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Abstract. In a previous paper the statistics of a system of identical particles moving
in an external field depending on a scale factor has been studied in the classical framework.
In particular the case in which the scale factor increases to infinity (macroscopic limit)
has been considered.

In the present paper the quantum extension is discussed.

1. Introduction

In some recent papers the thermodynamic behaviour of particle
systems in the presence of external macroscopic fields has been discussed
in the framework of rigorous statistical mechanics [1-4]. (In the sequel
Ref. [4] will be denoted as I.) In this paper we want to obtain the quantum
extension of the previous results.

The approach is similar to the classical one. As well known an external
field containing a particle gas in thermodynamic equilibrium is considered
macroscopic if it is possible to divide the whole space in subregions small
enough for the potential to be approximately constant in them, but large
enough to consider in each region statistically independent systems.

We simulate a similar situation considering a system of identical
interacting particles in an external field depending on a scale factor.
The macroscopic limit is achieved letting the scale factor go to infinity.
We study the grand partition function and as a result we again find a link
between the so obtained pressure and the usual one (barometric formula).

Let us now discuss the features typical of the quantum case. As in I,
we want to divide the whole space in subregions and to express the total
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pressure as a sum of pressure relative to these different subregions.
It is however well known that the quantum pressure depends, for finite
volume at least, on the walls of the container1; this reflects on the
different boundary conditions we must impose on the wave functions:
for instance, infinite repulsive walls impose vanishing boundary con-
ditions, while elastic walls produce normal boundary conditions.
Choosing the vanishing ones we increase, by the uncertainty principle,
the energy eigenvalues, so that the total pressure decreases. On the other
hand if we impose normal boundary conditions, a partition of the space
produces a decrease of the energy spectrum (Minimax principle) and
so the total pressure increases [5].

We use the former choice to obtain a lower bound for the "macro-
scopic" pressure and the latter to find an upper bound. Finally the
barometric formula is derived from the equality of the lower and the
upper bound. This holds if the pressure does not depend on the boundary
conditions. This independence has been proved in some case (as will
be seen in Section 3); nevertheless, though quite acceptable from a
physical point of view, it has not yet been obtained in the most general
case.

As in I we consider particles interacting via superstable potentials.
This allows to exclude too high local densities [6].

In Section 2 we state the general framework in which we work. In
Section 3 we find a lower and an upper bound to the pressure and
finally the barometric formula. In Section 4 we discuss an application
to the model of a one dimensional gas of identical particles interacting
pairwise via a repulsive inversely quadratic potential.

2. General Framework

We consider a system of quantal identical point particles, fermions
or bosons, interacting via a potential Φ and moving in the whole space IRV

under the action of an external potential V. For the sake of simplicity
we treat only pair interactions and we suppose that the potentials Φ and V
are not infinite apart from zero-measure regions (see below).

Definition 1. Let A ClRv be Lebesgue measurable2. For every neΈ+,
xl9...,xneΛ let X = (x l 9 ...,xn) denote the generic configuration in A.

1 The problem evidently arises also in classical mechanics, but it is generally assumed
that the range of the external potential which confines the particles in a box is vanishing
and with this assumption the surface effects are uniquely determined.

2 In the sequel we will only consider Lebesgue measurable regions in Rv so that we
will omit to mention it explicitely. Further the surfaces of these regions will be sufficiently
regular so that what we say in this section applies [7].
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We define the Hubert space 9){A) to be the linear space of square integrable
functions of X, properly symmetrized, equipped with the scalar product
defined by

n=l n- Λ \1Λ)

We then define ξf{Λ) to be the subspace of ξ>{Λ) of the functions with
a support on the configurations X such that CardX = n. We will write
in the sequel §[§>"] instead of §(IRV) [δw(R v)]. When a subspace 9M of
an Hubert space § is stable under the linear operator A acting on Jr>, we
denote by the same A the restriction to 93? of the operator.

Definition 2. Let Λl9Λ2CIRV,A1nA2 = 0 and AίuA2 = A then there
exists an isomorphism between the Hubert spaces ξ)(Λ) and ̂ (Ax) ® ξ>(Λ2),
namely

φ(X)eξ>(A1\

Further let AiΛJ be a linear operator on ξ>(Λx) and 1(Λ — Λλ) be the
unit operator on ξ>(Λ — ΛJ then we define on §(Λ) via the above iso-
morphism the operator

If A =W we simply write k{A^ instead of A(Λl9lR
v).

