Remarks on Spectra of Modular Operators of von Neumann Algebras

Huzihiro Araki*

Department of Mathematics, Queen's University, Kingston, Ontario, Canada

Received June 20, 1972

Abstract. It is shown that if ϱ is an invariant state of an asymptotically abelian C^* algebra \mathfrak{A} , then the spectrum of modular operator for ϱ is contained in the spectrum of any other modular operator for the von Neumann algebra $\pi_{\varrho}(\mathfrak{A})''$.

It is also shown that a modular operator can not have an isolated spectrum with a finite multiplicity at 1 unless the associated Hilbert space is of finite dimension. It is further shown that if a modular operator has an isolated spectrum with a finite multiplicity at $x \neq 1$, then the von Neumann algebra \Re is a direct sum of \Re_1 and \Re_2 where \Re_1 is represented on a finite dimensional Hilbert space and the modular operator for \Re_2 does not have its spectrum at x.

Applications to Connes invariant are given.

§ 1. Preliminaries

A net of operators Q_{α} in a von Neumann algebra \Re is called weakly (or strongly) central if there exists weakly total self adjoint subset \Re_0 of \Re such that $[Q_{\alpha}, Q] \to 0$ weakly (or strongly) for every $Q \in \Re_0$. If Q_{α} is uniformly bounded and weakly central, then w-lim $[Q_{\alpha}, Q] = 0$ for all $Q \in \Re$ ([1]).

A subset $\mathfrak A$ of $\mathfrak R$ is called weakly (or strongly) τ_{α} central relative to a net of * automorphisms τ_{α} of $\mathfrak R$ if $\tau_{\alpha}Q$ is weakly (or strongly) central in $\mathfrak R$ for each $Q \in \mathfrak A$.

For any state ϱ of \Re , we denote by H_{ϱ} , π_{ϱ} and Ω_{ϱ} a Hilbert space, a representation of \Re on H_{ϱ} and a cyclic vector in H_{ϱ} associated with ϱ through the relation

$$\varrho(Q) = \left(\Omega_{\varrho}, \, \pi_{\varrho}(Q) \, \Omega_{\varrho}\right), \quad \ Q \in \Re \; .$$

 J_{ϱ} and Δ_{ϱ} denote modular conjugation operator and modular operator for Ω_{ϱ} when ϱ is faithful. $\bar{\tau}_{\varrho}(t) Q \equiv \Delta_{\varrho}^{it} Q \Delta_{\varrho}^{-it}$.

If ϱ is τ_{α} invariant, then there exists a unitary U_{α} such that $U_{\alpha}\pi_{\varrho}(Q)\Omega_{\varrho} = \pi_{\varrho}(\tau_{\alpha}Q)\Omega_{\varrho}$ for all $Q \in \Re$. We denote $U_{\alpha}QU_{\alpha}^* = \overline{\tau}_{\alpha}Q$ for $Q \in \Re(H_{\varrho})$. The following result has been obtained in [1]. (See also appendix.)

^{*} On leave from Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan.

Lemma 1. Let a weakly dense * subalgebra $\mathfrak A$ of $\mathfrak R$ be strongly τ_{α} central, ϱ be a faithful normal state on $\mathfrak R$, invariant under all τ_{α} and $\mathfrak A$ be the C^* algebra generated by $\pi_{\varrho}(\mathfrak A) j_{\varrho} \{\pi_{\varrho}(\mathfrak A)\}$ where $j_{\varrho}(\varrho) = J_{\varrho} \varrho J_{\varrho}$. Let $\hat{\varrho}$ denote the vector state on $\mathcal B(H_{\varrho})$ by the vector Ω_{ϱ} and ϱ' be any normal state on $\mathcal B(H_{\varrho})$, such that its restriction to the center $\mathfrak Z = \pi_{\varrho}(\mathfrak R) \cap \pi_{\varrho}(\mathfrak R)'$ of $\mathfrak R$ is the same as that of $\hat{\varrho}: \hat{\varrho}(z) = \varrho'(z)$ for all $z \in \mathfrak Z$. Then

$$\lim \varrho'(\overline{\tau}_{\alpha}Q) = \hat{\varrho}(Q), \quad Q \in \hat{\mathfrak{A}}.$$

To achieve the situation $\varrho'|_3 = \hat{\varrho}|_3$, we use the following commutative Radon-Nikodym Theorem. Here, $s(\varrho)$ denotes the support projection of ϱ .

Lemma 2. Let ϱ_1 and ϱ_2 be normal states of a commutative von Neumann algebra \mathfrak{Z} and $s(\varrho_1) \geqq s(\varrho_2)$. (The last condition is automatically fulfilled if ϱ_1 is faithful.) Then there exists a non-negative self adjoint operator $A^3(\varrho_2/\varrho_1)$ affiliated with \mathfrak{Z} such that Ω_{ϱ_1} is in the domain of $\pi_{\varrho_1}(A^3(\varrho_2/\varrho_1))$ ($\equiv \int \lambda \mathrm{d}\pi_{\varrho_1}(E_\lambda)$ if $A^3(\varrho_2/\varrho_1) = \int \lambda \mathrm{d}E_\lambda$) and the vector state on \mathfrak{Z} by the vector $\Omega' \equiv \pi_{\varrho_1}(A^3(\varrho_2/\varrho_1))$ Ω_{ϱ_1} is ϱ_2 .

