:

doxoy) _ 5 LOX)-LO0) (oo ay 17)

w=2"Z0 ~ 2z

where the sum is over the set Y of outer contours such that XuY is a
collection of outer compatible contours.

Definition. Let 4 ,(X) be the collection of spin configurations in A
such that X ={I',, I, ... I} is a subset of the set of contours.

The set {I, ... I} will be denoted by XV and #%:(X™) will be the
subset of elements of % ,(X) such that X is a subset of outer and that
no outer contour “intersects” or embraces® the curve I7;.

We say that I' is “intersecting the curve I';” when I crosses I'; or,
when I'n I} £ ¢ and ()N O(I)) = .

Notice that our set £%:(XV) differs from the corresponding one in
Ref. [3] which does not include the configurations containing contours
which intersect the curve I'; and lie inside 6(I';).

This point will make our result different from that of Minlos and
Sinai. Let now

0 F (1)
Qﬂl(X(l))EgA(gﬁl(X(l)))= Z ¢ (g(rl)) C(O(X UY))

) 70 (1.8)

3 Among the embracing contours there is I, itself.
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where Y is just the same as above and {°(6(I',)) is given by the contribution
of all the spin-configurations in 6(I';) for which no outer contour
coincide with the curve I7.

In addition since X =I', X, (1.7) can be written:

{ory)- O™ uy))

L(X)= : 19
eX=3 70 (19)

Comparing (1.8) and (1.9) we obtain:

ea(X)=v(I") ¢ (X)) (1.10)
where o)

Now we shall write down (following Minlos and Sinai [3]) the equations
for the outer contours correlation functions.

Let X" =set of outer contours ‘intersecting’ the curve I'y and
such that 6(X")C 4

X' =set of outer contours embracing the curve I'; and
such that (X")CA.

From the previous definition it follows:
B XV)=B,X") - ) B,V ox")— ) BXPUx) (1.12)
x"eX"” x'eX’
Then, since the elements of X" are not mutually incompatible, for
the related probabilities we have:
o XM =0,X)+ ¥ Y (=DeXPUT)= ) e XPux)

k=1 T:N(T)=k x'eX’
TcX"

This relation together with (1.10) gives

0=y [esXM)+ 3 3 (=1 e XPUT)
k=1 T:N(T)=k
rex (1.14)

— 2 e (XPux)

x'eX'

We will write for an infinite box:

Q(X)=V(F1)[Q(X“’)+ YOy (=DexMuT)— Y e(XMux)

k=1 T:N(T)=k x'eX’
Tcx"

(1.15)
where now X, X', X” are in an infinite box.

21 Commun. math Phys, Vol.29
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Relation (1.15) can be written as an integral equation
o=u+A¢ (1.16)
in a Banach space 9 whose elements are infinite sequences:
f={filT), fL([ L) ... Ty, T, ... ) ...}

with the following norm:

Lf (X)I
/1= sgp (I~ PO
where { denote a constant greater then 1 and t =2J— %
In (1.16)
a(X)=0 if NX)>1

=y(I) if NX)=1 and X={I,}
and A acts in the following manner on the generic element f

AN X)=v(T)[fXD)+ 3 Y (=D fEDUT)
k=1 T:N(T)=k
Texr (1.17)
- ¥ f@xvux)
x'eX’
Observe that in the kernel of (1.16) the term v(I';) is slightly different
from the corresponding one in the equations of Minlos and Sinai [3].

Moreover in their case (J <0 and h = 0) it is rather hard to construct
an upper bound for the kernel.

In Appendix I we will show that in our case (J >0 and &+ 0) for our
modified kernel the use of the T transformation (introduced by
Dobruschin [6]) gives us quite easily a good estimate, which then
ensures, in a standard way, the right convergence properties for the
solutions of (1.16).

Section 2: Uniqueness of the Translationally Invariant State

Here we prove our main result.
First let us give a basic result due to Lanford and Ruelle [7].

