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Abstract. Given a classical spin s system, namely, a set of spin sites of maximum spin s
in v-dimensional space along with a Hamiltonian defined on the possible spin configurations,
a general method is described for constructing a large class of dual lattices of the same spin.
The method utilizes the commutative group structure with which the configuration space
is endowed.

In the classical statistical mechanics of spin 4 lattice models, the set
of spin configurations has a natural group structure, a fact that has been
used by Sherman, for example, in a generalization of the Griffiths
Inequalities [1]. In a similar manner, a group structure can be assigned
to the set of spin configurations of a spin s lattice, for any s. Here a
lattice refers loosely to any finite collection of spin sites in v-dimensional
space.

Duality, or the connection between high and low temperature
properties for appropriately chosen pairs of lattices, has as applied to
specific models a long history dating from the early work of Wannier
and Onsager [2, 3]. Recently, Wegner has proved that any ferromagnetic
spin 1 lattice has a dual [4]. Merlini and Gruber have extended these
results to arbitrary spin  lattices by a constructive procedure [5].

In this article we generalize the construction of [5] to provide a
family of duals for any lattice of arbitrary spin. In the first three sections,
a group structure is introduced onto the space of configurations, and
the dual groups are defined. For these systems the groups involved are
simply products of the cyclic group of order 2s+ 1. In fact the results
can be extended to general finite abelian groups, corresponding to
systems of mixed higher spins.

In the fourth section the dual interaction is derived for groups which
are “non-n degenerate”. This includes nearly all higher spin models of
physical interest. Those groups not satisfying the restriction are dealt
with in the following section.

* On leave from: Department of Mathematics, Indiana University, Bloomington,
Indiana.
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1. Notation

We use throughout Z, for the integers modulo n and 6;,, 0<i<n,
for the (counter-clockwise) ordered n'™ roots of unity, , = 1. For ¥ an
arbitrary set, let N(&) be its cardinality, and let 4 = P,(¥) denote the
group of functions f : ¥ —Z, with group multiplication

f9(s)=f(s)+g(s)modn, se&

P,(¥) can equally well be thought of as the group of partitions of &
into n subsets, for obviously fe P,(#) defines a partition {f~ Y0)}iez,
of . Denote the character group of 4 by g, and likewise the elements
Jge 4 under the canonical isomorphism =

If o/ is a subset of P,(%), define the product map = and the character
projection 7 in the following manner:

(i) n:P(£)>Gpst by n(f)= [] ¢g’® where Gp.«/ is the group
generated by «/; and get

(ii) 7: P(¥)—>P,() by 1(9): f— Zyg(S) f(s) modn.

The maps = and 1 are clearly group homomorphisms. They play a
fundamental role in the formulation of thermodynamic duality to be
developed, as they are associated, respectively, with high and low
temperature expansions of the partition function.

In the statistical mechanics of a classical spin (n— 1)/2 system, or a
classical lattice gas of maximum site occupation n — 1, one is given a set
of sites A and a complex valued function H on the configurations P,(A)
of A. We call ¥ = P,(A) the group of configurations and H: ¥ —C the
energy function. Although in physical situations H will be real valued,
it is necessary to consider the more general situation, as the family of
duals to be constructed will not necessarily have real energy functions,
even if the initial energy function is real. This is nevertheless useful, for
the study of the analyticity properties of physical models gives information
in general in a complex domain of analyticity.

Expanding H in its Fourier series:

H= Y H,

Ged
let # C % denote the set of non-zero interactions
F={ne¥|H,+0}
and ¢, the set
Fpo={de%|o=()f+0 forsome jeZ, and ae ¢}.
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In the usual notation of spin 1 models (n = 2), 4 = P,(A) is (isomorphic
to) the set of subsets of A, H is a sum of products gy, ... g, of spin matrices
for certain sets o = {4, ..., 4,}, .Z is the set of these «, or more precisely,
of functions assigning 1 to the elements of o and zero to the elements of
A—a, and #,= ¢ since o°=1.

The partition function Z(f H) is defined by

Z(BH) = z e BH(9) — z H e~ PHsE(9)
ge¥ ge¥ oac ¥
with the temperature taken as inversely proportional to the parameter f3,
for B real.
Let o, denote the kernel of the homomorphism

n:P(#)—Gpf.