 $A(\varrho_2/\varrho_1)$ is the positive square root of Radon-Nikodym derivate in measure theoretical sense.

Lemma 3. Let \Re be a von Neumann algebra on H and Ω and Ω' be two cyclic and separating vectors related by $\Omega' = A\Omega$ where A is a positive self adjoint operator affiliated with center $\Im = \Re \cap \Re'$. Then $\Delta_{\Omega} = \Delta_{\Omega'}$.

Proof. Let
$$z \in \mathcal{J}$$
, $z = z^*$ and $S_{\Omega} = J_{\Omega} \Delta_{\Omega}^{1/2}$.

Then

$$S_{\Omega}Qz\Omega = zQ^*\Omega = Q^*z\Omega, \quad Q \in \Re.$$

Let $A = \int \lambda dE_{\lambda}$, $A_L = AE_L$. Then $A_L \in \mathcal{J}$, $A_L^* = A_L$. Further,

$$\lim_{L \to +\infty} Q A_L \Omega = Q \Omega', \quad \lim_{L \to +\infty} Q^* A_L \Omega = Q^* \Omega'$$

for $Q \in \Re$. Since S_{Ω} is closed, we have

$$S_{\Omega}Q\Omega' = Q^*\Omega' = S_{\Omega'}Q\Omega'$$
.

Hence $S_{\Omega} \supset S_{\Omega'}$. Since $\Omega = A^{-1} \Omega'$, we have $S_{\Omega'} \supset S_{\Omega}$. Therefore $S_{\Omega} = S_{\Omega'}$, which implies $\Delta_{\Omega} = S_{\Omega}^* S_{\Omega} = S_{\Omega'}^* S_{\Omega'} = \Delta_{\Omega'}$. Q.E.D.

The following Lemma has been given by Connes [2].

Lemma 4. $t \in [0, \infty)$ is in the spectrum of Δ_{Ω} if and only if there exist operators $x \in \Re$ and $y \in \Re'$ for each given $\varepsilon > 0$ such that $\|x\Omega\| = 1$, $\|t^{1/2}x\Omega - y\Omega\| < \varepsilon$ and $\|x^*\Omega - t^{1/2}y^*\Omega\| < \varepsilon$.

§ 2. Invariant State of Asymptotically Abelian System

Theorem 1. Let τ_{α} be a net of * automorphisms of \Re such that a weakly dense sub * algebra \Re of \Re is strongly τ_{α} central and ϱ be a faithful normal state of \Re , invariant under all τ_{α} . Then the spectrum of Δ_{ϱ} is contained in the spectrum of $\Delta_{\varrho'}$ for any faithful normal state ϱ' on \Re .

Remark. This theorem with an assumption of strong clustering has been given by Størmer [4].

Proof. Let $t \in [0, \infty)$ be in the spectrum of Δ_{ϱ} and $\varepsilon > 0$ be given. By Lemma 4, there exists $x \in \Re$ and $y \in \Re'$ satisfying

$$\begin{split} \left\| x \Omega_\varrho \right\| &= 1 \;, \\ \left\| t^{1/2} \, x \Omega_\varrho - y \Omega_\varrho \right\| &< \varepsilon/4 \;, \\ \left\| x^* \, \Omega_\varrho - t^{1/2} \, y^* \, \Omega_\varrho \right\| &< \varepsilon/4 \;. \end{split}$$

Since $\mathfrak A$ is a self adjoint linear weakly dense subset of $\mathfrak R$, it is * strongly dense in $\mathfrak R$. Hence there exist $x_1 \in \pi_{\varrho}(\mathfrak A)$ and $y_1 \in J_{\varrho} \pi_{\varrho}(\mathfrak A) J_{\varrho}$ such that

$$\begin{split} \left\| x_1 \, \Omega_\varrho \right\| &= 1 \;, \\ \left\| t^{1/2} \left(x - x_1 \right) \Omega_\varrho - \left(y - y_1 \right) \Omega_\varrho \right\| &< \varepsilon/4 \;, \\ \left\| \left(x^* - x_1^* \right) \Omega_\varrho - t^{1/2} \left(y^* - y_1^* \right) \Omega_\varrho \right\| &< \varepsilon/4 \;. \end{split}$$

Since Ω_ϱ is cyclic and separating for $\pi_\varrho(\Re) \sim \Re$, there exists a vector $\Omega_{\varrho'} \in H_\varrho$ such that the vector state by $\Omega_{\varrho'}$ on \Re is ϱ' . By Lemma 2, there exists a positive self adjoint operator z affiliated with $\Im = \pi_\varrho(\Re) \cap \pi_\varrho(\Re)'$ such that $z\Omega_{\varrho'} \equiv \Omega'$ gives the same vector state on \Im as Ω_ϱ . Let ϱ'' be the vector state on $\Re(H_\varrho)$ by the vector Ω' .