Proposition I. If <o, ...0, >, ,={0s)s, is a translation invariant
state, then one can find a suitable sequence of P,(z) such that

<0'S>/i,h = /}lj{}o <_0'_S>P,.,ﬁ,h (2.1

4 If X = {I';} the term X’ = ¢ and T = ¢ is missing in the sum because it is included in a..
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where _ —
<JS>PA,ﬂ,h = Z P4(z) <GS>1,ﬂ,h
and 51
< S>'£,ﬁ,h = _|/1_| Z <ax1 +q - st+a>g,[},h (22)
aeZ’?
:S+tacA

We are now ready to formulate the theorem:

Theorem: Let {og)} , be an arbitrary translationally invariant state
onZ* and P¥(z) a sequence of boundary conditions such that

(osyfn= /}1_1}30 @P;,ﬁ,h
then if his fixed and f is large enough, the following relation holds:

{osypn, pn=PE, B, h) 05>5, pu+ (1 —a(PF, B, h) {TsD5, .1
+ (A4, B, h, P§)
where (A, B, h, P¥) decreases to zero as A goes to infinity and
lim a(PY, B, )=}

Proof. Observe first that for any fixed z, each spin-configuration {g}
in A will be associated to a set of closed contours {y} and a set of lines
(open contours): (4, 4,, ..., 4,) which begin and end on the boundary,
dividing the box A into disjoint regions 0, ... 0,;(p <k + 1) each with
closed boundary condition X, or X,.

The energy for {g} will now be

HA(G)_Zlyl(zj hn(y)) +ZV»I(2J hn(2))+const.  (2.3)

Notice that #n(4) depends only on 4 and on the boundary condition
z whereas #(y) depends also on the boundary condition X;(i=1,2)
relative to 0, (ge(1 ... p)) to which y belongs, and on the number of
countours which contain 7.

As in Sec. 1 we will always take into account this dependence only
implicitly.

Moreover a simple algebraic calculation based on the defining relation

<Us>zﬁh— Z Z

R (2.4)
(as> exp [—ﬁ Xl 27— hn(2) - ﬁjZ Iyl 2T — hn(yj))]

Z (1)

(where Z (A)= )

Ao Ak V1o V0

2.5
exp [— BY N (20— hn(Z)) — B X Iyl (27— hn(v,—))] 2
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is the partition function for the box A with boundary condition z)
and relations (2.1) and (2.2), provides the following expression:

I 1
<0's>P;q,p,h= ZP,T(I)W Zz:2 z PA A n {Osnp, +a>0 SuBh
- :S+acA (2.6)

p
where () (Sn0)=S;%,=%, or X, |A|=volume of A and
i=1

exp = L1 (27— hn () = p Xy 2]~ ()]

Py .. h)= Y
V1. ¥n ZL(A) (2.7)

Our proof needs some preliminary statements:

Lemma 1. Given a boundary condition T on the box A with volume
|A| = L? the probability of having a set of open contours A, A, ... A, such that
Y |\l =wL with B and h such that B2J—%)=1In7 and w > 128 +27hf

is less than ¢(L) where ¢(L) decreases to zero as L goes to infinity.
ie.
Py(r, wL)= Z Py(dy ... )= e(L).
zu |>wL
Lemma 2. For an arbitrary simply connected region D with closed
boundary condition X, or X,, and for B large enough the following relation

holds
|<0's>1),21,13,h - <GS>21,B,h| =/, ]/ ID|, B, h)

where f(S,]/|D|, B, h) is translationally invariant and decreases to zero as
|D| goes to infinity.
Proofs of Lemma 1 and Lemma 2 are given in Appendix II.
Using Lemma 1 the relation (2.6) can be written

Z Z PA(XI }'k)
l/” acl’ Are.. A
:S+ac 4 :X|4|<oL (28)

)
1 <Osno.+ad0. 5. pn+ cr6(L)

i=1

{osypypn= Z Pi(@)—+

where ¢, is a constant.
Let A; ., be the set of points at distance not exceeding 3L'?
from the set of contours A, ... ;.

The fraction of pointsin A, _,, isnotlarger than I[: ifX|]<oL.
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So the fraction of translations which bring some point of the set S
4/3
in A4, isless or equal to sz

Furthermore if L is big enough, the remaining translations (i.e. such
that (S+a)nA;,  ,, =¢) will bring the entire set S in the interior of
one of the regions 6,(i=1... p).