By expanding exp(— fH,4(g)) in its Fourier series:

n—1
e 1130 = 5 F(BH) (@(9)
i=0
and using the orthogonality of the characters, one obtains the high
temperature expansion for the partition function. Similarly, let #; be
the kernel of:
T:9>P(F)

and Z, its range. Then, in an obvious fashion, one obtains the low
temperature expansion for Z.

Theorem 1. (i) High temperature expansion:

Z(BH):-N('@) Z an(a)(ﬁHoz)'

feHr acf

(i) Low temperature expansion:

ZBH)=N() 3 ] et

feR. acyf

2. Thermodynamic Duality

The problem in thermodynamic duality, vis-a-vis the expansions of
Theorem 2, is to construct a group ¢* whose low (or high) temperature
properties can be simply related to the high (low) temperature properties
of a given group ¥, and to specify the corresponding subset #* C 4%,
along with the coefficients H, a« € #*. One requires that ¥* be of the
same form as ¢, ¥* = P,(A*), that is, a product of cyclic groups of order n.
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In fact, any higher spin model can be converted to an equivalent spin 3
model [6], but then, following the usual spin 3 duality transformation,
it is not possible to recover in a sensible way a similar higher spin model.

The solution of the duality problem for n=2 is accomplished by
establishing a correspondance between the elements of # C% and the
elements of #* C %* in such a way that a bijection is induced between
A, CP(F) and #¥ CP,(#*). Then by setting F;(fH,) proportional to
e %PHZ j—1 2, the terms in the expansions of Theorem 1 are, except for
the product of proportionality constants which factor out, pairwise
equal. It is clear that such an approach cannot immediately succeed for
n>2, since the set of equations:

F(BH,)=K,e s 0<i<n

cannot be solved for the two variables K, and H}*.

Furthermore, although it is popular in the literature to consider an
approximate duality, that is to say, a group ¥* whose partition function
can be simply related to that of ¥, except perhaps for the contribution
of boundary terms, it is clearly desirable to solve the exact problem. For
while the boundary terms may not affect the partition function, and hence
the free energy, in the thermodynamic (infinite volume) limit, nor perhaps
the correlation functions above the critical temperature, it is well known
that the boundary terms will determine the state, and the correlation
functions, below criticality. It may be pointed out here that boundary
terms in this formulation are simply additional elements of #. For
example, in the spin 1 Ising models, periodic boundary conditions are
realized precisely by terms in # of the form o¢,0;, with 1 and 4’ the
corresponding points on the boundary of A; and plus or minus boundary
conditions are given by field terms in ¢Z, terms of the form o¢,, with 4
on the boundary.

As a result of these considerations, we shall solve the problem by
two routes. In the case of a non-n degenerate group, defined in the next
section and including essentially all models of physical interest, except
for certain models with the “wrong” boundary conditions, a simple
constructive solution will be obtained. Many of the models with the
“wrong” boundary conditions can be made non-n degenerate with a very
minor modification of the boundary, and it is probable that in most
of these cases, the correlation functions can be rigorously shown to be
unaffected.

For those models which are = degenerate, the problem can be reduced

to a set of non-linear equations. If the set of equations has a solutjon, then
a set of dual models can be constructed by the method outlined.
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3. Construction of Dual Families

In this section we shall generalize the construction of [5] to yield
a family of groups of the form P,(A*) for any given group ¥ = P,(A).
We suppose as always that ¢ is given along with a distinguished subset

JCY%.
Definition 2. Let # C P,(#) be any set satisfying Gp# = . Let
@* be the group P,(#) and #* the subset of ¥*

F*¥={ye¥*|dae ¢ s.t.y(h)=h(x),Vhe H#}
and let 2 and #* be the indicated subgroups of P,(#%*). Define
@: - ¢* by ¢:a—y, where y(h)=h(x), and the maps
P, : A P(F¥)
Dy R~ P(F¥)
(f)y-fle™ty, i=12,

for fe A, (resp. feR,) and ye F*.
Finally, call {¢, #} non-r degenerate if the elements of £, separate
the elements of ¢, i.e., given a4, a, € #, there exists an fe ¢, such that

S ey # f(a).

Lemma 3. For any group 4, @, is well defined. If 4 is non-n degenerate,
then @, is well defined. The maps @, and @, are group homomorphisms,
and satisfy:

by

e~ (@)=L, JEZ,.
Proof. If ¢(o;) = ¢(a,), then h(x,) = h(a,) for-all he . Let f be any
element of 4. Then f= [] h}%, r;€Z, and h; € #, and

i=1

M=

fl)=

1

rihy(e) .
1

Hence ()= f(a,).

