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Abstract. It is shown that if ¢ is an invariant state of an asymptotically abelian C*
algebra 2, then the spectrum of modular operator for g is contained in the spectrum of
any other modular operator for the von Neumann algebra 7, (2)".

It is also shown that a modular operator can not have an isolated spectrum with
a finite multiplicity at 1 unless the associated Hilbert space is of finite dimension. It is
further shown that if a modular operator has an isolated spectrum with a finite multi-
plicity at x = 1, then the von Neumann algebra R is a direct sum of R, and R, where R,
is represented on a finite dimensional Hilbert space and the modular operator for R, does
not have its spectrum at x.

Applications to Connes invariant are given.

§ 1. Preliminaries

A net of operators Q, in a von Neumann algebra ‘R is called weakly
(or strongly) central if there exists weakly total self adjoint subset R, of
R such that [Q,, 0] —0 weakly (or strongly) for every Q e R,,. If Q, is
uniformly bounded and weakly central, then w-lim[Q,, Q]=0 for all
Qe R ([1).

A subset A of R is called weakly (or strongly) 7, central relative to
a net of * automorphisms 1, of R if t,Q is weakly (or strongly) central
in R for each Q e A.

For any state ¢ of R, we denote by H,, n, and 2, a Hilbert space,
a representation of R on H, and a cyclic vector in H, associated with ¢
through the relation

2(Q)=(Q, (A Q,), QeR.
J, and 4, denote modular conjugation operator and modular operator
for Q, when ¢ is faithful. 7,(f) Q = 45 Q4,™
If ¢ is 7, invariant, then there exists a unitary U, such that U, 7,(Q) 2,
=7,(t,Q) Q, for all QeR. We denote U,QU}=7,Q for Qe %(H,).
The following result has been obtained in [1]. (See also appendix.)

* On leave from Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, Japan.
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Lemma 1. Let a weakly dense * subalgebra W of R be strongly t,
central, ¢ be a faithful normal state on R, invariant under all t, and A be
the C* algebra generated by m,(N)j,{n,(N)} where j,(Q)=J,Q J,. Let §
denote the vector state on %(H,) by the vector Q, and o' be any normal
state on #(H ), such that its restriction to the center 3 = nq(i}i)ﬂne|iﬁ)’
of R is the same as that of ¢:0(2)=¢’'(2) for all ze 3. Then

lime'(z,Q)=6(Q), Qe.

To achieve the situation ¢'|3= g|3, we use the following com-
mutative Radon-Nikodym Theorem. Here, s(¢) denotes the support
projection of g.

Lemma 2. Let ¢, and ¢, be normal states of a commutative von Neu-
mann algebra 3 and s(9,) = s(0,). (The last condition is automatically
fulfilled if ¢, is faithful.) Then there exists a non-negative self adjoint
operator A3(g,/0,) affiliated with 3 such that Q,, is in the domain of
7,,(43(02/01)) (= | Adm, (E,) if A3(0,/0,)= [ AdE;) and the vector state
on 3 by the vector @ =, (43(0,/01)) Q,, is ¢,

A(0,/0,) is the positive square root of Radon-Nikodym derivate in
measure theoretical sense.

Lemma 3. Let R be a von Neumann algebra on H and Q and Q' be
two cyclic and separating vectors related by Q' = AQ where A is a positive
self adjoint operator affiliated with center 3=RNR. Then Ag=Ag,.

Proof. Let ze 3, z=z* and S, = J,AY2.
Then
S$002Q0=2z0*Q=0%zQ, QefR.
Let A= [AdE;, A, = AE,. Then A, € 3, A;* = A,. Further,
. _ ’ : * — N*0O
LEIPwQALQ_QQ ’ Ll-}erQ A0=070
for Q € R. Since S, is closed, we have
S0 =0*Q' =8,0Q".
Hence S, S Since Q=A"'Q’, we have S, D S,,. Therefore S, =S,
WhiCh implies AQ=SQ*SQ=SQ$SQr =AQI. Q.E.D.
The following Lemma has been given by Connes [2].

Lemma 4. ¢ € [0, 00) is in the spectrum of Ag, if and only if there exist
operators xe R and ye R’ for each given ¢>0 such that ||xQ| =1,
[t'2xQ2—yQ| <& and ||x*Q—'?y* Q| <e.
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§ 2. Invariant State of Asymptotically Abelian System

Theorem 1. Let t, be a net of * automorphisms of R such that a weakly
dense sub * algebra W of R is strongly t, central and ¢ be a faithful normal
state of R, invariant under all t,. Then the spectrum of A, is contained
in the spectrum of A, for any faithful normal state ¢’ on R.