The physical observables of the system are then represented by
operators acting on ξ> (or ξ>{A) if the system is confined in the region A).
We need to specify a self-adjoint extension of the symmetric operator
which is generally used to represent the hamiltonian. The extension will
be studied introducing linear forms3 and using the following lemma.

Lemma 2 1. Let t be a densely defined, closed, positive form on § .
There exists a positive self-adjoint operator T with domain ^(T) dense in §
and such that

1) 3){Ί)C®(i) and t(φ9ψ) = (φ9Ύψ) for every φe@(Ί) and \pe9{i).
The operator T is uniquely determined by this condition.

2) S)(ϊ) is a core of t.
3) If ψ e @(T), χeξ> and t(φ, ψ) = (φ, χ) holds for every φ in a core

of t then ψe@(T) and

3 The general approach to this problem can be found in the mathematical literature [7]
for its application to statistical mechanics see Robinson [8] to its formalism we refer in
this paper. For instance Lemma 2.1 and 2.4 are respectively Proposition A.I and A.3 of
Ref. [8 a].
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4) 9{t) = @(Ί1/2) and t(φ9 ψ) = (T 1 / 2 φ, Ί1'2 xp) φ, ψ e 2(t)
3)' C 3){t) is a core of t if and only if it is a core of T 1 / 2 .

Analogous notations will be used for the operators, see Definition 1
and Definition 2, and for the corresponding forms.

We now define the operators N(Λ), zl[N(Λ), m], Vy and U{Λ) as
follows:

Definition 3

= {xpeξ>(Λ):3peΈ+ such that ψ(X) = 0 if CαrdX>p},

H
for

ceX

{Δ [N(Λ), m] ψ} (X) = δ(CardX - m) ψ(X),

where δ denotes the usual Kronecker symbol and m is a positive integer.

Definition 4

G §(Λ): ψ e 0[N(Λ)], J JX Σ V(ΎX) ψ(x) 2 < + °°

[V yφ] (X) = X V(γ x) ψ(X) for ψ e y

where v : IRv-> [0, oo] satisfies
(i) N v = {x G 1RV: v(x) =00} consists of a finite number of points in

each bounded region.
(ii) exp [ - v(x)~] is Riemann integrable in 1RV.

(iii) 3x0, α > v so that exp[ — v(xj] ^ \\x\\~α for | | x | | > x 0 .

Definition 5

ξ>{Λ) :ψe@{A [N(/l), m]}, i Σ Φ(\\χ-y\\)ψ(X)< 00

=4 Σ

where Φ : [0, 00] ->IRV satisfies
(i) Φ is Lebesgue measurable

(ii) the set N φ = {xeIRv: Φ(x)= 00} consists of a finite number of
points in each bounded region.

Δ [N(Λ), m] is a projector. N(yl), Vy and \J{Λ) are symmetric operators.
This property will be used in the proof of Lemma 2.3.

In correspondence to the above operators we introduce the densely
defined forms Δ\n(A),m], n(Λ\ vy and u(A).
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Definition 6. s4(A){β{A)~\ is the set of infinitely differentiable
[continuously differentiable] wave functions. Further the functions in
si {A) vanish outside of a compact region strictly contained in A.

We now define the kinetic energy forms t(A), t°(A\ t.

Definition 7

= t(v>,V>)= ί dX Σ I

and t(A) and ί°(yl) act analogously.
Since the above forms are positive, closable and densely defined [8],

they determine the self-adjoint operators T, T(A\ Ύ°(A) through
Lemma 2.1. T°(Λ) [T(Λ)] represents the kinetic energy of particles
contained in infinitely repulsive [perfectly elastic] walls.

We have now defined the kinetic and the potential energy (inter-
action + external energies) for our system. In order to write down the
total energy operator we would have to sum the above self-adjoint
operators. However this requires some care. In fact a sum of self-adjoint
operators is generally neither self-adjoint nor essentially self-adjoint.
On the other hand in order to completely specify the statistics of our
system we need a self-adjoint extension of the hamiltonian. In the
following Lemma 2.3 we will show that under general assumptions on
the configurational energy, Definition 11, the sums of the forms cor-
responding to the potential and kinetic energies are still densely defined,
bounded below and closable, so that they define an essentially self-
adjoint operator which will be taken as hamiltonian. It will be denoted
as the sum of the operators T, U and Vy, even if this sum has now a
generalized meaning.