By Lemma 1, there exists α such that

$$\begin{split} |(\varrho''-\hat{\varrho})\left(\overline{\tau}_{\alpha}(x_{1}^{*}x_{1})\right)| &< 1/2\;,\\ |(\varrho''-\hat{\varrho})\left(\overline{\tau}_{\alpha}\left\{(t^{1/2}\,x_{1}-y_{1})^{*}\,(t^{1/2}\,x_{1}-y_{1})\right\}\right)| &< \varepsilon^{2}/4\;,\\ |(\varrho''-\hat{\varrho})\left(\overline{\tau}_{\alpha}\left\{(x_{1}^{*}-t^{1/2}\,y_{1}^{*})^{*}\,(x_{1}^{*}-t^{1/2}\,y_{1}^{*})\right\}\right)| &< \varepsilon^{2}/4\;. \end{split}$$

We define $\lambda = \varrho''(\overline{\tau}_{\alpha}(x_1^*x_1))^{1/2}$. Then $\lambda^2 > 1 - 1/2 = 1/2$, due to $\hat{\varrho}(\overline{\tau}_{\alpha}(x_1^*x_1)) = \hat{\varrho}(x_1^*x_1) = 1$. We define

$$x_2 = \lambda^{-1} \, \overline{\tau}_{\alpha} \, x_1 \,, \qquad y_2 = \lambda^{-1} \, \overline{\tau}_{\alpha} \, y_1 \,.$$

By previous estimates and $\bar{\tau}_{\alpha}$ invariance of $\hat{\varrho}$, we have

$$\begin{split} \varrho''(x_2 * x_2) &= 1 \;, \\ \varrho'' \big((t^{1/2} \, x_2 - y_2) * \, (t^{1/2} \, x_2 - y_2) \big) &< \varepsilon^2 \;, \\ \varrho'' \big((x_2 * - t^{1/2} \, y_2 *) * \, (x_2 * - t^{1/2} \, y_2 *) \big) &< \varepsilon^2 \;. \end{split}$$

Since $x_2 \in \pi_{\varrho}(\mathfrak{R})$, $y_2 \in \pi_{\varrho}(\mathfrak{R})'$, t is in the spectrum of $\Delta_{\Omega'}$ by Lemma 4. By Lemma 3, $\Delta_{\Omega'} = \Delta_{\Omega_{\Omega'}}$. Hence t is in the spectrum of $\Delta_{\varrho'}$. Q.E.D.

§ 3. Isolated Spectrum with a Finite Multiplicity at 1

Theorem 2. If 1 is an isolated spectrum of Δ_{ϱ} with a multiplicity n, then dim $H_{\varrho} \leq n^2$.

We need a few preparations for the proof of this Theorem. Let $\mathfrak A$ be any weakly dense $\overline{\tau}_\varrho(t)$ invariant norm closed linear subset of $\pi_\varrho(\mathfrak R)$. Let $\Delta_\varrho = \int\limits_{-\infty}^\infty e^\lambda \mathrm{d} E_\lambda$. For any bounded open interval I=(a,b), define $\mathfrak A_I$ as the set of all operators Q in $\mathfrak A$ such that

$$QH((\alpha, \beta)) \subset H((\alpha + a, \beta + b)),$$

$$H((\alpha, \beta)) = (E_{\beta-0} - E_{\alpha+0}) H_{\alpha}.$$

From the definition

$$\mathfrak{A}_{I_1}\mathfrak{A}_{I_2} \subset \hat{\mathfrak{R}}_{I_1+I_2}, \qquad \hat{\mathfrak{R}} = \pi_{\varrho}(\mathfrak{R}). \tag{2.1}$$

Let $I \subset J$ denotes $\overline{I} \subset J$ where \overline{I} is the closure of I.

Lemma 5. H(I) is the closure of $\bigcup_{J\subset cI}\mathfrak{A}_J\Omega_\varrho$.

Proof. Since $\Omega_{\varrho} \in H(I'')$ for any I'' containing 0, we have $\mathfrak{A}_{J}\Omega_{\varrho} \subset H(I)$ if $J \subset I$.

Since $\bigcup_{J\subset I}A_J\Omega_\varrho$ is a linear set, it is enough to show that for any unit vector $\Phi\in H(I)$, there exists $J\subset I$ and $Q\in\mathfrak{A}_J$ such that $(Q\Omega_\varrho,\Phi)\neq 0$. Let I=(a,b). By definition, there exist a< a'< b'< b such that $\|(E_{b'-0}-E_{a'+0})\Phi\|\neq 0$. $(\|\Phi\|=1)$ by assumption.) Let J=(a',b'). Since Ω_ϱ is cyclic, there exists $Q_1\in\mathfrak{A}$ such that $(Q_1\Omega_\varrho,(E_{b'-0}-E_{a'+0})\Phi)\neq 0$. Let

$$d\mu(\lambda) = d(Q_1 \Omega_\varrho, E_\lambda \Phi).$$

It is a finite complex measure and its restriction to J is not identically 0. The set $C_0(J)$ of all continuous functions vanishing outside of J is separating for finite measures on J. Since C^{∞} functions vanishing outside of J is norm dense in $C_0(J)$, there exists a C^{∞} function $\tilde{f}(\lambda)$ whose support is in J and $\int \tilde{f}(\lambda) \, \mathrm{d}\mu(\lambda) \neq 0$.

Let
$$f(t) = (2\pi)^{-1} \int \hat{f}(\lambda)^* e^{-it\lambda} d\lambda$$
. f is in \mathcal{S} . Define

$$Q = \int_{-\infty}^{\infty} \overline{\tau}_{\varrho}(t) \, Q_1 \, f(t) \, dt \in \mathfrak{A} \, .$$

Then

$$\begin{split} Q\Omega_{\varrho} &= \int \tilde{f}(\lambda)^* \, \mathrm{d}E_{\lambda} Q_1 \, \Omega_{\varrho} \; ; \\ (Q\Omega_{\varrho}, \Phi) &= \int \tilde{f}(\lambda) \, \mathrm{d}\mu(\lambda) \neq 0 \; . \end{split}$$

Lemma 5 is proved if we show $Q \in \mathfrak{A}_J$. This follows from the next Lemma. Q.E.D.