Remark. This theorem with an assumption of strong clustering has
been given by Steérmer [4].

Proof. Let t€[0, o) be in the spectrum of 4, and £¢>0 be given.
By Lemma 4, there exists x € R and y e R’ satisfying

IxQ, =1,
612 xQ,—yQ,| <&/4,
[x*Q,— ' y*Q, | <e/4.

Since A is a self adjoint linear weakly dense subset of R, it is * strongly
dense in R. Hence there exist x; e 7,() and y, € J,7,(A) J, such that

Hxl ‘Q@ ” =1,
6172 (x — x1) Q,— (v —y1) Q| <e/4,
0% = x%) @, — 72 (7 — y1) @, < /4.

Since £, is cyclic and separating for 7,(R) ~ R, there exists a vector
Q, € H, such that the vector state by 2, on R is ¢". By Lemma 2, there
exists a positive self adjoint operator z affiliated with 3 =7,(R)nx,(R)’
such that zQ, = Q' gives the same vector state on 3 as Q,. Let ¢” be the
vector state on #(H,) by the vector '.

By Lemma 1, there exists « such that

lle” — @) (Tu(x* x)) < 1/2,
(0" = 0) @ A(Ex; — yo)* (€12 x; — yy)})| <&?/4,
0" — 0) (Fol(xy* — 112 yy*)* (xy* — 12 y*)}) < e?/4.

We define A=g"(T,(x*x;))'/%>. Then A*>1-1/2=1/2, due to
0(T, 06,*x,)) = 6(x,*x;) = 1. We define

_1 -_— —1 =
X =A%, =471 T,
By previous estimates and 7, invariance of ¢, we have
0" (x*x5)=1,
(12 x, = yo)* (£ x, — yo)) <2,

0" ((xo* = 1112y, ¥)* (xp* — 112y, ) <.

19*
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Since x, € m,(R), y, € 7, (R)', t is in the spectrum of 4, by Lemma 4.
By Lemma 3, 4, =4,,. Hence ¢t is in the spectrum of 4,. Q.E.D.

§ 3. Isolated Spectrum with a Finite Multiplicity at 1

Theorem 2. If 1 is an isolated spectrum of A, with a multiplicity n,
then dimH, < n®.

We need a few preparations for the proof of this Theorem. Let 2 be
any weakly dense 7, (t) invariant norm closed linear subset of 7, (‘R). Let

oo

A,= [ ¢*dE,. For any bounded open interval I =(a, b), define ¥, as

the set of all operators Q in A such that

QH(( B) CH((x+a, B+ D)),
H((OC: B)) = (Eﬁ—O —E, o) H,.
From the definition
A W CRyypyy R=7,(R). 21)

Let I CC J denotes I ¢ J where I is the closure of I.
Lemma 5. H(I) is the closure of ) U, Q,.

JccI
Proof. Since 2, € H(I") for any I” containing 0, we have QI,Q; CH(I)
ifJcCIL
Since U A;Q, is a linear set, it is enough to show that for any unit
Jcct

vector @ € H(I), there exists JCCI and Q € U; such that (QQ,, P)+0.
Let I=(a,b). By definition, there exist a<a <b <b such that
[(Ey—o— E,s0) @] #0. (|@| =1 by assumption.) Let J =(a,b). Since
Q, is cyclic, there exists Q; € 2 such that (Q,Q,, (E, _o— E, 1) ?)=*0.
Let
du()=d(Q,2,. E; ).

It is a finite complex measure and its restriction to J is not identically 0.
The set Cy(J) of all continuous functions vanishing outside of J is
separating for finite measures on J. Since C* functions vanishing outside
of J is norm dense in Cy(J), there exists a C* function f(1) whose
support is in J and { f(1) du(4) 0.

Let f(t)=Q2m)~" [ f(A)* e”"**dA. fis in &. Define

Q=_°§O T,(t) Qs f(t)dteA.
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Then ~
QQ = j.f(i)* dE/lQl QQ
(09, ®)= | f(H)du)+0.
Lemma 5 is proved if we show Q € ;. This follows from the next
Lemma. Q.E.D.

Lemma 6. Let f(A) be a C function with its support in a compact
interval J and

f@=0n~" [f(R)e " dA.

Then, for any Q, in a T -invariant norm closed linear set A,

0N= | 700 f()dre,;.