Let Z? be the set of translations which take S into the region 0,,
we shall have therefore:

D M )
IAI aeZ? lAI i=1 aeZ?
:S+tacAa :S+aco,

Stand,, ... =¢

Observe now that for L big enough we can write

Y Osiadonsopn= 2. (05400, 5,88+ staredo.zipn) (29)

aeZ? a€(Z})even

where (Z7)e,en 15 the subset of even translations in Z? and ¢ is a unit
translation.
Relation (2.8) can now be written

I p
<0's>p§1,p,h = Z Pi(1) Z Py(dy ... Ay Z
T Ao Ak i=1
) XAl <L (2.10)

Z (KOs+a20, 5,80+ {Tssaselo, 5080+ Cre(L)+ 12
(X} )oven

ar

Also by Lemma 2 and the relation (A1, 19) of Appendix II we have

051020580 T COsta+eonspn =$Osta)spn+{Ts+a)5, 5.1
+ 2f(S+ a’ B) h7 91)

Finally using the translation invariance of {og);, 5,4 <0s)s, 5., and
of (s, B, h, 8) together with
lim ¢(L)= lim f(S,B,h,0)=0
L—-aw V8-
1 & 1
lim — = —
Lo |A] 5 ae(lz,z)m“ 2

and ), P¥(z) =1 for every finite box A, we have:

(os)fn= /}1_{'1;‘0 <0's>134* =305, put %<0S>£2,ﬁ,h . QED.

Acknowledgements. 1 am greatly indebted to G. Gallavotti for having proposed the
probiem and for heipfui suggestions. Useful discussions with D. Capocaccia, M. Cassandro
and G. Ciccotti are also acknowledged.
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Appendix I

We give now an upper bound for

zor,)
OO (LD

and for the kernel of (1.16). We then show how these imply in a standard
way the right convergence properties for the solutions of the equations
for outer contours correlation functions.

Let A, be the union of 6(I';) and its first external layer. Let .,
be defined as the set of spin-configurations in A; such that I'; is an outer
contour.

If #e A 4, using (1.4), we can write:

Hy, (4)=|I'| 2J = hn(T)+ Y 12T —hn(y) (AL2)

ye£

v(ly) =

Letalsod=3, Aie {7} =T 4, {0} where the Dobruschin transformation
T,, [6] is defined by

0; it igo)
o; if ief(,) and j€0(I,) where

I

Ql

a)
b)
is the neighbour of i from below
if ief(y) and j,¢0(I,).

(AL3)

i
i

Ql

c) 0;=—0

Since T4, deletes the contour I'; and rises upward by one step the inner
contours we have:

Hy ()= 1T, | (27 — hn(I'y)) + Hy, (T4, 4) (AL4)

Remark now that T, is a one-to-one mapping between ¢, and a
subset of the configurations contributing to (°(0(I';)). Replacing in
(AL1) £°(6(I'y)) by a smaller number we have for v(I';) the following
upper bound:
Y exp(—BH,,(4)
W) < —f£%a (AL3)
UTY exp(—BH,(T44)

£eH 4,

and since ¥, is one-to-one

v(I') S exp(—BII | (27— hn(I)) < exp(—pt I ])
where (AL6)
SRS

Inequality (AL6) gives us a good estimate for the norm of 4 in (1.16).
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In fact let us equip M with the following norm

X
/1= sup % (AL7)

where { denotes a constant greater than 1.
Then by standard methods (cfr. [4]) one obtains that ||A||<1 for
(=3.2U% and e Fr<l.ou4 (AL8)
These conditions assure that the series which gives the iterated solutions
of (1.16) i.e.
o(X)= (Z Aka> (X) (AL9)

k=0
is convergent and satisfies the inequality
lo(X)| < const. - ({e~FHIXI (AL10)

(which is obvious for finite volume correlation functions). Similar
properties hold for the kernel of the finite volume equation:

04=Xa%+ %1404 (AL11)
where x4 is such that
(xaS)(X)=0 for  Xq4
=f(X) for XcCA.
Finally, we now give a sketch of how inequality (AI.6) can be used to

prove the following result (cfr. [4]).

Theorem: Let A be an arbitrary region on the lattice Z?, then, for an
arbitrary collection of outer contours X enclosed in A, the hypotheses
(ALS) assure that

16X = [x40(X) — 04(X)| < const. ((e™P)XI. (3Ce™ Pty *-T) (AL12)
where t(X, I ()= ;nlg(l d(l;, I'y) and d(I;, I' ) = distance from the boundary
I, of the outer contour I, i

In fact acting with y, on (1.16) and inserting the terms +y,Ay 0
one has:

240 = Xa%+ X4 AL4C + X4 A(C — X40) (AL13)
then subtracting relation (AI.11) from the last one, we have:
o0=¢+y A
L (AL14)

where d=y,0—0, and E=y,A(@— x40)-
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It is a matter of standard manipulation to show (cfr. [4]) how inequality
(AL8) implies that

EX) S (e PYH (3gemPryn (AL15)

where ¢ is a constant which is the same for all components of £. The
final results follows if one shows that the series 6= Y 4*¢ converges

k
and that the vector § satisfies the relation (AI.12). But this is an immediate
consequence of the following Lemma (cfr. [4]).