Lemma 6. Let $\tilde{f}(\lambda)$ be a C^{∞} function with its support in a compact interval \widetilde{J} and

$$f(t) = (2\pi)^{-1} \int \tilde{f}(\lambda) e^{-it\lambda} d\lambda.$$

Then, for any Q_1 in a $\bar{\tau}_{\varrho}$ -invariant norm closed linear set \mathfrak{A} ,

$$Q(f) \equiv \int_{-\infty}^{\infty} \bar{\tau}_{\varrho}(t) Q_1 f(t) dt \in \mathfrak{A}_J.$$

Proof. Let I be a bounded open interval and I_1 be another open interval such that $I_1 \subset I$. Since the union of $H(I_1)$ for all such I_1 is dense in H(I), it is enough to prove that for $\Phi \in H(I_1)$ and any Ψ such that the measure $d(\Psi, E_{\lambda} \Psi)$ has a compact support with empty intersection with $I + \overline{J} (= I + J)$, Q(f) satisfies

Let

$$(\Psi, Q(f) \Phi) = 0.$$

$$F(t, s) = (\Psi, \Delta_{\varrho}^{it} Q_1 \Delta_{\varrho}^{-is} \Phi).$$

F is a uniformly bounded continuous function of (t, s), analytic in t and s. Its Fourier transform

$$\tilde{F}(p,q) = \int e^{i(-pt+qs)} F(t,s) dt ds/(2\pi)^2$$

is a tempered distribution with support in the direct product of the support of $d(\Psi, E_{\lambda} \Psi)$ and $\overline{I}_1 \subset I$. This support has an empty intersection with the support of $\tilde{f}(p-q)$, which is a C^{∞} function. Hence

$$0 = \int \tilde{F}(p, q) \, \tilde{f}(p - q) \, \mathrm{d}p \, \mathrm{d}q$$
$$= \int F(t, s) \, f(t) \, \delta(t - s) \, \mathrm{d}t \, \mathrm{d}s$$
$$= \int F(t, t) \, f(t) \, \mathrm{d}t = (\Psi, Q(f) \, \Phi) \,. \quad \text{Q.E.D.}$$

Lemma 7. $\mathfrak{A}_{I}^{*} \subset \hat{\mathfrak{R}}_{-I}$.

Proof. Let I_1 and I_2 be open bounded intervals such that $I_1 + J$ and I_2 has an empty intersection. Then $\mathfrak{A}_J H(I_1) \perp H(I_2)$. Hence $\mathfrak{A}_J^* H(I_2) \perp H(I_1)$. Given an open bounded interval I. Let $I_2 \subset I$. Then $I_2 - J \subset I - J$ and $\mathfrak{A}_J^* H(I_2) \perp H(I_1)$ whenever $I_2 - J$ has an empty intersection with an open bounded interval I_1 . Since $I_2 - J \subset I - J$, this implies $\mathfrak{A}_J^* H(I_2) \subset H(I - J)$. Since the union of $H(I_2)$ is dense in H(I), we have $\mathfrak{A}_J^* H(I) \subset H(I - J)$ and hence $\mathfrak{A}_J^* \subset \hat{\mathfrak{A}}_{-J}$. Q.E.D.

Proof of Theorem 2 when n = 1. Assume that

$$\dim H((-\delta, \delta)) = 1$$

for some $\delta > 0$. Since the spectrum of $\log \Delta_\varrho$ is symmetric due to $J_\varrho(\log \Delta_\varrho) J_\varrho = -\log \Delta_\varrho$, there exists $t \geq \delta$ in the spectrum of Δ_ϱ if $\dim H_\varrho > 1$. By Lemma 5, there exist $Q \in \hat{\mathfrak{R}}_I$, $I \subset (t - \delta/4, t + \delta/4)$, such that $\|Q\Omega_\varrho\| = 1$, because $H((t - \delta/4, t + \delta/4)) \neq 0$. Let

$$\Phi = Q\Omega_{\varrho} \in H((t - \delta/4, t + \delta/4))$$
.

By Lemma 7 and (2.1), we have $Q^*Q \in \Re((-\delta/2, \delta/2))$ and hence

$$Q * Q \Omega_o = c \Omega_o$$

for some complex number c, which is determined by

$$c = \|Q\Omega_o\|^2 = 1.$$

Since Ω_{ϱ} is separating for \Re , we have $Q^*Q=1$. Hence $\|Q^*\|=1$. We now have

$$\begin{split} 1 & \ge \|Q^* \Omega_{\varrho}\| = \|J_{\varrho} \, Q^* \Omega_{\varrho}\| = \|\Delta_{\varrho}^{1/2} \, Q \Omega_{\varrho}\| \\ & = \|\Delta_{\varrho}^{1/2} \, \varPhi\| \ge \{\exp(1/2) \, (t - \delta/4)\} \, \|\varPhi\| \\ & > 1 \, , \end{split}$$

which is a contradiction. Q.E.D.