The restriction to non-r degenerate groups is precisely the restriction
that ¢ be bijective; thus @, is well defined as well.

The @; are group homomorphisms, as

P,(f1 12) (@)= f f2(0) = f1(2) + f>(2) mod
=2,(f1) (p(0) + Di(f2) (¢()) mod n
and the remaining assertion is clear.

To show that the &, are bijections, the following two lemmas will be
useful.
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Lemma 4. If 4 = P,(A) is non-n degenerate and f, € P,(#), f,:a—a(l),
A€ A, then @,(f,) is in AF.

Proof. The equivalence

heA,< Y hw)a(l)=0 forall A
ae d

and the analogous equivalence for fe J;* follows immediately from
the definition of . But then @,(f)) e A iff

;) D,(f2) (@) (@) (=0
Y a(2) h(@)=0

a

or

for all he .
Note f,=1(d,), where 6,€ %, J,(s)=1 if s= 1 and zero otherwise.

Lemma 5. For any 9,
N(A)=n"P N(A,)/N(%)
N(%*)=N(A7) N(A)
Proof. Observe g e A, iff
2 9N a)=0, Vae g,

red

jg:a—1, VYaeGp/g,

iff
using the canonical isomorphism g<{,

i
g:aaexp{Tm Y g(/l)cx(/l)}.

Aed

But {je%|g§(0)=1, Vae Gp ¢} is clearly isomorphic to (¥/Gp #), and
hence immediately:

AH.=%/GpJ .
Using N(P,(#)) = n"), we have:
n"PN(A) = N(Gp #)=N(%)/N(A7) .
An element fe* iff [ ¥®=0 in P,(¥) as is easily seen; that
is to say, iff f is in the kerngiﬁf
' P(H)>GCGpH =H,.

Then ¥* = P (#), A, = R, completes the proof.
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Theorem 6. &, is an isomorphism ®,: A4, —>R¥. If ¥ is non-n de-
generate, @, is an isomorphism @, : R — A F.

Proof. We assert @, is injective, i = 1, 2. For if @,(f;)= ®,(f,) € P,(.#)

then
(f1) (p(@) =D f2) (p(2), Vae #

and so fi (o) = f5(®).
To show @, is surjective onto Z¥, observe that for ge 4* and x € ¢,

1(9) (p@)= Y. g(h)h(e) modn=¢1( [T hg“’) (@)

he# hest

Now fe A, implies f = [] h*™® for some g e ¥*, and then ®,(f)=1(g).
heAX
Moreover, for any ge%* &,: [] h*®—1(g), which completes the
hes#

argument for @,.

To demonstrate @, is in X, it suffices to show @,(z(d,)) € A#* for §,
as in the proof of Lemma 4, since the §, generate 4. But this is precisely
Lemma 4. From non-n degeneracy, N(_¢) = N(#*), and from Lemma 5:

N(Z)=N(@)/N(L),
N(A)=n" P N(A)/NG),
NF) =n"PIN(AF)N(G*),
N(&*)=NAYN(AF).
N(AF)=n"PN(A;) = N(Z)

which completes the proof.

Thus

4. Non-n Degenerate Groups

We assume in this section that ¢ is non-n degenerate. From the low
temperature expansion, Theorem 1, the bijection &,, and the ortho-
normality of the characters, we obtain:

Z(BH)=N(X) z ﬂe—ﬂHaem):N(%) Z H o~ BHab7

feR, acf feXk aeg*
N —BHab5 ) 5f (@)

- v e «Of@ g “( )
N(g*) gezg* fez‘):tfﬁ ag* ( g )
N(‘%/‘t) ‘Bﬁ s 2

= A ()

N(g*) gez;* ag* (sezl,. )

for Hy=H,-1,.

12 Commun. math. Phys., Vol. 29
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Define the generalized sine functions
n—1
sing;(x)= Y. e**0,,, i€Z,.
=0
Theorem 7. Given a non-n degenerate group 4 with energy function H,
assume

Singi(—ﬁHa)*O .