Lemma. Let A be some set of lattice points and let the vector £ € M
satisfy the condition (Al.15) for each set of outer contours X.

Then the vector &' = A& for { and B which satisfy conditions (ALS),
is such that

€01 = (48 (X)| < Be(Le™P)X (3Le~Fry-In

for any set X, where B = const. < 1.
This concludes the sketch.

Appendix 11

Here we prove Lemma 1 and Lemma 2.

Let us begin with the proof of Lemma 1.

Observe first that since the open contours A, 4, ... 4, divide the
box A into disjoint regions 6, ...60,(p<k+ 1) with closed boundary
conditions, we can write

Pz, 0L)= )
ik {I}1...{T}p
ElM—

p

exp[ BZMI(ZJ hn(i)J ﬂ (6T y) - L0
Z ()

_ Z(y ... 3T}, ... {T'},)
=L ot Z.(A) (AILD)

Al zol

B Z0y . 1)
- 1,;@ Z(A)

|4zl
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where {I'}, is a set of outer contours in 6,(g=1 ... p) associated with a
spin- conflguratlon {a} in A. Z(O(T; ig) is defined as in the (1.5) and (1.6)
for the region 0(I7,).

This relation defines Z(Ay oo dg AT} .. {T'},) and Z(4y ... 4y). Z(A)
(previously defined in (2.5)), is the partition function for the region A
with boundary condition z.

A clear physical picture of what is behind the following formal proof
can be obtained by observing that our goal is to give an upper bound to
% for every fixed set 4, ... A, such that X£|4;|=wL. One way
Z(Ay oo gy T}y . AT })

Z(4)
in place of Z (/) the term Z@ys 2, .. lk, {r} ... {rHto which contributes
only one set of open contours 1;,4, ... 4;, lying along the boundary,
and of closed ones {I'}, ... {I'}, equal to those present at the numerator.

Obviously Z(A; ... 4, {T'}y ... {T'},) S Z (A).

If we apply Dobruschin’s transformation (Al3) to {o}, 5, (ie.
restriction to 0, of the spin-configuration contributing to Z(4, ... 4,
{I'}, ... {I'},) for each region 6, (1 < g < p) which has boundary condition
2, we brmg the open contours Ay ... A to Ay, Ay ... Ay and shift by one
step in a suitable lattice direction (for ex. upward) the closed ones {I'},
(and {y}, inside {I'},)).

This procedure w1ll be meanmgful provided the shifted positions of
{I'}, are compatible with 215 Ay ..

But this is not always the case, so we need a preliminary step. We
must take away from {¢} contributing to Z(A; ... 4, Iy ... (L4, ... I})
the closed contours {I"’} that touch the inner layer surrounding the
boundary of A4 and then give an upper bound f([,, ... I,) for their
contribution.

After that we shall write:

ZGy o s Ty oo T iy o TS f(Copy o T Z(y o Ao {T}) (AIL2)

to do so is by taking as denominator of

where now Z depends on the closed outer contours {I'}= (I ... T,
and other new ones not reaching the inner layer).

Then
Z0y.d) oy D)2 g ()
ZE(A) - (F1...TsTg+1...Tp) Z(z’l A’k’ {r})

AlIlL3
f(T}4y...T)) exp[ BZMI(ZJ hn(l))] (AIL3)

i+ ,Z I €Xp [_ B Z Mil (2J—' hﬂ(/li))]

IIA
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putting #(1,) = —1 and X |1,| = ¢4 L with 0 <& <1 we have

exp (~frX )
< y r
=2y O I e g ma
Let us now perform the preliminary step.
Let A, be the region A subtracted from the inner layer along the
boundary I'y and L, the length of I', . Obviously L, <4L.
We call {I""} the set of closed outer contour intersecting I',,>. From
the defining relation (AII.1) we can write the {I'} dependence of

Z0y oo Ty o Ly T) s LO))... LOW) O ). LOT).-

Let us also define on the spin-configurations ¢, contributing to
{(6(")) a suitable Dobruschin transformation ¥’ (for ex. to the right)
which deletes contour I'” and shifts by one step (to the right) any contour
inside I".
Then using the relations (AI.4) we obtain
Lo ) <exp[—BIr @I—hn(TN] Y exp[—BHy(T)] (AILG)
£eH oy

We must remark that it may happen that some new outer contour I™”

contributing to Y exp[— fHy(T4)] can intersect Ty,. In such
£eX o)
a case we can apply again a suitable T” to the configurations {T}.