Proof of Theorem 2 for a general n. Let H_0 be the set of all Δ_ϱ invariant vectors in H_ϱ and $\hat{\Re}_0$ be the set of all $\bar{\tau}_\varrho(t)$ invariant elements of $\hat{\Re} = \pi_\varrho(\Re)$. By assumption, there exists $\delta > 0$ such that $H(I) = H_0$ for $I = (-\delta, \delta)$. dim $H_0 = n$.

For any $J \subset I$, $Q \in \hat{\mathfrak{R}}_J$ satisfies $Q\Omega_\varrho \in H(I) = H_0$ because $\Omega_\varrho \in H(I_1)$ for small I_1 containing 0 such that $J + I_1 \subset I$. Hence $\{\bar{\tau}_\varrho(t) \, Q\} \, \Omega_\varrho = \Delta_\varrho^{it} \, Q\Omega_\varrho = Q\Omega_\varrho$. Since Ω_ϱ is separating, $\bar{\tau}_\varrho(t) \, Q = Q$ and hence $\hat{\mathfrak{R}}(I) \subset \hat{\mathfrak{R}}_0$. If $0 \in J$, then $\hat{\mathfrak{R}}(J) \supset \hat{\mathfrak{R}}_0$. Hence $\hat{\mathfrak{R}}(J) = \hat{\mathfrak{R}}_0$ for $J \subset I$. By Lemma 5, $\hat{\mathfrak{R}}_0 \, \Omega_\varrho$ is dense in $H(I) = H_0$ and hence $\hat{\mathfrak{R}}_0 \, \Omega_\varrho = H_0$. Since Ω_ϱ is separating for $\hat{\mathfrak{R}}_0$, it is cyclic and separating for $\hat{\mathfrak{R}}_0$ in H_0 . By KMS condition, Ω_ϱ is a trace vector for $\hat{\mathfrak{R}}_0$.

There exists a set of mutually orthogonal minimal projections $s_i \in \hat{\mathfrak{R}}_0$ such that $\Sigma s_i = 1$. Let $\Omega_i = s_i \Omega_\varrho$. Since $J_\varrho s_i \Omega_\varrho = s_i \Omega_\varrho$ because Δ_ϱ is 1 on H_0 , we have $s_i \Omega_\varrho = j_\varrho(s_i) \Omega_\varrho = s_i^2 \Omega_\varrho = s_i j_\varrho(s_i) \Omega_\varrho$. Let $s_i j_\varrho(s_i) H = H_i$. Then $\Omega_i = s_i \Omega_\varrho \in H_i$. Since $(s_i \hat{\mathfrak{R}} s_i \Omega_i)^- = (s_i \hat{\mathfrak{R}} j(s_i) \Omega_\varrho)^- = (s_i j_\varrho(s_i) \hat{\mathfrak{R}} \Omega_\varrho)^- = H_i$, Ω_i is cyclic for $\mathfrak{R}_i \equiv s_i \hat{\mathfrak{R}} s_i$. Since $Q\Omega_i = Q\Omega_\varrho$ for $Q \in \mathfrak{R}_i$, Ω_i is separating for \mathfrak{R}_i . For $Q \in \mathfrak{R}_i$, we have

$$\begin{split} S_{\varrho} Q \Omega_i &= S_{\varrho} Q s_i \Omega_{\varrho} = S_{\varrho} Q \Omega_{\varrho} = Q^* \Omega_{\varrho} \\ &= Q^* \Omega_i \; , \end{split}$$

where $S_{\varrho} = J_{\varrho} \Delta_{\varrho}^{1/2}$. Hence the restriction of J_{ϱ} and Δ_{ϱ} are J_{Ω_i} and Δ_{Ω_i} in H_i .

Since s_i is minimal in $\hat{\mathfrak{R}}_0$ and Ω_ϱ is cyclic separating trace vector, $j_\varrho(s_i)$ is minimal in the commutant of $\hat{\mathfrak{R}}_0$ in H_0 and $\Omega_i = s_i j_\varrho(s_i) \, \Omega_\varrho$ spans $s_i j_\varrho(s_i) \, H_0$. Hence Δ_{Ω_i} has an isolated spectrum at 1 with multiplicity 1 and hence $\dim H_i = 1$. Hence $s_i \, \Re s_i = \Re_i \sim C$. Therefore s_i is also a minimal projection of \Re . Since the number of s_i can not exceed $\dim H_0 = n$, \Re has at most n mutually orthogonal minimal projections with sum 1. This implies $\dim H_\varrho \leq n^2$. Q.E.D.

§ 4. Isolated Spectrum with a Finite Multiplicity at $x \neq 1$

Theorem 3. If x is an isolated spectrum of Δ_{ϱ} with a finite multiplicity, then there exists a direct sum decomposition

$$\pi_{\varrho}(\Re) = \Re_a \oplus \Re_b, \quad \ \, \Omega_{\varrho} = \Omega_a \oplus \Omega_b, \quad \ \, \varDelta_{\varrho} = \varDelta_{\Omega_a} \oplus \varDelta_{\Omega_b}$$

such that \Re_a is of type I with a finite atomic center and Δ_{Ω_b} does not have its spectrum at x and x^{-1} .