Proof. Let I be a bounded open interval and I, be another open
interval such that I; CCI. Since the union of H(I,) for all such I, is dense
in H(I), it is enough to prove that for @ € H(I;) and any ¥ such that the
measure d(P, E, ¥) has a compact support with empty intersection with
I+ J(=I+J), Q(f) satisfies

(7. 0(f) @)=
F(t,s)=(¥,4,0,4,° ).

F is a uniformly bounded continuous function of (t,s), analytic in ¢
and s. Its Fourier transform

F(p,q)= [ 'P+99 F(t, 5)dt ds/(2m)

is a tempered distribution with support in the direct product of the
support of d(¥, E; ¥) and I, C I. This support has an empty intersection
with the support of f(p — g), which is a C* function. Hence

0=[F(p.q) f(p—q)dpdgq
= [ F(t,5) f() 3(t — ) dt ds
=[F(t,0) f(0)dt=(¥.Q(/)®). QED.
Lemma 7. A*CR_,.

Proof. Let I, and I, be open bounded intervals such that I, +J and
I, has an empty intersection. Then U;H(I,).L H(I,). Hence ,* H(I,)
1 H(I,). Given an open bounded interval I. Let I, cC I. Then I, —J cC I —J
and A;* H(I,) L H(I,) whenever I, — J has an empty intersection with an
open bounded interval I,. Since I, —J CCI—J, this implies 2,* H(I,)
CH(I—J). Since the union of H(I,) is dense in H(I), we have U* H(I)
CH(I—J) and hence A*CcR_,. Q.ED.

Let
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Proof of Theorem 2 when n= 1. Assume that
dimH((—4,0))=1
for some §>0. Since the spectrum of logd, is symmetric due to
J,(log4,)J,= —1logd,, there exists t=J in the spectrum of 4, if

dlmH > 1. By Lemma 5, there exist Q € R,, 1 CC(t—0/4,t+ 6/4), such
that ||QQ | =1, because H((t — 6/4,t + 6/4)) % 0. Let

o=0Q,eH((t—0/4,t+0/4)).
By Lemma 7 and (2.1), we have Q*Q € R ((—9/2,6/2)) and hence
0*QQ,=cQ,

o

for some complex number ¢, which is determined by
c=[QQ,|*=1.

Since Q, is separating for R, we have 0*Q = 1. Hence |Q*| = 1.
We now have
1z ”Q*‘Qe“ = ”‘]9 o* Qe“ = ”A;/ZQ'QQ”
= |4y @ = {exp(1/2) (t — 6/4)} | @ |
>1,
which is a contradiction. Q.E.D.

Proof of Theorem 2 for a general n. Let H,, be the set of all 4, in-
variant vectors in H, and R, be the set of all T .(t) invariant elements of
R=n o(R). By assumptlon there exists 6 >0 such that H(I)=H,, for

I=(— 6 ). dimHy=n.

For any J CCI, Q e R, satisfies QQ,e H(I)= H, because Q, € H(I,)
for small I, contammg Osuchthat J + I; CI. Hence {7,(t) 0} Q, = A”QQ
= Q%,. Since Q, is separating, 7,(t) @ =Q and hence ER(I)C R,. If0elJ,
then R(J) D R,. Hence ER(J) ERO for JCI. By Lemma 5, ‘.ROQ is dense
in H(I)=H, and hence R, Q,=H,. Since Q, is separating for R, it is
cyclic and separating for R, 1n H,. By KMS condition, ©, is a trace
vector for R,.

There exists a set of mutually orthogonal minimal projections s; € R,
such that s;=1. Let Q;=5,Q,. Since J,s5,Q,=5;Q, because A is 1 on
H,, we have 5,Q,=j,(s;) £ Q =5°Q,=s; ;g(s,)Q Let Sijo(s;) H= H;. Then
Q,=5,9,eH,. Smce (siRsQ)‘ ( YR](S)Q) (s;(s)ERQ) H Q
is cyclic for R, =s,Rs,. Since QQ, = 0Q, for Q e R;, Q, is separating for
R,. For Qe 93,, we have

$,00,=5,0s52,=5,0Q2,=0*Q,
= Q*Ql >
where S, = J, 4}/ Hence the restriction of J, and 4, are J,, and 4, in H;.
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Since s; is minimal in R, and Q, is cyclic separating trace vector,
Jo(s;) is mlmmal in the commutant of R, in H, and Q=s, ijo(s:) €, spans
S;j,(s;)) Hy. Hence Ag, has an isolated spectrum at 1 w1th multlphc]ty 1
and hence dim H; = 1. Hence s; Rs; = R; ~ C. Therefore s, is also a minimal
projection of R. Since the number of s; can not exceed dimH,=mn,
R has at most » mutually orthogonal minimal projections with sum 1.
This implies dimH, <n*. Q.E.D.

§ 4. Isolated Spectrum with a Finite Multiplicity at x + 1

Theorem 3. If x is an isolated spectrum of A, with a finite multiplicity,
then there exists a direct sum decomposition

T,(R)=R,OR,, Q,=Q,®Q,, 4,=4,D4,,

such that R, is of type I with a finite atomic center and Ag, does not have
its spectrum at x and x .

Let H, denote the set of all eigenvectors of 4, belonging to an
eigenvalue ¢’ and s, be the projection to the subspace spanned by R'H,
+ R’ H_,. As a preparation for our proof, we have the following:

Lemma 8. Assume that H((t — 6, t + 6)) = H,.

Then

(@) [s,4,1=0.

(b) 1is an isolated spectrum of 4,|s,H.

(c) If dim H, < o0, then dims, H, < c0.

(d) (1—s,) 4, does not have its spectrum at e*'

Proof. If t =0, then s,=1 and all statements become trivial. Hence
we assume ¢ £ 0.

(a) Since H, and H_, are invariant under 4% and R’ is invariant under
7,(t), s,H, is invariant under A% and hence [s,, 4,]=0.

(b) For any J CC(— 6, d), there exists I ¢t such that J + I C(t — 0, t + J).
Then H,C H(I) and R, H,C H((t — 6, t + 6)) = H,. For Qe ®, and ¥ € H,,

T,) QP =e"“A¥ Q¥ =QY.
3 {f,)0-0Q} ¥=0 (4.1)
for all Y e R'H,.

Since J,4,J,=4;",log4, has a symmetric spectrum and hence
H(—t—0, —t+9)= H,, By the same argument as above, (4.1) holds
for ¥ € R'H_, and hence for Y es, H, We have

Tow) {Qs,} = {T,(w) Q} s, = Qs .

Hence R,s,C R, for any. J CC(— 9, 6). Clearly, Rys, CR,s,. Hence R, s,
=R, s,. Taking adjoint, s,R; =5, R,.

Hence
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By Lemma 5, s, H((— 6, §)) is generated by
s R, Q,=5,RoQ,Cs,Hy, JCC(=8,9).

Hence 1 is an isolated spectrum of 4|, . Moreover, stHOCs,iR,
Cs,H, and hence s, ERO =s,H,.

(¢) dimH, < o0 1mp11es dimH_,=dimJ,H,<co. Since QH,=0,
QH_,=0, Qe R imply Qs, =0, we have

dimH, + dimH_, > dim R, s, = dim R, s, = dims, H,, .

(d) This follows from (1) and the definition of 5,, Q.E.D.

Proof of Theorem 3. Let x=2¢" If t =0, then Theorem 3 holds with

R, =0 due to Theorem 2. Assume that £+ 0. Let
K = Stjg(st) HQ >
gﬁ = St ﬁ St l K>
¥ =5y () 2, -

By (a) of Lemma 8, we have s5,Q,=4}?5Q,=J,5Q,=j,(5) 2,
=5°Q,=5,j,(s)Q,="¥. Hence MY = S,SR]Q(S,)Q = st]Q(s )ERQ is dense
in K and W ‘I’ = J(s,) R’ ]Q(s,) 8§, Q,=J,(s) R's, Q, = j,(s)s, ‘.R’ is
also dense in K. Hence ¥ is cyclic and separating for M in K. For
QeMand §,=7J,4)7,

§,0502,=50%Q,=0Q%s,Q
and hence S,|x =Sy, 4,|x =4y and J,|x=Jy.

By (c) of Lemma 8, Ay has an isolated spectrum with a finite multi-
plicity. Hence M is a finite matrix algebra by Theorem 2.

Since s,H, = H,, j,(s)H, = J,5,J,H, = J,s,H_, = J,H_, = H,.
Similarly j,(s) H.,= H_,. Hence H,+ H_,CK.

Let c(s) be the central support of s,. Since j,(c(s) = c(s,) (for any
central projection), c(j,(s,)) = c(s,). MM is isomorphic to s, R s, restricted to
RK=sR Q,=s,H. Hence c(s,) R must be of type I with a finite atomic
center.

9{a = C(St) ‘j{’ 9{b = (1 - C(St)) ﬁ, Qa = C(St) Q
Q, = (1 —c(s,) Q, satisfy required properties. Q.E.D.

§ 5. Applications
Connes has introduced the invariant

S(R) =) spectrum 4, .

e

Our result gives the following application for S(R).
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Theorem 4. Let ¢ be a faithful normal state of R invariant under a net
of * automorphisms t, of R. Assume that R has a weakly dense sub *
algebra N which is strongly t, central. Then

S(R)= Spectrum 4,,..

If o is ergodic with respect to modular automorphisms in addition, then
either S(R) is [0, o) or H, is of one dimension.

Proof. The first half follows from Theorem 1. If g is 7, ergodic, then ¢
is primary and hence Spectrum 4,\{0} is a multiplicative group. If 1 is
not an isolated spectrum of 4,, then Spectrum 4,=[0, c0). If 1 is an
isolated spectrum of 4,, then Theorem 2 is applicable where n=1 due
to 7, ergodicity. Hence dimH,=1. Q.E.D.

Remark 1. Stormer [4] proved the first part under the assumption of
strong clustering. The second part is stated in [4] with the assumption
that 7, is asymptotically abelian.

Theorem 5. S(R) = ) essential spectrum 4,,.
4

Proof. Obvious from Theorem 3. Q.E.D.

Remark 2. Connes invariant is additive under direct sum S(R; ® R,)
=S(R,)US(R,), whereas the asymptotic ratio set satisfies r, (R, D R,)
=7,(R,)Nro(R,). S(R) is more closely related to the union of S, over
non-zero portion of partial central decomposition of R according to
asymptotic ratio set.

Remark 3. In the situation of Theorem 4, if R is ITPFI, then R=R,_,
0<x=o0. If ¢ is 7, ergodic, then R=R . R appearing in Gibbs states
of a lattice system is hyperfinite but it is not known whether it is an
ITPFT in general.

Appendix
The following result is a part of Theorem 4 in [1] and is a basis for
Lemma 1 of § 1.

Lemma 9. If Q, is a uniformly bounded weakly central net in R and if ¢
and o' are normal states of R such that ¢(z) = ¢’ (2) for all ze 3 =(RAR),

then
lim{e(Q.) —¢'(Q,)} =0. (A1)

The following direct proof is due to Elliott.

Proof. Let Q,, be weakly converging subnet of Q,. Since Q, is
weakly central,
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Hence ¢(z) =¢'(z), i.e.
lim {0(Qyp) — 0'(Qup))} =0

In view of weak compactness of the unit ball of R, this implies (A.1).
Q.E.D.

Somewhat stronger conclusion can be drawn if Q,=1,0Q, and g is
a faithful invariant state. An example is seen in the following:

Lemma 10. Let U be a weakly dense * subalgebra of R, ¢ be a faithful
normal state of R, 7, be a net of * automorphisms of R such that g is
invariant and W is weakly t, central, and @' be a normal state of R such
that ¢'(z)=(2) for every ze RNR'. Then

limg'(7,Q)=0(Q), QeR. (A2)
Proof. By Theorem 4 of [1],
w—lim{7,Q; — 7, F3%(Qy)} =0
for Q, € A, which implies
w—limU,r,(Q, — F3%(Q,)) 2,=0.

Since F g,m is strongly continuous on the unit ball, there exists Q; € A
for given Qe R, ;e H,, j=1...n, and £>0 such that

[{ma(@) = F§™(Q1) = m,(@ — FF(Q)} 2, )] <e/2.
For this Q,, there exists o, such that for o> o,
(D), Up o (Q1 — FF™(Q1) Q,)| <2/2.
These two equations imply
(@), Uy, (Q — F3(Q) Q)| <&
w—limr, (7, {Q — F3"(Q)}) @, =

Multiplying Q' e n,(R)" and using the cyclicity of Q, for n,(R)’, we
obtain

and hence

w—lim=,(r,Q —1,F3%(Q))=
which implies
w—lim(z,Q — 7, F3%(Q) =0, Qe®R. (A.3)

Since F3%(Q) € 3, we obtain

Q' (. F3*(Q) = 0(z, F3*(Q) = o(F$"(Q) = 2(Q) -



Modular Operators 277

Hence we obtain from (A.3)
limg'(z,Q) = lim ¢’ (z, F3(Q))
=0(Q). QE.D.
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