Note that for a ferromagnetic model, H,<O0 for o € ¢, this assumption is
necessarily satisfied. Define the constants Hj for o€ ¢f and n,
= Order(x) by

1 n,—1 .
I—Ia*= - Z Z e—mjn/ny IOg Slngmn/ny(_ﬁqu‘l(y))
ye F* nyﬁ m=0
Vi=a

and D°() for ae #* by:
ne—1

Zo log Singmn/n,( - ﬁHw -1 (oc)) .

1
D)= —
.
Then %*, ¢} is a thermodynamic dual of %, with energy function H*
defined by:
H*= ) H}a.
ae f}
The partition functions Z4(BH) and Z 4.(f H¥) are related by :
N(A?) Do
Zy(BH) = ——* D0 Z f(BH*) .

Proof. Referring to the expansions for Z above Theorem 7, define
the coefficients D), a e #*, 0<j<n,= Order(x), by the n, equations

ne—1

ﬂ Z Dgeinj/m‘: _'log Singin/na(_ﬁﬁa)a iezna‘
j=0

The system is solvable since the 0;,, () =0;,;,, are a complete set of
characters for Z, , and in fact

. 1 ™=t . "
D; = - ZO e—mjn/na log Slngmn/na(_ﬁHa) .

Furthermore, for H, <0 the logarithm is necessarily finite, since

© kn—i

sing;(x)= ),

k=1 (knT)' io-
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Now obtain for Z,

ne—1 .
N(X) -8 ,-E D4&i(g)
2= & e T
N(X2) - —&(g)ﬁygw‘l)i
= e « e y=a
Nem (L 2 IL

which completes the proof.
For the case n=2,

a

1
Hf = — 25 {log[e™ #Hx 4 PH=] — log[e ™ #Hx — ¢fH-]}

1
= 25 log tanh(— S H,)

and

e BD°(@) exp {% log [e—BHm + eBHu] + % log [e—BHa _ eBsz]}

=2)/sinh(— fH,) cosh(— B H,)

yielding the usual expressions.

5. n-Degenerate Groups

Although n-degeneracy does not frequently occur in higher spin
models — the same cannot be said about spin 3 models, where commonly
used boundary conditions sometimes lead to this degeneracy, at least
“near the boundary” — we can deal readily with such higher spin groups
at the expense of non-linearity in the equations for the energy coefficients.

Given such a group, with

Zy(pH)= 3, [] e7rmew
ge¥9 acy
let H,=0forae #,— #,and let J,, K}, a € #,and 0 < j <n,, bea solution
of the equations:

ne—1
Singin/na(_ﬂ‘]a) =CXp {_ Z :Bng gijn/nu}
j=0
Y Ki=H, oaeg,ick,.

V?fp
yi=a

12%
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Assuming for the moment that such a solution exists,
-8 ¥ Kidlg)

ZypH)= ), [le 3%
ge¥ ac gy,
ng—1 .
-8 Kio‘tf(g)}
1

x e

ge¥y ac gy
since
ne— 1 .
Y X K=Y ) K&
ae fp vefp j=1 aefp
yi=q
and so

M e z,pm=3 [1{3 o3
{ |

aefp ge¥ acgp \j=0

=% T 1€y

ge¥ [fePn(Fp) aefp

= N(%9) Z ﬂ e Flabs@
fetE acgp
Here 77 is the kernel of n: P,(#,)—Gp #, and ¢, ={ae 7,|J,+0}.
The connection with 4%, constructed from %, #,, can now be made.
Denoting the range of 7: P,(#,*)— Gp #,* by #¥, use the bijection &,
of Section 3, along with the properties of Lemma 3, to obtain:

(]‘[ eﬂxg) Z,BH)=N%) Y 1—[{ I e—/)Jyo,m}

aefp SeRt aefp* lveo~ (@)

:N(g) Z H e_l”ocof(a)
feRt ae fp*
for ,= ) J,.
yep~1(a)
We point out finally that the system of equations is necessarily

solvable if:
Sing;,,, (—0J)*0, «e g, i€k,
and if the non-linear set of equations
1 ™= 1 .
- Z Z g—mkn/ny log Slngmn/n,( - ﬂJy) = Ha’ Qe fp

vefp n'yﬁ m=0
=a

is solvable. For the 6,, are a complete set of characters for Z, and hence

neg—1

Z ﬂKfz Hitn/nu = - lOg Singin/nu(—ﬁ‘]a)
t=0
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is solvable. We have proved

Theorem 8. Suppose 4 = P,(A) with energy function H is given, and
let 9%, 7,* be constructed as above. If J, satisfies
1 ™= 1