Before proving Lemma 2.3 we state some definitions and we recall
a Lemma (Lemma 2.2) which will be often used in the sequel.

Definition 8. Given two forms, a and b, we say that a ̂  b if

Lemma 2.2. Let Al9A2 C1RV, A = A1\JA2, AίnA2 = 0 Then

The meaning of t°(Λl9Λ), t(Λί9A) is given in Definition 2. The proof
of the lemma is then a direct consequence of the definitions of the kinetic
energies.
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Definition 9 a. For λe!R+ and welRv let

Γλ(w) = {x 61RV: λ{wι -i)^xι< X(wl + \) i = 1,..., v}.

Definition 9b. For every x elRv we define |x| = max |xι|.

Definition 9 c. For every configuration X and region A C1RV we denote
by XnΛ the subconfiguration of X contained in A.

Definition 10. Stability. There exists Bs ^ 0 such that

u^ -Bsn

where u and n are defined in Definition 5 and Definition 3. The meaning
of the inequality is explicited in Definition 8.

Definition 11. Superstability. Φ, defined in Definition 5, can be
written as Φ = Φ' + Φ" where Φ' is stable and Φ" is a continuous non
negative function such that Φ"(0)>0. We will often use the following
property deriving from the superstability: there exist v4>0 and B^O
such that for every 01C Έ\ λ > 0 the following holds

u^ Σ [_Aή2(Γλ{r))-Bn{Γλ{r))-\.

Lemma 2.3. The form hγ — μ n (μ e 1R) defined as

y y y - μή) = y

is densely defined, bounded below and closable.

Proof. Domain of definition. The form is densely defined in the
Hubert space of functions with support in regions obtained by subtracting
neighbourhoods of the singularities of the potential energy and containing
a finite number of particles. The arbitrariness of this number and of those
neighbourhoods (together with Definition 4 (i) and Definition 5 (ii))
proves the thesis. Boundedness. By Definition 11 u can be written as
u = ιϊ + u" where u' arises from the stable interaction Φ' and u" from the
positive interaction Φ". Therefore there exist B so that the following
is true. For every bounded region A, A>0 and B^O can be found in
such a way that

u ^ lAή2(A) -Bn{Aj\ -Bn{W). (2.2)

By (ii) of Definition 4 we can choose A in Eq. (2.2) so that

ΛC = IR V -Λ. (2.3)
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Therefore

t-\-u + vy — μn^tu-\-vy — μn

^ Aή2(A) -(β + B + μ) ή(Λ) + [ϋy{Λc) ~

which is bounded below.
Closability. u + vy — μn is bounded below and it is implemented by

the symmetric operator U + Vy — μN so that it is closable (see for
instance 1.2.8 of Ref. [8 b]). Since t is also closable and so is the sum of
closable forms, the thesis is proved. Q.E.D.

In the sequel we shall assume the validity of the hypotheses Defini-
tion 1-Definition 11 without mentioning them explicitely.

In order to introduce the pressure both for bounded and unbounded
regions we need the following three Lemmata.

Lemma 2.4. [8]. Let t and t' be densely defined, closed, lower semi-
bounded forms on § and let T and T be the associated self-adjoint operators.

1) Let <3 be a core of t and 3F a finite family of orthonormal vectors
φeQ). The following conditions are equivalent

a) sup £ exp[-ί(φ,φ)] .

b) Tr^exp(-T)<oo
and if they are satisfied then

sup X exp[- ί (φ,φ)]=Tr f i [exp(-T)]

2) Consequently if t'^t and exp[ — T] is of trace class then

Tr^ exp ( - T') ^ Tr^ exp ( - T).

Lemma 2.5. There exist cί > 0, c2 > 0 such that for every I and m
positive integers the following holds

TW l ( o)) e x p ί j δ C T ^ ^ + UίΓjίOίJAίNίr.ίO))]}

^exp[βcιm + c2Γ - β(Am2rv - Bm)]

Tr δ ( Γ, ( 0 ) ) exp {- β[Ύ (Γ,(0)) + U (Γ, (0)) - μN (Γ,(0))]}

where A and B are defined in Definition 11: w 2:1 in Eq. (2.4).
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Proof. We have by Definition 11 and Lemma 2.2 in

^ Σ

+ Arn2Γv-Bm-cίm.