It is clear that in this manner we take away from the spin-configura-
tions contributing to {(A(I'")) all the unwanted contours. So we must
replace inequality (AIL.6) with the much more general

Lo sexp[—BIT'| 2T — hn(T) = BIT"| (2T = hn(I")]
Vo exp[—BHy (T T4)]
£eH o)
Such procedure will be repeated for all {(A(I")) each time with the
proper Dobruschin transformations.

So we have
ST L)Sexp[—ptZ|I"|—ptZ|I"] (AIL8)
where I'” are contours which in the primitive configuration where
inside I"".
This is the end of the preliminary step.
Inserting result (AIL8) into the relation (AIL.4) we-have:

_ 1
26,3 _ SP(PTI) 5
Z(A) T exp(=PAL(t+N) qye1 ooy

(AIL4)

(AIL7)

exp(— BtZ(I|— BtZ(I™])
(AIL9)

5 Intersection, since Iy, does not have inner vertex, cannot take place in corner points.
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Observe that we have
e Bl = prz|r” |< Z (LO) Z e Btlvir (AIL.10)

Tse1 Thdl") r=0\ T/ 30

which together with the fact that the number of contours of length s
passing through a fixed point does not exceed 3% and that ft>In3
gives:

Lo L 0 r 1 Ly
right side of (AIL10)< ) ( ro) ( > (3e““)s) < (I——SF‘—)
s=1 -

1 4L
( 1— 3e"”)

and for Bt = 1n4 gives: right side of (AIL10) < e*#'L . (AIL11)
Inserting (AII.11) and (AIL9) in (AIL.1) we have
Pyt wL)<exp[4BtL+4LB(t+h] 3  exp (_ pry M,-]) (AIL12)

Aenae
X|hlzoL

lIA

Remember that the number of ways of choosing k end points among the
2k
2k which are possible for 4,1, ... A, is ( I ) < 2%k So it follows:
z ~ﬁz):u,|§22k Z (3e—tfr)ll+lz+~-~+lk (AII.13)

CAr oo e
):Ml>wL

Putl +1,+- -+, =sthen
oo} - 1 e8]
right side of (AIL13) <22k )" (3e /'y (Z 1) <22 Y (Be P
s=wlL - s=wL
Finally if ft=1n7 and w = 128 + 27 Sk since 2k <4L we will find:
paz, L)< ce vl =¢(L) (AIL14)

where 1 >0 for every z and ¢ is a constant. Now we prove Lemma 2.
First remember the defining relation:

Gs)eXp[ ﬁZlvl(U hn v,))]
<O'S>D,>:,,ﬂ,h: Z

Vi ¥n ZE;(A)
Now using, as in Sec. I, capital and small letters I', y for outer and inner

contours, by simple calculations one finds:®
Pmax

<O'S>D,2,,/3,h= z 2 Z or (X) l—[ <Us >a(r.) Elh/}(O-R)Zl

Re?(S) p=1 X:NX)=p D2, I'ex

:0(X)nS=S\R (AIL16)

(AIL15)

% We omit the f,h dependence in outer contour correlation functions in order not
to burden the notation.
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where X ={I,..I,} with 0)CD S;=Sn0(;}); R=S\JS;
P(S)=parts of S; P N(S\R); (@x)s, = [] 0, where o, is the

x,€R

spin value in x; when it is outside every contour and X, is the boundary
condition, and

ex(X)=ep(X)+ YOOY (—1fep(XuT)  (AILLT)

k=1 T:N(T)=k
TCcX'

where k_,. SN(R) and X' ={I":0(I''nR +¢,06(I')C D}. Observe that

max =

in (AIL.17) as R=S then X = {¢} and gp(¢)=1 so (AIl.17) becomes:

Koo
os(X)=1+ 3% > (=1ep(puT).
D k=1 T:N(T)=k

In similar way for an infinite box we can write:

Gnpn= T S Y ox () [T <osdewosm(ns, (AILIS)

Re?(S) p=1 X:NX)=p P I'ieX
0(X)nS=S\R
where now the sets X, T are not restricted to any finite region.
From now on we will call X, T the sets of contours extending outside D.
It is easy to recognize by inspection of (AIL.18) that the following
relation holds:

(os+€s5,,5,8=X05)5, 8.1 (AIL19)

where e is the unit translation.
Assume now that the right side of (AII.16) and of (AII.18) are absolu-
tely convergent series’, then we can write:

|<<TS>1),21 ph— <0s>x,/3hl = z
Re?(S) p=1 X:N(X)=p
0(X)nS=S\R

“ler  (X) n <0's,>0(r.~),2.,/3,h(0'R)21

D LeX (AIL.20)
—0or (X) l—[ <0-S,<>0(I“,-),El,ﬁ,h(o-R)£1|

X I'eX

+ > X - Z lor (X) H_ 050 )z.pn(OR)z,]
Re2(S) p=1 X:N(X)=p Z I'eX
0(X)nS=S\R

Since the factor H {05,051 (0R)z, 15 equal in (AIL16) and (AIL18)
IieX
for the finite region D, it can be factorized in (AIL.20), in any case its

7 The following proof is an indirect test for this assumption.
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upper bound is 1, so we can omit it from (AII.20). Splitting the second
term in the right-side of (AIL.20) for contours X, T and X, T by (AIL.17)
one has:
KosPps,pn — 05, pnl <

Ko

<Y 5 Y Y s (XUT)— g, (XUT)

T Re?(S) p=1 X:NX)=p k=0 T:N(T)=k

0(X)nS=5\R TC X'
P Ko _
+ X X Y n Y les(xuT) (AIL21)
Re?(S) p=1 X:N(X)=p k=0T:N(T)=k
0(X)nS=S\R TcX'

Pmax

N D D 014

Re?(S) p=1 X:N(X)=p k=0 T:N(T)=k
0(X)nS=S\R TcX'uX’

Observe that from (AI.18) and related hypotheses
lo3,(X UT) — 0ps, (X U T)| < const({e #)XI+IT1. (3¢~ FyXvT. o)
where t(X U T, Ip)= nrenxiBT 1(I;, I'p) and also by (AI.10) that:
oy, (X U T)| < const. (e~ FHXI*ITI

Notice finally that the following inequality is true:

Pmax Komax N(S)
Yy <20y Y (AIL2)
Re?(S) p=1 X:N(X)=p k=0 T:N(T)=k k=1Y:N(Y)=k
0(X)nS=S\R TcX’

where Y ={I": 0(I')nS % ¢}. We are now ready to obtain the following
bound to (AIL.21)
N(S)

(AIL21) <2¥® % %" const. (e #)¥I (3ge~Fry - Tn)
k=1Y:N{Y)=k

YcD
v (AIL.23)
k=

+28®*L %N const. (Le” P!
1Y:NY)=k

Y¢D

In order to perform an explicit calculation of the right-hand side
of (AI1.29) let D be so big that the square box 4 =[? containing S and
centered at the center of mass of S, can lie in D at a distance [ from I7,.

If this is the case, [ increases to infinity together with ]/|D|. Some
more remarks:

I) Vx;esS Y (e PNy Y (3Le Py (AI1.24)

Ir:0(I)sx; q r=2q

where g is the distance, on a straight line starting at x;, of an arbitrary
point Q from x; itself.
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I) if I'; crosses I'y, then in (AIL.24) g =1

III) if I'; is at distance less or equal to 4 from I, then ¢ =4

Now we split up the first sum in the right-hand side of (AIL.23) in
two terms: one relative to I' s.t. ©(I', [p)= & and the other to I s.t.
©(I, Ip) <% (in the latter one t(I", I'y)~0). Moreover since the number
N(S)

of ways of choosing k points among N(S) is ( K

) we have:

(AIL23)§2N<S)Z§)<NI({S))(Z y (%e“")’)"

q=0r=2g

+2N<S):§)( (8 ) (Z Y 3Ce—ﬂr>

0r=2q

Z (3Ce Pty (3¢ePry=0

Loy
zr=

+2N(S)+1 Z k<NI(<S))<Z Z (3{6—1“)’)"_1

k=1 q=0rz2q

(AIL.25)

II\/

qzlrz2gq

Now using again hypothesis (AI.8) we obtain:

'<O-S>D,Z1,ﬂ,h - <Us>z,ph| =q ZMS)(3‘:3—B')”2 + ¢4 ZN(S)N(S) (3§3_Bt)l

+ 2NOFLN(S) ¢, (3LePY)? (AIL.26)
where

1 1 N(S)
“a= ( T3t —9c2e—2ﬁ')) '
The right-hand side of (AIL.26) decreases to zero as |/|D| goes to infinity.
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