Let H_t denote the set of all eigenvectors of Δ_{ϱ} belonging to an eigenvalue e^t and s_t be the projection to the subspace spanned by $\hat{\Re}' H_t + \hat{\Re}' H_{-t}$. As a preparation for our proof, we have the following:

Lemma 8. Assume that $H((t - \delta, t + \delta)) = H_t$.

Then

- (a) $[s_t, \Delta_o] = 0$.
- (b) 1 is an isolated spectrum of $\Delta_{\varrho}|s_tH$.
- (c) If $\dim H_t < \infty$, then $\dim s_t H_0 < \infty$.
- (d) $(1-s_t) \Delta_{\varrho}$ does not have its spectrum at $e^{\pm t}$.

Proof. If t = 0, then $s_t = 1$ and all statements become trivial. Hence we assume $t \neq 0$.

- (a) Since H_t and H_{-t} are invariant under Δ_{ϱ}^{it} and $\hat{\mathfrak{R}}'$ is invariant under $\bar{\tau}_{\varrho}(t)$, $s_t H_{\varrho}$ is invariant under Δ_{ϱ}^{it} and hence $[s_t, \Delta_{\varrho}] = 0$.
- (b) For any $J \subset (-\delta, \delta)$, there exists $I \ni t$ such that $J + I \subset (t \delta, t + \delta)$. Then $H_t \subset H(I)$ and $\hat{\mathfrak{R}}_J H_t \subset H((t \delta, t + \delta)) = H_t$. For $Q \in \hat{\mathfrak{R}}_J$ and $\Psi \in H_t$,

$$\overline{\tau}_{o}(u) Q \Psi = e^{-iu} \Delta_{o}^{iu} Q \Psi = Q \Psi.$$

Hence

$$\{\overline{\tau}_{\varrho}(u) Q - Q\} \Psi = 0 \tag{4.1}$$

for all $\Psi \in \hat{\mathfrak{R}}' H_t$.

Since $J_{\varrho} \Delta_{\varrho} J_{\varrho} = \Delta_{\varrho}^{-1}$, $\log \Delta_{\varrho}$ has a symmetric spectrum and hence $H((-t-\delta, -t+\delta)) = H_{-t}$. By the same argument as above, (4.1) holds for $\Psi \in \hat{\Re}' H_{-t}$ and hence for $\Psi \in s_t H_{\varrho}$. We have

$$\overline{\tau}_{\varrho}(u) \{Qs_t\} = \{\overline{\tau}_{\varrho}(u) Q\} s_t = Qs_t.$$

Hence $\hat{\Re}_J s_t \subset \hat{\Re}_0$ for any $J \subset (-\delta, \delta)$. Clearly, $\hat{\Re}_0 s_t \subset \hat{\Re}_J s_t$. Hence $\hat{\Re}_J s_t = \hat{\Re}_0 s_t$. Taking adjoint, $s_t \hat{\Re}_J = s_t \hat{\Re}_0$.

By Lemma 5, $s_t H((-\delta, \delta))$ is generated by

$$s_t \hat{\Re}_J \Omega_\varrho = s_t \hat{\Re}_0 \Omega_\varrho \subset s_t H_0, \quad J \subset (-\delta, \delta).$$

Hence 1 is an isolated spectrum of $\Delta_{\varrho}|_{s_t H}$. Moreover, $s_t H_0 \subset s_t \, \hat{\Re}_J \, \Omega_{\varrho} \subset s_t H_0$ and hence $s_t \, \hat{\Re}_0 \, \Omega_{\varrho} = s_t H_0$.

(c) $\dim H_t < \infty$ implies $\dim H_{-t} = \dim J_\varrho H_t < \infty$. Since $QH_t = 0$, $QH_{-t} = 0$, $Q \in \Re$ imply $Qs_t = 0$, we have

$$\dim H_t + \dim H_{-t} \ge \dim \hat{\mathfrak{R}}_J s_t = \dim \hat{\mathfrak{R}}_0 s_t = \dim s_t H_0.$$

(d) This follows from (1) and the definition of s_t . Q.E.D.

Proof of Theorem 3. Let $x = e^t$. If t = 0, then Theorem 3 holds with $\Re_b = 0$ due to Theorem 2. Assume that $t \neq 0$. Let

$$K = s_t j_{\varrho}(s_t) H_{\varrho} ,$$

$$\mathfrak{M} = s_t \, \hat{\mathfrak{R}} \, s_t |_{K} ,$$

$$\Psi = s_t j_{\varrho}(s_t) \, \Omega_{\varrho} .$$

By (a) of Lemma 8, we have $s_t \Omega_\varrho = \mathcal{L}_\varrho^{1/2} s_t \Omega_\varrho = J_\varrho s_t \Omega_\varrho = j_\varrho(s_t) \Omega_\varrho = s_t^2 \Omega_\varrho = s_t j_\varrho(s_t) \Omega_\varrho = \Psi$. Hence $\mathfrak{M} \Psi = s_t \, \hat{\mathfrak{R}} j_\varrho(s_t) \Omega_\varrho = s_t j_\varrho(s_t) \, \hat{\mathfrak{R}} \, \Omega_\varrho$ is dense in K and $\mathfrak{M}' \, \Psi = j_\varrho(s_t) \, \hat{\mathfrak{R}}' \, j_\varrho(s_t) \, s_t \, \Omega_\varrho = j_\varrho(s_t) \, \hat{\mathfrak{R}}' \, s_t \, \Omega_\varrho = j_\varrho(s_t) \, s_t \, \hat{\mathfrak{R}}' \, \Omega_\varrho$ is also dense in K. Hence Ψ is cyclic and separating for \mathfrak{M} in K. For $Q \in \mathfrak{M}$ and $S_\varrho = J_\varrho \, \mathcal{L}_\varrho^{1/2}$,

$$S_{\varrho}Q s_{t}\Omega_{\varrho} = s_{t}Q^{*}\Omega_{\varrho} = Q^{*}s_{t}\Omega_{\varrho}$$

and hence $S_{\varrho}|_{K} = S_{\Psi}$, $\Delta_{\varrho}|_{K} = \Delta_{\Psi}$ and $J_{\varrho}|_{K} = J_{\Psi}$.