By use of Lemma 2.4 we obtain Eq. (2.4) with the notation

expc2 = T r β ( Γ l ( 0 ) ) e x p { -

this is finite if cx is positive. In the same way Eq. (2.5) can be checked.
Q.E.D.

Lemma 2.6. The operator exp{ — β[H y — μN]} is a trace class
operator in § .

Proof. We note that by Definition 11

£ i 2 (2.6)

where
v1 r= inf v(yx).

xeΓi(r)

The form in the r.h.s. is defined in the domain

Π ®[ί(A(r)) + AΛψ^r)) + ( t ; l f Γ - μ -

such that the sum in Eq. (2.6) converges. The form is closable ([8], 1.2.9).
Its domain is dense since it contains the wave functions infinitely often
differentiable with support in bounded regions and with finite number of
particles. To prove the lemma we have then to check the convergence of
the infinite product

Π Tr β ( Γ l ( Γ ) ) exp{-i8[T + 4 N 2 + ( t ; l i r - B - μ ) N ] } g f l ί 1 + Ke~^-}
reΈv reΈv

oo

K= Σ e x ρ [ - β ( A n 2 - μ - B c ) ή ] Ύ r m Γ ι m e x p ( - β Ί ) .
n=l

The positiveness of υ(x), Definition 4, and condition Definition 4 (iii)
prove the lemma. Q.E.D.

Using Lemma 2.6 we define the grand partition functions:

Definition 12. Zγ(μ, β) = Tr § exp[ - β(Uy - μN)]

Z(μ,β,Λ) = Ύi6iΛ) exp [ - β{T(A) + υ(A)

Z°(μ, β, A) = T r β U ) exp [ - β{T°(A) + υ(Λ) -
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and the corresponding pressures

Note. The existence of the grand canonical partition function for
every value of the chemical potential μ both for fermions and bosons
lies on the assumption of superstability for the interaction. We used
extensively this condition in the proof of Lemmata 2.3, 2.5 and 2.6.

To perform the thermodynamic limit for the above pressure we need
conditions on the asymptotic behaviour of the interaction Φ.

Definition 13. Weak-tempering. There exist α>v, fc>0 and R1>0
such that

Φdlx - X j ^ φ - X j - * fθΓ || X, - Xj || £ R , .

Definition 14. Lower regularity. There exist k> 0, α > v and R > 0
such that

Φ(| |x i-x J. | |)>-fc| |x i-x J. | |-
α for H x i - x ^ Λ .

In the sequel we shall use this condition written as follows. We
define w as:

w(x,γ)= Σ Σφ(\\χ-y\\)
xeX yeY

where X and Y are two configurations, XnY = 0. Then there exists a
decreasing positive function Ψ on the positive integers for which

Σ *r(W)<oo

so that if 01 and Sf are finite subsets of Έv and

X = ( x ! , . . . , x J xte (J Γ^r) i = l , . . . , m
re0t

Y^CVi,--.,^) ^ e l j A W i = l , . . . , n
rzsr

then

w(X, Y)^-Σ Σ nis-

Definition 15. We introduce the pressure in the thermodynamic
limit as

PV0=lim P°(μ,β,Λ) (2.7)
|yl|-oo

where A invades 1RV in the Fisher sense [9]. Its existence depends on the
assumptions Definition 10 and Definition 13 on Φ.
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We then define

P(μ,j8)= lim P f o j M ) (2-8)

where the limit is over a net of increasing cubes.
The existence of the limit (2.8) has not been proved in the general case;

so it has to be considered as an assumption. This assumption has been
shown to hold in some cases (see Proposition 1, Section 3). We further
assume that the limit in Eq. (2.8) is the same of Eq. (2.7). This independence
of the thermodynamic limit of the boundary conditions will be needed
in the proof of the barometric formula.

3. Results

In this section we find first a lower and an upper bound for the non
uniform pressure defined in Definition 12 (Theorems 3.1 and 3.2). Then
we find a link between this pressure and the usual one (barometric
formula) (Theorem 3.3).

Theorem 3d. Lower bound. Let Φ satisfy Definition 11 and Defini-
tion 13 then

l i m m f β ~ ι Y I n Z > , β ) ^ | dx P°(μ-v(x),β).
IR V

Proof. We now sketch the main lines of the proof. We follow the
physical ideas discussed in the introduction. We confine the particles into
cells separated by corridors. Therefore we require that the wave functions
vanish in the corridors. By the indeterminacy principle, or Lemma 2.2,
this gives rise to an increase of the kinetic energy. The other steps are
similar to the classical ones. We limit the density in each region so that
the interaction between different cells can be evaluated. We perform the
macroscopic limit and then we let go to infinity both the cutoff on the
density and the size of the cells.