- Z; nﬁ Z e—mkn/nv logSingmn/ny(_ﬂJy)zHa
vefp v m=0

Ye=a
for ae #,, then
_ N(9) BKQ *
Z4(pH)= NGO {agpe }Zg*(ﬁH )
where
Hi= Y J,
and e
1 ret
Ko= — 10g{ I1 singm,,/na(—ﬁJa)}.
naﬁ m=0

6. Square Ising Lattice, Spin One

Consider a lattice gas consisting of a square array of sites and two
species of particles. Assume at each lattice site there may be either no
particles or one of the two species, and that the only interactions are an
energy contribution of —J between either one of the species at a given
site and the other species at a nearest neighboring site. This is the simplest
non-trivial example of a spin one (n = 3) lattice in two dimensions.

If y; are used to denote the characters of Z;, i€ Z3, y, = 1, then the
elements of ¢ may be associated with the

Bap = 2115 = Gpa)?
where a, b indicate pairs of nearest neighbor lattice sites,
H,=H,.=-J, oaecf.
To construct ¥* a set # C A, generating 2, must be chosen. For
each choice of # a different dual #* will in general be obtained, and, for
example, duals with different ground state degeneracies can thus be

arranged. One possibility is the following, For each fixed nearest neigh-
boring pair a, b

hap(0ap) = hgp(0p) =2, g, =0  otherwise.
For every unit square a, b, ¢, d in the lattice,
habcd(aab) = habcd(abc) = habcd(acd) = habcd(ada) =1
hapea=0 otherwise.

The set of h so defined clearly generate .7,.
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Fig. 1

The resulting dual lattice is illustrated in Fig. 1 (b), with interactions

J¥= 3ﬂ —— log(sing,; BJ)% (sing, BJ)* (sing, BJ), i=1 or 2.

By taking a partial trace over all the coord. 2 sites in the dual (lattice
sites with precisely two nearest neighbors), a square Ising lattice is
again recovered, with interactions

1 M2

In more detail, let A*=2# be the set of lattice sites of the new dual
lattice, A* = AU A%, A (resp. A%) the coord. four (resp. coord. two)
sites, and for each Ae A%, let A*, A~ denote its two nearest neighbors.
Then:

ARS Z Z exp{ Z (Jikh(gz) X§+(g4)
94€P3(A3) g2eP3(43) yryt]

F TG 15 00+ T3 2402 1 09+ TE 200 7 (0]

— H BV 0,0 (3" @+ a5 () +T3 065, Wt @+ 2 @am

J =

94€P3(A%) g2eP3(A3) Aed}

2
= [T Y et 0.05" (ga)+ 18 (@an+I302Get” () + 1d T (@a)

gacP3(A%) 2edl t=0

Use

BUT0ET + 8T+ a30 T +xd Ty

M

t

0

—2

2
=3(e*FT 4+ 2eBI)s (e — e“‘”ﬁ( 11 singm(BJ)>
m=0

1 28 20 s
eXp{—log—— B+ )}

to obtain again a square Ising lattice, as in Fig. 1 (c). If the partition
function of the square lattice of size m x n is Z,,,,,, the final result is, except
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for a boundary term,
Zpa(—BI)=37""(1 4 2e738I)5mn (38 _1)imn z (—BT).

Thus the model is self-dual in the thermodynamic limit, as expected.
This simple model illustrates, we believe, both the strength and the
weakness of the proposed duality transformations. The freedom in
choosing # enables the construction of a large class of duals for any
given model. The number of lattice sites in the dual lattice will be large,
however, when there is no internal symmetry, if the cardinality of
is large, as is clear from Lemma 5. This may not necessarily be dis-
advantageous, and what is more important in any case, the number of
interactions in the dual will be no greater than the cardinality of #}.

References

. Kelly,D.G., Sherman,S.: J. Math. Phys. 9, 466 (1968).
. Wannier, G.H.: Phys. Rev. 60, 252 (1941).

. Onsager,L.: Phys. Rev. 65, 117 (1944).

. Wegner,F.: J. Math. Phys. 12, 2259 (1971).

. Merlini, D., Gruber, C.: (preprint).

. Griffiths,R.: J. Math. Phys. 10, 1559 (1969).

AN AW =

Dr. W. Greenberg

Laboratoire de Physique Théorique
Ecole Polytechnique Fédérale
Lausanne/Switzerland