By (c) of Lemma 8, Δ_{Ψ} has an isolated spectrum with a finite multiplicity. Hence \mathfrak{M} is a finite matrix algebra by Theorem 2.

Since $s_t H_t = H_t$, $j_{\varrho}(s_t) H_t = J_{\varrho} s_t J_{\varrho} H_t = J_{\varrho} s_t H_{-t} = J_{\varrho} H_{-t} = H_t$. Similarly $j_{\varrho}(s_t) H_{-t} = H_{-t}$. Hence $H_t + H_{-t} \subset K$.

Let $c(s_t)$ be the central support of s_t . Since $j_{\varrho}(c(s_t)) = c(s_t)$ (for any central projection), $c(j_{\varrho}(s_t)) = c(s_t)$. \mathfrak{M} is isomorphic to $s_t \, \hat{\mathfrak{R}} \, s_t$ restricted to $\hat{\mathfrak{R}}' \, K = s_t \, \hat{\mathfrak{R}}' \, \Omega_{\varrho} = s_t H$. Hence $c(s_t) \, \hat{\mathfrak{R}}$ must be of type I with a finite atomic center.

$$\Re_a = c(s_t) \, \hat{\Re} \,, \qquad \Re_b = (1 - c(s_t)) \, \hat{\Re} \,, \quad \Omega_a = c(s_t) \, \Omega_o \,,$$

 $\Omega_b = (1 - c(s_t)) \Omega_{\varrho}$ satisfy required properties. Q.E.D.

§ 5. Applications

Connes has introduced the invariant

$$S(\mathfrak{R}) = \bigcap_{\varrho} \operatorname{spectrum} \Delta_{\varrho}$$
.

Our result gives the following application for $S(\Re)$.

Theorem 4. Let ϱ be a faithful normal state of \Re invariant under a net of * automorphisms τ_{α} of \Re . Assume that \Re has a weakly dense sub * algebra \Re which is strongly τ_{α} central. Then

$$S(\Re) = \operatorname{Spectrum} \Delta_{\varrho}$$
.

If ϱ is ergodic with respect to modular automorphisms in addition, then either $S(\Re)$ is $[0, \infty)$ or H_{ϱ} is of one dimension.

Proof. The first half follows from Theorem 1. If ϱ is τ_{ϱ} ergodic, then ϱ is primary and hence Spectrum $\Delta_{\varrho} \setminus \{0\}$ is a multiplicative group. If 1 is not an isolated spectrum of Δ_{ϱ} , then Spectrum $\Delta_{\varrho} = [0, \infty)$. If 1 is an isolated spectrum of Δ_{ϱ} , then Theorem 2 is applicable where n = 1 due to τ_{ϱ} ergodicity. Hence dim $H_{\varrho} = 1$. Q.E.D.

Remark 1. Størmer [4] proved the first part under the assumption of strong clustering. The second part is stated in [4] with the assumption that τ_a is asymptotically abelian.

Theorem 5.
$$S(\mathfrak{R}) = \bigcap_{\varrho}$$
 essential spectrum Δ_{ϱ} .

Proof. Obvious from Theorem 3. Q.E.D.

Remark 2. Connes invariant is additive under direct sum $S(\mathfrak{R}_1 \oplus \mathfrak{R}_2) = S(\mathfrak{R}_1) \cup S(\mathfrak{R}_2)$, whereas the asymptotic ratio set satisfies $r_{\infty}(\mathfrak{R}_1 \oplus \mathfrak{R}_2) = r_{\infty}(\mathfrak{R}_1) \cap r_{\infty}(\mathfrak{R}_2)$. $S(\mathfrak{R})$ is more closely related to the union of S_x over non-zero portion of partial central decomposition of \mathfrak{R} according to asymptotic ratio set.

Remark 3. In the situation of Theorem 4, if \Re is ITPFI, then $\Re = \Re_x$, $0 < x \le \infty$. If ϱ is τ_{ϱ} ergodic, then $\Re = \Re_{\infty}$. \Re appearing in Gibbs states of a lattice system is hyperfinite but it is not known whether it is an ITPFI in general.

Appendix

The following result is a part of Theorem 4 in [1] and is a basis for Lemma 1 of § 1.

Lemma 9. If Q_{α} is a uniformly bounded weakly central net in R and if ϱ and ϱ' are normal states of \Re such that $\varrho(z) = \varrho'(z)$ for all $z \in \mathfrak{Z} = (\Re \cap \Re')$, then

$$\lim \{\varrho(Q_{\alpha}) - \varrho'(Q_{\alpha})\} = 0. \tag{A.1}$$

The following direct proof is due to Elliott.