We introduce the set of cubes Γt R(r) as follows

^xi<(ri + ^ l - R i = l v} (3.1)

where R1 is defined in Definition 13. We define the subspace in §, § M ,
as follows

ξ>M={ψeξ>: ψ(X) = 0 if for re Έ Card(XnΓhR(ή) ^ M + 1

and CardlXn{Γt(r) - ΓZfΛ(r))] ^ 1}.
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We obviously have

Zy(μ9 β) ̂  Tr*M {exp [ - β(Hy - μN)]} .

It is possible to bound the restriction of the form u to ξ>M: there exist
k> 0 such that

in ξ>M\u^ ]Γ {ύ(ΓlR(r)) + kM2R~a[l--Δ(ύ{ΓlR(r),O}J]} (3.4)

where A is defined in Definition 3. Eq. (3.4) is obtained directly from the
analogous classical estimate Eq. (3.2) in I. By use of Lemma 2.2 we obtain
a bound analogous the the one of Eq. (3.4) for the form hy — μn. By
Lemma 2.4 Eq. (3.4) gives

Zy(μ,β)}> Π | l + Σ

where
V / r = sup t>(yx). (3.6)

xeΓι(r)

Eq. (3.5) is the quantal analogue of Eq. (3.3) of I. Proceeding as in I we
can then write

liminfy vlnZ>,j8)
y->0

|Γ;(0)|

l n h + Σ Trβ» ( Γ l > J ι ( O ) )exp[-jJ(H(Γ I, J ι(0))-μN(r i, J ι(0)))]

where ® C1RV has a finite Lebesgue measure. We now let M, / and R
go to infinity, so that M^>l^>R, namely, defined η by

0 < ^ < ( α - v ) v ~ 1 ( v - f 2α)~ 1<(2v)~ 1 (3.8)

we choose for every M

/ = M V " 1 " 1 1 ; i ^ ^ M ^ 1 - 2 ^ . (3.9)

Then the second and the third terms in Eq. (3.7) are vanishing in the limit
M->ΌO. We only note that the argument in the logarithm is bounded:
this follows directly from Lemma 2.5.

From Eq. (3.7) we then obtain

lim Mβ-1 yv lnZ>, β) ̂  J dx P > - v{x), β). (3.10)
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Eq. (3.10) has been obtained by use of the Lebesgue theorem. We have

P°(μ — v(x), β, A)Sβ~1 ln{l + Kexp[ — βv(xy]} (3.11)
00

K= Σ exp{
n=ί

which is summable in IRV. Furthermore Eq. (3.11) allows us to apply the
Lebesgue theorem and to perform the limit of 3) invading the whole IRV.
Then the proof in completed. Q.E.D.

For the upper bound, as in the classical case, we need an estimate for
the fluctuations of density in bounded regions. The one we state in
Lemma 3.3 is sufficient for our purposes and to obtain it we follow
essentially the same line of the classical case. As it is reported in the
sequel we adapt the results of Ruelle to our framework. The main
difficulty is that the partition function is not ensured to be an increasing
function of the volume of the region in which it is defined if its walls are
perfectly elastic.

Definition 3.1. Let Sf be the set of all sequences of integers {lj} such
that

Sa) /Ξ>Po>0.
Sb) If {lj}e^ then ZPo = ./[ l + (2α)"1] where 0 < α < l and

{(l + 3α)2 v + 2 - l } Σ ψ(\r\)^4~- Λ i s defined in Definition 11 and

Ψ in Definition 14.

Sc) - ^ - ( l + 2α) <α.

Lemma 3.1.There exists 0<<5<oo such that for every l^n
a sequence {lj} e ίf and an element lj e {lj} can be selected so that

) ) δ ( )
(ii) (2rc+l)- 1(Z J.-
Proof. Let {/,.} e £f\ we modify in a way that it still belongs to $f but

verifies i) and ii). If lq e {lj} and

/ , > ( 2 α ) " 1 ( 2 n + l ) (3.12)

then lq + 1 belongs to the interval

Zg(l + α)<Z β + 1 <Z β (l + 3α) (3.13)

which is 2αẐ  large. By Eq. (3.12) therefore lq + ί can be changed so that (ii)
is verified. As a consequence every lj with j > q can be chosen so that (ii)
holds. By Eq. (3.12)

/ j o _ 1 > ( l + 3α)- 1/ j o (see Eq. (3.13))
and

(l + 3α)- 1 / J . 0 >(2α)" 1 (2π+l), /J 0 > ( 2 α ) " 1 (1 + 3α)(2rc+ 1). (3.14)
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We then choose ljo as the first number of the sequence for which Eq. (3.14)
holds. This will not exceed the number (2a)" 1 {2n+ 1)(1 + 3a)2.

Then (i) holds with δ = 2oΓ 1(l + 3a)2. Q.E.D.

Note. The geometrical meaning of Lemma 3.1 is that for every
integer n a sequence {lj} e Sf can be found so that from a certain ljo on,
the cubes Γ2 / j + 1(0) can be filled exactly by cubes Γ2n+1(r). Further it is
proved that ljo can be made to grow not faster than n.

Definition 3.2. Let ψ be an increasing positive function on the
integer for which

φ ^ l limtp(Z) = + oo , (3.15a)
Z-*oo

S î, (3.5b)
I

Σ ψ(|r|)«P(|r|)<+oo. (3.15 c)
reZ v

To every {lj}e£f there corresponds a sequence {ψj}, ψj = ψ(lj).
With these definitions we can state Proposition 2.5 a of Ref. [6] as

follows

Lemma 3.2. For every fixed β, μ there exists an integer P>P0 such
that the following is true

A
ϊ) For every {/7 } e 9> and q ^ P, defined c = (1 -f 3α)~ v~ x — , we have

βcψa

A
>lnTr^ ( Γ l ( 0 ) ) exp -β T(Γ1(0))-μN(Γ1(0))+ - ^

(3.16)

ii) Given X = (xί,..., xn), x teIR v and given a sequence {/; } e y
suppose that there exist g such that q^P and g is the largest integer for
which

Σ n 2 (X,r)^φJΓ 2 i j ) + 1(0)| (3.17)

where w(X, r) =
Let X' = XήΓ 2 ί p + l(0) and X" = XήΓ| ί p + 1(0) then we have

y Σ Φ(||χ-y||)-w(X',X")

OT (3-18)

^ - 4 Σ '»2(x.' )-cψ,+il/12I,+ι+1(0)|.
4 W
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Proof. Since ψj is a function increasing to infinity and the r.h.s.
member of the inequality (3.16) is finite (Lemma 2.5) (i) trivially holds,
(ii) is just Proposition 2.5 a of Ruelle. Q.E.D.

Definition 3.3. For {lj}e£f and reΈ we define the set of regions
^2ij+Λr) which are the complements in 1RV of the cubes with center r
and side 2/^+1. We then write

Zy

+(μ,j8, {/j}) = max ίZy(μ, /?), sup Zy(μ, β9 Γ
c

2lj+1(r)j\ . (3.19)

I
Lemma 3.3. Let Φ satisfy Definition 11 and Definition 14; given one

of the cubes Γ1 (s), then there exist η > 0, ζ > 0 so that for every sequence
{lj} E Sf and every m^m0

m0 = y {[(2(1 + 3α)p lPo + l) v φ((l + 3α)p/P o)]1 / 2}

(P, Po are defined in Lemma 3.2), then

))? m]

where
VUs= inf v(yx). (3.20)

Proof. Let us prove the lemma in the case 5 = 0; the proof for a
different s is completely analogous. For any q ̂  P (Lemma 3.2) let ξ)q

be the closed subspace of § of the wave functions with support on the
configurations satisfying Eq. (3.17). The restriction of the form u to this
subspace, is, in the wave function representation, implemented by the
function u(X) for which we have the bound

(see Eq. (3.18)).
In 9)q we then have, using Lemma 2.2 and Eq. (3.21)
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Because rn2>ψp\Γ2lp+ί(0)\ we have

J[N(Γ 1(0)),m]S = 4(N(Γ1(0)),m) J ξ>q.

Then applying Lemma 2.4

^ ^ £ exp[-js(vi,om+ -^
L \ O

[
L

Trβ(Γl(rυexPf-j8(τ(Γ1(r))-μN(Γ1(r))+ 4

y

+(μ, A ty}) Σ

! + InTr^ ( Γ l ( 0 ) ) exp{

Therefore the Lemma is proved if

ζ= sup 9

{lj}eSP q^P

which is finite (as can be seen by use of Definition 3.1).
The proof is similar to that of Lemma 2.5. Q.E.D.

We can now prove the following upper bound.

Theorem 3.2. Let Φ satisfy Definition ίl and Definition 14 then

limsupΓVlnZ^u,^ j dxP{μ-v(x\ β).
y->0

1RV

Proof. The procedure is similar to the classical one. We again divide
the space in cells. Confining the particles in cells by elastic conditions
(free boundary conditions), the kinetic energy decreases (Lemma 2.2).
To evaluate the interaction between particles in different zones, we
consider two partitions of IRV made up by the cubes {/^(r)} and {Γ2π+ i(r)}.
We separate the contribution to Zy(μ, β) arising from the subspace § M

in which no more than M particles are in the cubes Γ^r) and the subspace
of the remaining configurations. In the former we bound the interaction
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between particles in different "large" cubes, Γ2n+1(r), and in the latter
we use the estimate of Lemma 3.3 relatively to the particles in the "small"
cubes, {Γ^r)}.

For every γ e (0,1] we choose the following values for n and M

M = J{mo + lny-ί), (3.22)

n = t /(^- i ) 0 < ε < l (3.23)

where m0 is defined in Lemma 3.3. For every γ and with n fixed by
Eq. (3.23), we select a sequence {/,.} e ^ so that Lemma 3.1 holds. We will
find an upper bound for the partition functions Zy(μ, β, Γ2l +1(r)) for
every r e Z v and {/7 } e if. Therefore the same bound is also valid for the
supremum of the above partition functions and this will reconstruct the
quantum analogue of the inequality (3.13) of I, which was the basis of the
proof of the classical case.

We consider first the regions Γ2Zj + 1(s) where /,-£{/,•} and s(eΈv)
satisfies the condition

3p e Έ such that (2p + 1)"γ s e T . (3.24)
Let

Γ ^ m a x ^ / J for ljE{lj} (3.25)

(ljo is chosen as in Lemma 3.1) and

R l C l R \ I R ^ J I Ϊ + 1 (s)n ί U Γ2n+1(r)\ , (3.26)

-1q0-], (qo>0), (3.27)

R2C1RV !R2 = nϊj + 1(s)nί [j Γ2n+1(r)\ , (3.28)

J
1R3C1RV lR3 = /1 Z j + i (s)n{R v -lR 1 -lR 2 } . (3.29)

We note that by the choice of {/,.} and Eqs. (3.24), (3.25) the set JRX can be
filled up with cubes Γ2π + 1(r). We define in § M the forms

(3.30)

W(r) - -^ 'M 2 {1 - Δ[Λ(Λ(r)), 0]}. (3.31)

There exist values of η9 k' and f/' in Eqs. (3.30), (3.31) so that
WM n(r) [W(r)] bounds from below the interaction between particles in

with all the others. Therefore

in § M : Λ y - μ n ^ Σ { ί K + i W ) + (VBlΓ-/i) Λ(Γ2π + 1(r)) + WM>n(r)}

+ Σ {t(Γ1(r))-(μ + B)ή(Γ1(r)) + Aή2(Γ1(r)) + W(r)} (3.32)
Γi(i )CR3

+ hγQR2)-μή(m2)
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where Vr>n is defined in Eq. (3.20). Using the estimate Eq. (3.32) in
Lemma 2.4 and applying Lemma 3.3 we have

^ Π j l + Σ
Γ2n+l(r)ClRi I 1=1

(3.33)

{Tr S ( R 2 ) exp[-^(H y (IR 2 )) - /iN(R2)]} {Zs(μ, β)}^

exp[-j8mV1 > Γ-»/ffi2]l

J
lrεZ

where

μ, J8) - Tr^ ( Γ l ( 0 ) ) exp {-/^(Γ^O)) + ^ N ( A ( 0 ) )

We want to extend Eq. (3.33) to the case in which Eq. (3.24) does not
hold. Then aeΊLv exists so that

(5 + α ) ( 2 π + l ) " 1 e Z v , \a\<2n+\ (3.35)

Eq. (3.33) holds for the new case if one reads there r + α instead of r.
Therefore a common upper bound for both cases is obtained if one puts
Vlr in place of Vi>r:

VZfΓ = V2/,r/2 (3.36)

and if one bounds the trace on §(1R2) using superstability by means of
products of Zs(μ — Ylnβ) and extends the products to values of r for
which \r\^rγ.

Observing that

Σ C £ exp(-βmYUr-ηnι2)
reΈv m = M+l (I Ί>Ί\

^ζexp(-ηM2) X f e x p(_ i?mv i j r) τ^>0
relv m = M+ί

(see Eq. (3.22)), for m sufficiently large the l.h.s. of Eq. (3.37) is < 1 .
We take the supremum in the l.h.s. of Eq. (3.36) and remembering that

20 Commun math Phys., Vol. 29
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we finally have

reΈv m = M+ί

Σ ™PlβηM2(n2*-° + k')-β(V2n+Ur
1=1

(3.38)

TriHWHGxpi-βΎiΓM

+ f Σ
r = r

We now perform the limit for y->0, M->oo, n^oo according to
Eqs. (3.22) and (3.23). The procedure is quite analogous to the one used
in the classical case. By means of Eq. (3.37) the second term in the l.h.s.
of Eq. (3.38) vanishes. Since ljo does not increase faster than n
(Lemma 3.1 (i)) also the second term of the r.h.s. vanishes. The first term
in the r.h.s. reconstructs the integral of the free boundary condition
pressure in the thermodynamic limit extended to a region \x\^q0.
The Lebesgue theorem has been taken into account, by Eq. (2.5) of
Lemma 2.5. Use of the same bound (2.5) shows that the last term in the
l.h.s. of Eq. (3.38) reproduces the integral of a summable function in the
region |x| ̂  q0. Finally we let qo^> GO and the proof is completed. Q.E.D.

Proposition 1. The limit (2.8) exists and

(see Definition 15).
The validity of Proposition 1 has been proved for free particles and

for positive decreasing interactions [8]. Furthermore a similar problem
has been treated by the Wiener integral technique and independence of
the boundary conditions has been proved in certain cases for hard core
interactions and positive interactions [10, I I ] 4 . For a larger class of
interactions studies are in progress.

4 The results given in the above papers are in fact proved only in certain regions of the
space (β, μ). In Ref. [10] the region is specified, for boson, by the condition exp[/?(μ + β)]
< + 1 . In Ref. [11] the thesis is proved if one of the two conditions is fulfilled

either exp [β(μ + £)] < 1 or exp \β(B + μ) - ^— < —

where a^O is the hard core radius (when a = 0 the interaction is assumed to be non
negative). Further in Maxwell-BoΓtzmann statistic the result is obtained for all β, μ.



Thermodynamics with External Fields 283

Theorem 3.3. Let Φ satisfy Definition 11, Definition 13 and Definition 14
and Proposition 1 hold then

/ Γ y ( μ , i 8 ) = f dxΊ?(μ-v(x),β).

The proof follows trivially from Theorems 3.1 and 3.2.

4. An Application

We show now a possible application of Theorem 3.3 (the main results
of this section are already contained in Ref. [12,13]). Let us consider
a one dimensional gas of N identical quantal particles of mass m inter-
acting via a pair inverse square potential Vij = g(xi — xJ)~2 and an
harmonic oscillator well Vi = ̂ mγ2ω2x2. In this case Φ satisfies Defini-
tion 5, Definition 11, Definition 13, and Definition 14 and V Definition 4;
moreover the interaction is positive and decreasing so that Proposition 1
holds (Robinson) and Theorem 3.3 applies. Further the self-adjoint
extension of the hamiltonian that we consider in Section 2 is the most
general one since the operator is essentially self-adjoint [14-16]. The
energy spectrum is [14]

AT2

+ +

where g > — h2/4m.
In the limit y->0we have

i dxln f (4.1)
o l-exp(-x)

where y* is implicitly defined by

expj/* - expOM exp[-y*(a- £)] = 1.

We transform Eq. (5.1) by a change of variables
00

HmylnZ^/zβωΓ 1 J dyu(y) (4.2)

where u is defined by

[1 - exp(-u)] = exp[jSμ- y- (α + %)u] .

It is easily proved that Eq. (4.2) is compatible with Theorem 3.3 if we
assume the pressure with rigid walls:

m °°
P(μ, β) = ^ - g - J at In {1 + exp [ - /?ε(ί)]}
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