Proof. Let $Q_{\alpha(\beta)}$ be weakly converging subnet of Q_{α} . Since Q_{α} is weakly central,

$$z = w - \lim Q_{\alpha(\beta)} \in \mathfrak{Z}$$
.

Hence $\varrho(z) = \varrho'(z)$, i.e.

$$\lim \{\varrho(Q_{\alpha(\beta)}) - \varrho'(Q_{\alpha(\beta)})\} = 0.$$

In view of weak compactness of the unit ball of \Re , this implies (A.1). Q.E.D.

Somewhat stronger conclusion can be drawn if $Q_{\alpha} = \tau_{\alpha} Q$, and ϱ is a faithful invariant state. An example is seen in the following:

Lemma 10. Let \mathfrak{A} be a weakly dense * subalgebra of \mathfrak{R} , ϱ be a faithful normal state of \mathfrak{R} , τ_{α} be a net of * automorphisms of \mathfrak{R} such that ϱ is invariant and \mathfrak{A} is weakly τ_{α} central, and ϱ' be a normal state of \mathfrak{R} such that $\varrho'(z) = \varrho(z)$ for every $z \in \mathfrak{R} \cap \mathfrak{R}'$. Then

$$\lim \varrho'(\tau_{\alpha} Q) = \varrho(Q), \qquad Q \in \Re. \tag{A.2}$$

Proof. By Theorem 4 of [1],

$$\mathbf{w} - \lim \left\{ \tau_{\alpha} Q_1 - \tau_{\alpha} F_{\varrho}^{3\Re}(Q_1) \right\} = 0$$

for $Q_1 \in \mathfrak{A}$, which implies

$$\mathbf{w} - \lim U_{\alpha} \pi_{\varrho} (Q_1 - F_{\varrho}^{3\Re}(Q_1)) \Omega_{\varrho} = 0.$$

Since $F_{\varrho}^{\mathfrak{ZR}}$ is strongly continuous on the unit ball, there exists $Q_1 \in \mathfrak{A}$ for given $Q \in \mathfrak{R}$, $\Phi_j \in H_{\varrho}$, $j=1 \ldots n$, and $\varepsilon > 0$ such that

$$\left\|\left\{\pi_{\varrho}(Q_{1}-F_{\varrho}^{\mathfrak{ZR}}(Q_{1}))-\pi_{\varrho}(Q-F_{\varrho}^{\mathfrak{ZR}}(Q))\right\}\,\varOmega_{\varrho}\right\|\,\left\|\varPhi_{i}\right\|<\varepsilon/2\;.$$

For this Q_1 , there exists α_0 such that for $\alpha > \alpha_0$,

$$|(\Phi_i, U_\alpha \pi_o(Q_1 - F_o^{\mathfrak{IR}}(Q_1)) \Omega_o)| < \varepsilon/2$$
.

These two equations imply

$$|(\Phi_i, U_\alpha \pi_o(Q - F_o^{3\mathfrak{R}}(Q)) \Omega_o)| < \varepsilon$$

and hence

$$\mathbf{w} - \lim \pi_{\varrho} \left(\tau_{\alpha} \{ Q - F_{\varrho}^{3\mathfrak{R}}(Q) \} \right) \Omega_{\varrho} = 0.$$

Multiplying $Q' \in \pi_{\varrho}(\Re)'$ and using the cyclicity of Ω_{ϱ} for $\pi_{\varrho}(\Re)'$, we obtain

$$\mathbf{w} - \lim \pi_{\varrho} (\tau_{\alpha} Q - \tau_{\alpha} F_{\varrho}^{\mathfrak{JR}}(Q)) = 0,$$

which implies

$$\mathbf{w} - \lim \left(\tau_{\alpha} Q - \tau_{\alpha} F_{\rho}^{3\Re}(Q) \right) = 0 , \quad Q \in \Re . \tag{A.3}$$

Since $F_{\varrho}^{3\Re}(Q) \in \mathfrak{Z}$, we obtain

$$\varrho'(\tau_{\alpha}F_{\varrho}^{3\mathfrak{R}}(Q)) = \varrho(\tau_{\alpha}F_{\varrho}^{3\mathfrak{R}}(Q)) = \varrho(F_{\varrho}^{3\mathfrak{R}}(Q)) = \varrho(Q).$$

Hence we obtain from (A.3)

$$\begin{split} \lim \varrho'(\tau_{\alpha}Q) &= \lim \varrho'(\tau_{\alpha}F_{\varrho}^{3\Re}(Q)) \\ &= \varrho(Q) \,. \end{split} \quad \text{Q.E.D.}$$

Acknowledgement. The author would like to thank Professor E. J. Woods and Dr. G. Elliott for helpful discussions and warm hospitality at Department of Mathematics, Queen's University.

References

- 1. Araki, H.: Normal positive linear mappings of norm 1 from a von Neumann Algebra into its commutant and its application. (Queen's Mathematical preprint 1972–12.)
- 2. Connes, A.: C.R. Acad. Sci. Paris 273, 900—903 (1971).
- 3. Connes, A.: C.R. Acad. Sci. Paris 274, 175—177 (1972).
- 4. Størmer, E.: Spectra of states and asymptotically abelian C* algebras. (Oslo Mathematics preprint No. 8, 1972.)

H. Araki Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan